H. HOPF’S THEOREM ON CLASSIFICATION OF MAPS M"™ — S"
UP TO HOMOTOPY!.

We consider two compact oriented n-manifolds without boundary M, N
(N connected) and smooth maps f : M — N. Recall that, for a regular
value y € N of f, with preimage f~'(y) = {x1,...,2n}, the degree of f
satisfies:

deg(f)= Y deg.f,

zef~y)

where f is a local diffeomorphism from a neighborhood of f to one of y,
and deg, f = +1, according to whether f preserves (+1) or reverses (-1)
orientation at z.

We first recall the proof that if M = 9W for a compact, oriented (n+1)-
manifold with boundary W, and f extends to a smooth map W — N, then
deg(f) = 0. This follows from a geometric observation about orientations.

Lemma 1. Let (W,w) be a compact, oriented manifold with boundary
M = OW, where w is the orientation of W and M has the boundary orien-
tation Ow defined by the outward normal. Suppose K C W is an embedded
one-manifold with boundary (a smooth embedded arc in W), intersecting
M transversely at its endpoints {P,Q} = 0K . Denote by  the orientation
of K from P to @ and by (v,w,) the normal bundle of K in W, with the
orientation w, defined by x and w. We have:

wy(P) = 0w(P) & w,(Q) = —0w(Q).

Remark: We assume the Riemannian metric used to define v = | J, o vz is
a local product near P, @, so that vp =TpM,vg = ToM.

Proof. Let Xp, X be tangent vectors to K at P, (), belonging to xp, kq.
Then Xp is inward iff X is outward, which is equivalent to the lemma.

Proposition 1. With the same notation as Lemma 1 (M = 0W with the
boundary orientation dw and dim(W) = n + 1), let (IV,6) be a compact,
connected, oriented n-manifold, and let h : W — N be a smooth map. Then
deg(hjar) = 0.

Proof. Let y € N be a regular value, simultaneously for h and for
hipr- Then h=1(y) is a compact one-dimensional embedded submanifold
of W, with boundary equal to its intersection with M, and intersecting
M transversely. Let K be a connected component of f~!(y) intersecting

!Following the proof given in [Hirsch], Differential Topology, section 5.1.



OW = M. K is an embedded arc in W intersecting M transversely at its
endpoints P, Q.

Let v = U, cx V= be the normal bundle of K in W, with respect to a
Riemannian metric chosen so that vp = TpM,vg = ToM. For x € K, df (z)
induces a linear isomorphism ®,, : v, — T, N.

Denote by k the orientation of K from P to (). Endow v with the
orientation w,, induced by by w and &, chosen so that w,(Q) = dw(Q) (and
therefore w,(P) = —0w(P) by Lemma 1, where dw is the orientation of
M induced by the orientation w of W and the outward normal.) Suppose
Q € f~1(y) is of positive type for f = hjar- So:

Dolwn (Q)] = df (Q)[w(Q)] = df (Q)[0w](Q) = by,

thus by continuity ®,[w,(x)] = 6, for all € K, in particular ®plw,(P)] =
6. This implies:

df (P)[0w](P) = ®p[-w,(P)] = —=®plw,(P)] = —0,,

so P is of negative type for f.

Thus at each joint regular value y of h and f, we see that f has equal
numbers of preimages of positive and negative type, and hence deg(f) = 0.

Review of tubular neighborhoods. Let W be a manifold of dimension
n + 1 (without boundary), L € W a compact embedded submanifold, of
dimension 0 <[ < n. Assume W is endowed with a riemannian metric. If L
is compact, we may find € > 0 so that the normal e-disk bundle of L defines
an open neighborhood N of L in W, a normal tubular neighborhood of L in
W
N = leeLDg‘(x).

(If you change the metric, the neighborhood changes slightly; hence the
indefinite article.) The (n + 1 —I)-dimensional open disks D} () are all dis-
joint, and nearest-point projection along the normal disks defines a smooth
retraction

r: N — L.

If L is noncompact, but properly embedded in W, this is still true, but
we have to allow the radius to depend on z: N = UmeLDizx) (z).

If W is a manifold with boundary OW = M and L is also a manifold
with boundary 0L = L NOW, and transversal to M along JL, then we may



add the requirement that N'N M is a normal tubular neighborhood of L
in M (provided the metric is a product near the boundary).

Conversely, we have the following extension theorem: for manifolds with
boundary OW = M, if L is a submanifold with boundary of W (as above)
and T is a normal tubular neighborhood of dL in M, then we may find a
normal tubular neighborhood A of L in W so that NN M = T. (For proofs
of these results see Hirsch, Differential Topology, Ch. 4, sect. 5.)

Our main goal is to prove that if f : M — S™ (smooth) has degree
zero (where M = OW is n-dimensional and W is compact oriented), then
f extends to a smooth map W — S™. The main step is the following
lemma. We follow [Hirsch] in calling a one-dimensional, connected embedded
submanifold of W meeting OW transversely a neat arc.

Extension Lemma: Let W™! be compact oriented, with boundary W =
M. Let K C W be a neat arc, with endpoints P,Q € M. Let V = VyUV; C
M be an open neighborhood of {P,Q} in M (Vy nbd. of P, V; nbd of Q).

Suppose f : V — N is a smooth map (where N" is compact, oriented,
connected, without boundary) and Let y € N be a regular value of f, such
that f~1(y) = {P,Q}. Assume f has local degrees with opposite signs at

P,Q.

Then we may find Wy C W, an open tubular neighborhood of K in W,
and a smooth map g : Wy — N so that : (a)g = fon WoyNV; (b) yisa
regular value of g; (c¢) g7 !(y) = K.

The following standard differential topology result is used in the proof:

Lemma 2. Let f : U' — U’ be a diffeomorphism of an open neighborhood
U of 0 € R", f(0) = 0. Let L = df(0) € GL,. Then there exists a
diffeomorphism ¢ of a smaller neighborhood U C U’ of 0 so that ¢(0) =
0,dp(0) =T and fop=LonU.

Proof of extension lemma. We may choose tubular neighborhoods Uy C
Vo,Ur C Vi, N' C N of P,Q,y (resp.) so that f restricts to diffeomorphisms:

fO:(U07P):>(N,7y)7 fl:(Uva);(Ncy)v
and further pick local charts at P, @,y (diffeomorphisms):
¢0 : (U07P) :> (Rn70)7 ¢1 : (U17Q) :> (Rn70)7 w : (Nlay) :> (Rnao)

In addition, composing on the right with a further diffeomorphism (as in



Lemma 2) we may assume the compositions:
Fo=vofoody', Fi=1ofioe: (R",0) (R",0)

are invertible linear maps: Fy, F1 € GL,. Consider now the effect on ori-
entations: let ©,, demote the standard orientation of R™. Denoting by Ow
the boundary orientation induced on M = W by the orientation w in W,
and by 6 the orientation of NV, we may require ¢q, ¢1,% to be orientation-
preserving:

¢0[aw] = ¢ [aw] = On, 1/)[9] = O,.

Using the extension theorem for tubular neighborhoods, we find a tubular
neighborhood Wy C W of K in W, restricting to Up, Uy at P, @ (resp.) Fur-
ther, since K is one-dimensional, the topology of the situation is standard:
we may find a diffeomorphism:

¢ (Wy,K) S (I x R",0x R").

We might be inclined to assert ¢y, = ¢o, ¢, = ¢1 (identifying R™ x
0, R™ x 1 with R™); but consideration of orientations reveals this isn’t quite
right. Let x be the orientation of K from P to (); together with w this
induces the orientation w, on the normal disk bundle v = J,c; ¢ of K, and
we want d¢ to satisfy:

d¢:UVt—>I><R”, KQuwy — 0RO, w=kKQ®w,.
tel

(denoting by 0; the orientation of I = [0, 1] from 0 to 1.) Now suppose we
require the induced normal orientation at @ to be dw(Q). Then by lemma
1 we must have:

w(Q) = 0w(Q),  w,(P) = —0w(P).

Thus the orientation dw on Uy, U; coincides at () with the restriction of w,
to ToM, but at P it is the opposite of the restriction of w, to TpM. So
the restriction of the diffeomorphism ¢ to Up is not the chart ¢y (which we
assumed to be orientation-preserving, for the orientation dw on Up).

To remedy this we consider a reflection R in R" and let ¢y = Ry, and
then we have:

Dy = o, B, = 91
Recall now the hypothesis that P, Q) are of opposite signs for df, say:

df(Q) : 0w(@Q) = 0y, df(P) : Ow(P) — =0y,



which imply: F; € GL}, Fy € GL,, . Since ¢ restricts to ¢ at P, instead of
Fy we consider:

_ —1

Fy=1o foo(do) =FoR,
so Fy € GL;}. Thus Fy and Fy can be connected in GL} by a smooth curve
F;,t € [0,1]. We may extend the map defined by Fy, F} on (R" x0)U(R"x 1)
to I x R"™ via:

G:IxR"— R", G(t,x)=Fu;

and then the desired extension g : Wy — N of f is given by: g = ¢ 1oGo¢.

Condition (b) in the conclusion of the lemma follows from the fact 0 €
R™ is a regular value of G (since F; € GL,). Condition (c) follows from
G~1(0) = {(t,0);t € I'}. As for condition (a), we have, if z € Uy:

g(x) =y T oGogi(z) =y o Flogi(x) =y po foo di(z) = fla),
while if z € Upy:
9(z) = ¥ oGogy(z) = ¢ Fydo(z) = v 'FyRR¢o(x) = 1 Fodo(z) = fo(z).

This concludes the proof of the extension lemma. Note the oriented manifold
N is arbitrary at this point.

Degree zero extension theorem. Let (W, w) be a compact oriented
(n+1)-dimensional manifold with boundary 0W = M, with the boundary
orientation Ow (outward normal.) Let f : M — S™ be a smooth map. Then
if deg(f) =0, f extends to a continuous map f: W — S™.

Proof. Let y € S™ be a regular value of f. By the degree hypothesis,
the finite set f~!(y) has equal numbers of points of (+) and (-) type. Thus
we may find finitely many disjoint embedded oriented neat arcs Ky, ..., K,
in W, each K; connecting a (-) point in f~!(y) to a (+) point. (See [Hirsch],
p.126 for the geometric argument)

By the extension lemma just proved, there exists Wy C W open neigh-
borhood of K = U;K; and g : Wy — S™ agreeing with f on Wy N M, with
y as a regular value, and such that g~!(y) = K. Let U C W be a smaller
open neighborhood of K, such that U € Wy and U C Wy \ K.

Let X = 0U U (M \ U); note X is a closed subset of W \ U. Define
h:X — S™\ {y} via:

h=gondU; h=fon M\U.



By the Tietze extension theorem, since X is closed in W \ U, h extends
continuously to H : W\ U — S™ \ {y}. Now the desired extension is given
by:

f:W—=8" f=HonW\U; f=gonU.

Since H = g on 0U, fis continuous on W. And f=fonOW = M, since
f=H=h=fonM\Uand f=g=fonUnNM.

Applying the theorem to W = M x [0, 1], we have the homotopy classi-
fication theorem:

Corollary. Let f,g: M™ — S™, where M" is compact, oriented, with-
out boundary. Then:

deg(f) = deg(g) = f ~g.



