UNIVERSAL COEFFICIENTS IN COHOMOLOGY AND Ezt(H;G).
Consider a chain complex {C,, 9} of free abelian groups:

Cn_;_licngCnQ)Cn_l%

as well as the dual complex {C*,0}, with C" = Hom/(C,,; G) for a fixed abelian
group G, and § = 97, i.e. for the Kronecker pairing (u,z) = u(zx), we define:
(0u, x) = (u, Ox):
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Our goal is to show the cohomology groups H"(C;G) of C* are completely
determined by G and the homology groups H,,(C)

1. There is a natural homomorphism:
h:H"(C;G) - Hom(H,(C); G),

defined as follows: a class in H"(C'; G) is represented by a hom. u : C,, — G s.t.
du =0, ieud =0,ie u=0on B, Thus the restriction uy = u)z,. induces
g : Zn/Bn — G, ie. an element iy € Hom(H,(C); G).
If u € Im(9), say u = év = v, then uw = 0 on Z,, thus ug = 0 and wg = 0.
Thus:
h:H"(C;G) - Hom(H,(C);G) [u] — ug
is a well-defined homomorphism.

2. h is surjective. The short exact sequence:

0—>Zn—>C’nQ>Bn_1—>O

splits, since B,,_; is free, as a subgroup of the free abelian group C,,_;. Thus
there exists a hom p : C,, — Z,, such that p|z, = idz, (review [Hatcher, p.147].)
So any hom ug : Z, — G extends to h = ugp : C,, — G. This extends homs.
Z,, — G vanishing on B,, to homs. C,, — G vanishing on B, i.e. extends homs.
H, — G to elements of Z"(C;G). Thus we have a hom Hom(H,(C);G) —
Z™. Compose with the quotient hom. to get a hom &k : Hom(H,(C);G) —
H"™(C;G), such that h ok = id (identity in Hom(H,(C);G).) This shows the
sequence:
0 = Ker(h) — H"(C: G) 2% Hom(H,(C);G) — 0
is split exact.
3. The kernel of h.

Let Z+" :={u € C"u=0o0n Z,}. Note Z" = {u € C";u =0 on B,}, so
B™ C Z+™ C Z™. Since ug = 0 iff u = 0 on Z,,, we have: ker(h) = Z+"/B".

Claim. Let E = {f : B,—1 — G hom; f extends to Z,_1}, Then:
Z+"/B™ ~ Hom(B,_1;G)/E.



Proof. An isomorphism ¥ : Z+"/B" — Hom(B,_1;G)/E is induced by the
hom. ¥ : Z+" — Hom(B,_1;G), defined as follows:

V(u) =1, u(dz)=u(z), z€C,.

This is well-defined, since dx = 9y = d(z—y) = 0 = u(r)—u(y) = u(z—y) =0,
if w vanishes on Z,,. VU is clearly surjective: given 4 € Hom(B,_1;G), define
u(z) = u(0z) for x € Cy; clearly u vanishes on Z,.

We have: ¥(B") = E:

(i) Assume u = dv. Then u = v9, so w(dz) = u(z) = v(0x). Thus @ :
B,-1 — Gextends tov: C,_1 — G, s0u=V(u) € E.

(ii) Conversely, assume @ : B,_; — G extends to Z,_1. We need to show
u € B", i.e. u = v for some v € C"" ! ie. u(z) = dv(z) = v(dx), for all
x € C,. We have u(x) = u(0x). Let v extend @ to C,_;. Then u(z) = v(dz),
as we wished to show.

Note: 0 — Z,_1 — C,_1 Q) B, is split exact (since B,,—a C Cj,_q is
free), so extending to Z,,_; is equivalent to extending to C,,_1.

Conclusion. Defining Ext(H,_1;G) == Hom(B,_1; G)/E, we have shown
(for the singular homology Z coeficients) and cohomology (G coefficients) of a
space X) that the short exact sequence:

0 = Bat(Ho_1(X):G) — H*(X:G) 1 Hom(H,(X):G) =0
is split exact, in particular:
H"(X;G)~ Hom(H,(X);G) ® Ext(H,—1(X); G),

the universal coefficients theorem for cohomology.

General definition of Ext(H;G) (H,G abelian groups.)

Consider a free resolution of H: an exact sequence 0 — B Nzdigo 0,
where Z (and hence B) is a free abelian group. (Free resolutions always exist:
H can be described by generators and relations; let Z be the free group defined
by the generators, and B the subgroup of Z given by the relations.)

Dualizing does not preserve exactness: surjectivity at the last step fails; we
only have that:
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0 — Hom(H; Q) TN Hom(Z;@G) X, Hom(B;G)

is exact (for a proof, see [Rotman, p.380], including an example where the last
hom. i is not surjective.) We define:

Ext(H;G) := coker(iT) :== Hom(B;G)/E, where E :=im(i’) = { hom B — G extending to Z}.



Then we do have an exact sequence:
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0 — Hom(H;G) 2= Hom(Z;G) s Hom(B; G) & Ext(H;G) — 0,
where 7 is the quotient projection. We still have to check that the notation
makes sense, that is, that coker(i”) depends only on H (and G), not on the
particular free resolution of H chosen.
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Consider a second free resolution 0 — B’ 5 7' L5 H — 0 for H. We may
assume B = ker(j), B’ = ker(j’) are subgroups of Z, Z’, and that the homs. 1,4’
are inclusions. In the following, we adopt the duality notation Z* = Hom(Z; G)
etc. for homomorphism groups (with values in the fixed group G.) Dualizing,
we have the exact sequence:
it e i
0— H**— 7Z* == B*, FE=1im(i")c B*, Ext= B*/E.
A morphism between two free resolutions (B,i,Z,j, H),(B',i',Z',j',H) of H
is defined by a homomorphism ¢ : Z — Z’ such that j'¢ = j and ¢(B) C B’.
We set 1) = ¢ : B — B’. Thus @i = i'1).

A morphism of free resolutions of H induces a hom. ¢* : Ext’ — Eut, as
follows. We have ¢/ : B’ — B* and i’y = i implies 74’7 = iTpT. Thus
YT (E') C E, and passing to the quotients we have a well-defined homomor-
phism, which we denote by ¢* : Ext’ — Ext.

It follows from the construction that, given a second morphism x : (B’,', Z’, 7/, H) —
(B",i",7",5", H), we have (x o 9)* = o*x* : Ext” — FEut.

Lemma. (i) Given two free resolutions (B, i, Z,j, H), (B',i,Z’,j', H) of an
abelian group H, there exists a morphism ¢ : Z — Z’ between them.

(ii) Any two morphisms ¢y, 1 between two given free resolutions of H are
related by a homomorphism D : Z — B’ satisfying i'D = ¢¢ — ;. Letting Dpg
be the restriction of D to B, we have D = ¢g — 1.

(iii) Any two morphisms g, @1 between two given free resolutions of H
induce the same homs. FEzt’ — Ext, that is: ¢f = 7.

(iv) The induced hom. ¢* : Ext’ — Ext is always an isomorphism (for any
morphism .) In particular, Fxt = B*/E depends only on H (and G), up to
isomorphism.

Proof. (i) Let {e4}aca be a basis for Z, and B C A a subset such that
{€a}acn is a basis for the subgroup B C Z. Given e,, there exists e/, € Z’ such
that j'e!, = jes (since j' is surjective.) Set ¢(e,) = e, and extend to all of Z
by Z-linearity. Note that if & € B we have j(e,) = 0, so j'(el,) =0 and e/, € B'.
Thus ¢(B) C B’.

(ii) For any o € A we have j' (g — ¢1)(ea) = j(ea) — j(ea) = 0, so (vo —
v1)(eq) = b, for some b, € B’. Setting D(e,) = b, and extending Z-linearly



to all of Z, we have i'D = ¢g — ¢1. Restricting to the subgroup B, this implies
Dp = 1o — 1.

(iii) It is enough to show that im(y¢ — 1) C E. We have vy — ¢y = Dp
and Dp = Di, so 8 — I =T DT and im(vd — ¢T) Cim(il) = E.

(iv) From part (i), construct a morphism @ : (B, Z, 5/, H) — (B,i,Z,j, H).
This gives two morphisms from (B, 1, Z, j, H) to itself: the composition @ o ¢
and the identity. From part (iii), p*¢* = (¢ 0 9)* = id* = idg,:. Analogously,
7 p* = (po@)* =id* =idgyy. Thus ©* is an isomorphism.

Examples. It follows directly from the definition that, for any abelian G,
if H is free abelian we have Ext(H;G) = 0. Tt is also easy to show that:

Ext(®H;;G) = @Ext(H;; Q).

Clearly Hom(Z;G) =~ G, and multiplication by n in Z corresponds to the ho-
momorphism G — G, g — ng.

This gives easy examples of the fact that, in general, Fxt(H; G) # Ext(G; H).

Problem 1. Show this implies Ext(Z,,G) = G/nG.
In particular Fat(Zy,Z) = Z,, and Ext(Zy, L) = Zq, d = ged(n, m).

Problem 2. Let H = Z* @ T, where T is a finite Abelian group. Prove that
Ext(H;Z) = T.

Proposition. If G is an Abelian group such that nG = G for any n € N,
then Ext(H;G) = 0 for any Abelian group H.
In particular, this is the case if G is the additive group of Q or R.

Proof. [Prasolov p.31] Any free resolution (B,4, Z,j, H) of H determines a
homomorphism i : Hom(Z;G) — Hom(B;G). We claim iT is surjective. Let
u € Hom(B;G). Given y € Z\ B, extend u to the group generated by B and y
as follows: if ny ¢ B for all n € N, set 4(y) = 0. Otherwise, let ng be the least
such n; then set @(y) = g, where g € G is such that ngg = u(ngy).

Now extend to all of Z by induction (assume if needed that Z/B is finitely
generated.)

Problem 3. Using the known homology of RP™ (with Z coefficients), prove
that: (i) For n even, HP(RP™) = Zs if p is even and 2 < p < n; o otherwise,
except for p = 0, where it is Z. (ii) For n odd, the same holds, except for p = n,
where H"(RP") = Z.

Problem 4. Prove that, for all n > 1: HP(RP";Zs) = Z9 if 0 < p < n.



