
UNIVERSAL COEFFICIENTS IN COHOMOLOGY AND Ext(H;G).

Consider a chain complex {C∗, ∂} of free abelian groups:

. . . Cn+1
∂−→ Cn

∂−→ Cn
∂−→ Cn−1 → . . .

as well as the dual complex {C∗, δ}, with Cn = Hom(Cn;G) for a fixed abelian
group G, and δ = ∂T , i.e. for the Kronecker pairing ⟨u, x⟩ = u(x), we define:
⟨δu, x⟩ = ⟨u, ∂x⟩:

. . .→ Cn−1 δ−→ Cn δ−→ Cn+1 → . . .

Our goal is to show the cohomology groups Hn(C;G) of C∗ are completely
determined by G and the homology groups Hn(C)

1. There is a natural homomorphism:

h : Hn(C;G) → Hom(Hn(C);G),

defined as follows: a class in Hn(C;G) is represented by a hom. u : Cn → G s.t.
δu = 0, i.e u∂ = 0, i.e. u = 0 on Bn. Thus the restriction u0 = u|Zn

. induces
u0 : Zn/Bn → G, i.e. an element ū0 ∈ Hom(Hn(C);G).

If u ∈ Im(δ), say u = δv = v∂, then u = 0 on Zn, thus u0 = 0 and u0 = 0.
Thus:

h : Hn(C;G) → Hom(Hn(C);G) [u] 7→ u0

is a well-defined homomorphism.

2. h is surjective. The short exact sequence:

0 → Zn → Cn
∂−→ Bn−1 → 0

splits, since Bn−1 is free, as a subgroup of the free abelian group Cn−1. Thus
there exists a hom p : Cn → Zn such that p|Zn

= idZn (review [Hatcher, p.147].)
So any hom u0 : Zn → G extends to h = u0p : Cn → G. This extends homs.
Zn → G vanishing on Bn to homs. Cn → G vanishing on Bn, i.e. extends homs.
Hn → G to elements of Zn(C;G). Thus we have a hom Hom(Hn(C);G) →
Zn. Compose with the quotient hom. to get a hom k : Hom(Hn(C);G) →
Hn(C;G), such that h ◦ k = id (identity in Hom(Hn(C);G).) This shows the
sequence:

0 → Ker(h) → Hn(C;G)
h−→ Hom(Hn(C);G) → 0

is split exact.

3. The kernel of h.

Let Z⊥n := {u ∈ Cn;u = 0 on Zn}. Note Zn = {u ∈ Cn;u = 0 on Bn}, so
Bn ⊂ Z⊥n ⊂ Zn. Since u0 = 0 iff u = 0 on Zn, we have: ker(h) = Z⊥n/Bn.

Claim. Let E = {f : Bn−1 → G hom; f extends to Zn−1}, Then:

Z⊥n/Bn ≈ Hom(Bn−1;G)/E.
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Proof. An isomorphism Ψ : Z⊥n/Bn → Hom(Bn−1;G)/E is induced by the
hom. Ψ : Z⊥n → Hom(Bn−1;G), defined as follows:

Ψ(u) = ū, ū(∂x) = u(x), x ∈ Cn.

This is well-defined, since ∂x = ∂y ⇒ ∂(x−y) = 0 ⇒ u(x)−u(y) = u(x−y) = 0,
if u vanishes on Zn. Ψ is clearly surjective: given ū ∈ Hom(Bn−1;G), define
u(x) = ū(∂x) for x ∈ Cn; clearly u vanishes on Zn.

We have: Ψ(Bn) = E:
(i) Assume u = δv. Then u = v∂, so ū(∂x) = u(x) = v(∂x). Thus ū :

Bn−1 → G extends to v : Cn−1 → G, so ū = Ψ(u) ∈ E.

(ii) Conversely, assume ū : Bn−1 → G extends to Zn−1. We need to show
u ∈ Bn, i.e. u = δv for some v ∈ Cn−1, i.e. u(x) = δv(x) = v(∂x), for all
x ∈ Cn. We have u(x) = ū(∂x). Let v extend ū to Cn−1. Then u(x) = v(∂x),
as we wished to show.

Note: 0 → Zn−1 → Cn−1
∂−→ Bn−2 is split exact (since Bn−2 ⊂ Cn−2 is

free), so extending to Zn−1 is equivalent to extending to Cn−1.

Conclusion. Defining Ext(Hn−1;G) := Hom(Bn−1;G)/E, we have shown
(for the singular homology Z coeficients) and cohomology (G coefficients) of a
space X) that the short exact sequence:

0 → Ext(Hn−1(X);G) → Hn(X;G)
h−→ Hom(Hn(X);G) → 0

is split exact, in particular:

Hn(X;G) ≈ Hom(Hn(X);G)⊕ Ext(Hn−1(X);G),

the universal coefficients theorem for cohomology.

General definition of Ext(H;G) (H,G abelian groups.)

Consider a free resolution of H: an exact sequence 0 → B
i−→ Z

j−→ H → 0,
where Z (and hence B) is a free abelian group. (Free resolutions always exist:
H can be described by generators and relations; let Z be the free group defined
by the generators, and B the subgroup of Z given by the relations.)

Dualizing does not preserve exactness: surjectivity at the last step fails; we
only have that:

0 → Hom(H;G)
jT−−→ Hom(Z;G)

iT−−→ Hom(B;G)

is exact (for a proof, see [Rotman, p.380], including an example where the last
hom. iT is not surjective.) We define:

Ext(H;G) := coker(iT ) := Hom(B;G)/E, where E := im(iT ) = { hom B → G extending to Z}.
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Then we do have an exact sequence:

0 → Hom(H;G)
jT−−→ Hom(Z;G)

iT−−→ Hom(B;G)
π−→ Ext(H;G) → 0,

where π is the quotient projection. We still have to check that the notation
makes sense, that is, that coker(iT ) depends only on H (and G), not on the
particular free resolution of H chosen.

Consider a second free resolution 0 → B′ i
′

−→ Z ′ j
′

−→ H → 0 for H. We may
assume B = ker(j), B′ = ker(j′) are subgroups of Z,Z ′, and that the homs. i, i′

are inclusions. In the following, we adopt the duality notation Z∗ = Hom(Z;G)
etc. for homomorphism groups (with values in the fixed group G.) Dualizing,
we have the exact sequence:

0 → H∗ jT−−→ Z∗ iT−−→ B∗, E = im(iT ) ⊂ B∗, Ext = B∗/E.

A morphism between two free resolutions (B, i, Z, j,H), (B′, i′, Z ′, j′, H) of H
is defined by a homomorphism φ : Z → Z ′ such that j′φ = j and φ(B) ⊂ B′.
We set ψ = φ|B : B → B′. Thus φi = i′ψ.

A morphism of free resolutions of H induces a hom. φ∗ : Ext′ → Ext, as
follows. We have ψT : B′∗ → B∗ and i′ψ = φi implies ψT i′T = iTφT . Thus
ψT (E′) ⊂ E, and passing to the quotients we have a well-defined homomor-
phism, which we denote by φ∗ : Ext′ → Ext.

It follows from the construction that, given a second morphism χ : (B′, i′, Z ′, j′, H) →
(B′′, i′′, Z ′′, j′′, H), we have (χ ◦ φ)∗ = φ∗χ∗ : Ext′′ → Ext.

Lemma. (i) Given two free resolutions (B, i, Z, j,H), (B′, i′, Z ′, j′, H) of an
abelian group H, there exists a morphism φ : Z → Z ′ between them.

(ii) Any two morphisms φ0, φ1 between two given free resolutions of H are
related by a homomorphism D : Z → B′ satisfying i′D = φ0 − φ1. Letting DB

be the restriction of D to B, we have DB = ψ0 − ψ1.

(iii) Any two morphisms φ0, φ1 between two given free resolutions of H
induce the same homs. Ext′ → Ext, that is: φ∗

0 = φ∗
1.

(iv) The induced hom. φ∗ : Ext′ → Ext is always an isomorphism (for any
morphism φ.) In particular, Ext = B∗/E depends only on H (and G), up to
isomorphism.

Proof. (i) Let {eα}α∈A be a basis for Z, and B ⊂ A a subset such that
{eα}α∈B is a basis for the subgroup B ⊂ Z. Given eα, there exists e

′
α ∈ Z ′ such

that j′e′α = jeα (since j′ is surjective.) Set ϕ(eα) = e′α and extend to all of Z
by Z-linearity. Note that if α ∈ B we have j(eα) = 0, so j′(e′α) = 0 and e′α ∈ B′.
Thus φ(B) ⊂ B′.

(ii) For any α ∈ A we have j′(φ0 − φ1)(eα) = j(eα) − j(eα) = 0, so (φ0 −
φ1)(eα) = b′α, for some b′α ∈ B′. Setting D(eα) = b′α and extending Z-linearly
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to all of Z, we have i′D = φ0 −φ1. Restricting to the subgroup B, this implies
DB = ψ0 − ψ1.

(iii) It is enough to show that im(ψT
0 − ψT

1 ) ⊂ E. We have ψ0 − ψ1 = DB

and DB = Di, so ψT
0 − ψT

1 = iTDT and im(ψT
0 − ψT

1 ) ⊂ im(iT ) = E.

(iv) From part (i), construct a morphism φ̄ : (B′, i′, Z, j′, H) → (B, i, Z, j,H).
This gives two morphisms from (B, i, Z, j,H) to itself: the composition φ̄ ◦ φ
and the identity. From part (iii), φ∗φ̄∗ = (φ̄ ◦ φ)∗ = id∗ = idExt. Analogously,
φ̄∗φ∗ = (φ ◦ φ̄)∗ = id∗ = idExt′ . Thus φ

∗ is an isomorphism.

Examples. It follows directly from the definition that, for any abelian G,
if H is free abelian we have Ext(H;G) = 0. It is also easy to show that:

Ext(⊕Hi;G) = ⊕Ext(Hi;G).

Clearly Hom(Z;G) ≈ G, and multiplication by n in Z corresponds to the ho-
momorphism G→ G, g 7→ ng.

This gives easy examples of the fact that, in general, Ext(H;G) ̸= Ext(G;H).

Problem 1. Show this implies Ext(Zn, G) = G/nG.
In particular Ext(Zn,Z) = Zn and Ext(Zn,Zm) = Zd, d = gcd(n,m).

Problem 2. Let H = Zk⊕T , where T is a finite Abelian group. Prove that
Ext(H;Z) ≈ T .

Proposition. If G is an Abelian group such that nG = G for any n ∈ N,
then Ext(H;G) = 0 for any Abelian group H.

In particular, this is the case if G is the additive group of Q or R.

Proof. [Prasolov p.31] Any free resolution (B, i, Z, j,H) of H determines a
homomorphism iT : Hom(Z;G) → Hom(B;G). We claim iT is surjective. Let
u ∈ Hom(B;G). Given y ∈ Z \B, extend u to the group generated by B and y
as follows: if ny ̸∈ B for all n ∈ N, set ũ(y) = 0. Otherwise, let n0 be the least
such n; then set ũ(y) = g, where g ∈ G is such that n0g = u(n0y).

Now extend to all of Z by induction (assume if needed that Z/B is finitely
generated.)

Problem 3. Using the known homology of RPn (with Z coefficients), prove
that: (i) For n even, Hp(RPn) = Z2 if p is even and 2 ≤ p ≤ n; o otherwise,
except for p = 0, where it is Z. (ii) For n odd, the same holds, except for p = n,
where Hn(RPn) = Z.

Problem 4. Prove that, for all n ≥ 1: Hp(RPn;Z2) = Z2 if 0 ≤ p ≤ n.
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