
H. HOPF’S THEOREM ON CLASSIFICATION OF MAPS Mn → Sn

UP TO HOMOTOPY1.

We consider two compact oriented n-manifolds without boundary M,N
(N connected) and smooth maps f : M → N . Recall that, for a regular
value y ∈ N of f , with preimage f−1(y) = {x1, . . . , xN}, the degree of f
satisfies:

deg(f) =
∑

x∈f−1(y)

degxf,

where f is a local diffeomorphism from a neighborhood of f to one of y,
and degxf = ±1, according to whether f preserves (+1) or reverses (-1)
orientation at x.

We first recall the proof that ifM = ∂W for a compact, oriented (n+1)-
manifold with boundary W , and f extends to a smooth map W → N , then
deg(f) = 0. This follows from a geometric observation about orientations.

Lemma 1. Let (W,ω) be a compact, oriented manifold with boundary
M = ∂W , where ω is the orientation of W and M has the boundary orien-
tation ∂ω defined by the outward normal. Suppose K ⊂W is an embedded
one-manifold with boundary (a smooth embedded arc in W ), intersecting
M transversely at its endpoints {P,Q} = ∂K. Denote by κ the orientation
of K from P to Q and by (ν, ων) the normal bundle of K in W , with the
orientation ων defined by κ and ω. We have:

ων(P ) = ∂ω(P ) ⇔ ων(Q) = −∂ω(Q).

Remark: We assume the Riemannian metric used to define ν =
⋃

x∈K νx is
a local product near P,Q, so that νP = TPM,νQ = TQM.

Proof. Let XP , XQ be tangent vectors to K at P,Q, belonging to κP , κQ.
Then XP is inward iff XQ is outward, which is equivalent to the lemma.

Proposition 1. With the same notation as Lemma 1 (M = ∂W with the
boundary orientation ∂ω and dim(W ) = n + 1), let (N, θ) be a compact,
connected, oriented n-manifold, and let h :W → N be a smooth map. Then
deg(h|M ) = 0.

Proof. Let y ∈ N be a regular value, simultaneously for h and for
h|M . Then h−1(y) is a compact one-dimensional embedded submanifold
of W , with boundary equal to its intersection with M , and intersecting
M transversely. Let K be a connected component of f−1(y) intersecting

1Following the proof given in [Hirsch], Differential Topology, section 5.1.
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∂W = M . K is an embedded arc in W intersecting M transversely at its
endpoints P,Q.

Let ν =
⋃

x∈K νx be the normal bundle of K in W , with respect to a
Riemannian metric chosen so that νP = TPM,νQ = TQM . For x ∈ K, df(x)
induces a linear isomorphism Φx : νx → TyN .

Denote by κ the orientation of K from P to Q. Endow ν with the
orientation ων induced by by ω and κ, chosen so that ων(Q) = ∂ω(Q) (and
therefore ων(P ) = −∂ω(P ) by Lemma 1, where ∂ω is the orientation of
M induced by the orientation ω of W and the outward normal.) Suppose
Q ∈ f−1(y) is of positive type for f = h|M . So:

ΦQ[ων(Q)] = df(Q)[ων(Q)] = df(Q)[∂ω](Q) = θy,

thus by continuity Φx[ων(x)] = θy for all x ∈ K, in particular ΦP [ων(P )] =
θy. This implies:

df(P )[∂ω](P ) = ΦP [−ων(P )] = −ΦP [ων(P )] = −θy,

so P is of negative type for f .

Thus at each joint regular value y of h and f , we see that f has equal
numbers of preimages of positive and negative type, and hence deg(f) = 0.

Review of tubular neighborhoods. Let W be a manifold of dimension
n + 1 (without boundary), L ⊂ W a compact embedded submanifold, of
dimension 0 ≤ l ≤ n. Assume W is endowed with a riemannian metric. If L
is compact, we may find ϵ > 0 so that the normal ϵ-disk bundle of L defines
an open neighborhood N of L in W , a normal tubular neighborhood of L in
W :

N = ⊔x∈LD
⊥
ϵ (x).

(If you change the metric, the neighborhood changes slightly; hence the
indefinite article.) The (n+1− l)-dimensional open disks D⊥

ϵ (x) are all dis-
joint, and nearest-point projection along the normal disks defines a smooth
retraction

r : N → L.

If L is noncompact, but properly embedded in W , this is still true, but
we have to allow the radius to depend on x: N = ⊔x∈LD

⊥
ϵ(x)(x).

If W is a manifold with boundary ∂W = M and L is also a manifold
with boundary ∂L = L∩ ∂W , and transversal to M along ∂L, then we may
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add the requirement that N ∩M is a normal tubular neighborhood of ∂L
in M (provided the metric is a product near the boundary).

Conversely, we have the following extension theorem: for manifolds with
boundary ∂W = M , if L is a submanifold with boundary of W (as above)
and T is a normal tubular neighborhood of ∂L in M , then we may find a
normal tubular neighborhood N of L in W so that N ∩M = T . (For proofs
of these results see Hirsch, Differential Topology, Ch. 4, sect. 5.)

Our main goal is to prove that if f : M → Sn (smooth) has degree
zero (where M = ∂W is n-dimensional and W is compact oriented), then
f extends to a smooth map W → Sn. The main step is the following
lemma. We follow [Hirsch] in calling a one-dimensional, connected embedded
submanifold of W meeting ∂W transversely a neat arc.

Extension Lemma: LetWn+1 be compact oriented, with boundary ∂W =
M . Let K ⊂W be a neat arc, with endpoints P,Q ∈M . Let V = V0⊔V1 ⊂
M be an open neighborhood of {P,Q} in M (V0 nbd. of P , V1 nbd of Q).

Suppose f : V → N is a smooth map (where Nn is compact, oriented,
connected, without boundary) and Let y ∈ N be a regular value of f , such
that f−1(y) = {P,Q}. Assume f has local degrees with opposite signs at
P,Q.

Then we may find W0 ⊂ W , an open tubular neighborhood of K in W ,
and a smooth map g : W0 → N so that : (a)g = f on W0 ∩ V ; (b) y is a
regular value of g; (c) g−1(y) = K.

The following standard differential topology result is used in the proof:

Lemma 2. Let f : U ′ → U ′ be a diffeomorphism of an open neighborhood
U ′ of 0 ∈ Rn, f(0) = 0. Let L = df(0) ∈ GLn. Then there exists a
diffeomorphism φ of a smaller neighborhood U ⊂ U ′ of 0 so that φ(0) =
0, dφ(0) = I and f ◦ φ = L on U .

Proof of extension lemma. We may choose tubular neighborhoods U0 ⊂
V0, U1 ⊂ V1, N

′ ⊂ N of P,Q, y (resp.) so that f restricts to diffeomorphisms:

f0 : (U0, P )
∼→ (N ′, y), f1 : (U1, Q)

∼→ (N ′, y),

and further pick local charts at P,Q, y (diffeomorphisms):

ϕ0 : (U0, P )
∼→ (Rn, 0), ϕ1 : (U1, Q)

∼→ (Rn, 0), ψ : (N ′, y)
∼→ (Rn, 0).

In addition, composing on the right with a further diffeomorphism (as in
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Lemma 2) we may assume the compositions:

F0 = ψ ◦ f0 ◦ ϕ−1
0 , F1 = ψ ◦ f1 ◦ ϕ−1

1 : (Rn, 0)
∼→ (Rn, 0)

are invertible linear maps: F0, F1 ∈ GLn. Consider now the effect on ori-
entations: let Θn demote the standard orientation of Rn. Denoting by ∂ω
the boundary orientation induced on M = ∂W by the orientation ω in W ,
and by θ the orientation of N , we may require ϕ0, ϕ1, ψ to be orientation-
preserving:

ϕ0[∂ω] = ϕ1[∂ω] = Θn, ψ[θ] = Θn.

Using the extension theorem for tubular neighborhoods, we find a tubular
neighborhood W0 ⊂W of K in W , restricting to U0, U1 at P,Q (resp.) Fur-
ther, since K is one-dimensional, the topology of the situation is standard:
we may find a diffeomorphism:

ϕ : (W0,K)
∼→ (I ×Rn, 0×Rn).

We might be inclined to assert ϕ|U0
= ϕ0, ϕ|U1

= ϕ1 (identifying Rn ×
0, Rn × 1 with Rn); but consideration of orientations reveals this isn’t quite
right. Let κ be the orientation of K from P to Q; together with ω this
induces the orientation ων on the normal disk bundle ν =

⋃
t∈I νt of K, and

we want dϕ to satisfy:

dϕ :
⋃
t∈I

νt → I ×Rn, κ⊗ ων 7→ ∂t ⊗Θn, ω = κ⊗ ων .

(denoting by ∂t the orientation of I = [0, 1] from 0 to 1.) Now suppose we
require the induced normal orientation at Q to be ∂ω(Q). Then by lemma
1 we must have:

ων(Q) = ∂ω(Q), ων(P ) = −∂ω(P ).

Thus the orientation ∂ω on U0, U1 coincides at Q with the restriction of ων

to TQM , but at P it is the opposite of the restriction of ων to TPM . So
the restriction of the diffeomorphism ϕ to U0 is not the chart ϕ0 (which we
assumed to be orientation-preserving, for the orientation ∂ω on U0).

To remedy this we consider a reflection R in Rn and let ϕ0 = Rϕ0, and
then we have:

ϕ|U0
= ϕ0, ϕ|U1

= ϕ1.

Recall now the hypothesis that P,Q are of opposite signs for df , say:

df(Q) : ∂ω(Q) 7→ θy, df(P ) : ∂ω(P ) 7→ −θy,
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which imply: F1 ∈ GL+
n , F0 ∈ GL−

n . Since ϕ restricts to ϕ0 at P , instead of
F0 we consider:

F̄0 = ψ ◦ f0 ◦ (ϕ0)
−1

= F0R,

so F̄0 ∈ GL+
n . Thus F̄0 and F1 can be connected in GL+

n by a smooth curve
Ft, t ∈ [0, 1]. We may extend the map defined by F̄0, F1 on (Rn×0)⊔(Rn×1)
to I ×Rn via:

G : I ×Rn → Rn, G(t, x) = Ftx;

and then the desired extension g :W0 → N of f is given by: g = ψ−1 ◦G◦ϕ.

Condition (b) in the conclusion of the lemma follows from the fact 0 ∈
Rn is a regular value of G (since Ft ∈ GLn). Condition (c) follows from
G−1(0) = {(t, 0); t ∈ I}. As for condition (a), we have, if x ∈ U1:

g(x) = ψ−1 ◦G ◦ ϕ1(x) = ψ−1 ◦ F1 ◦ ϕ1(x) = ψ−1ψ ◦ f ◦ ϕ−1
1 ϕ1(x) = f(x),

while if x ∈ U0:

g(x) = ψ−1◦G◦ϕ0(x) = ψ−1F̄0ϕ0(x) = ψ−1F0RRϕ0(x) = ψ−1F0ϕ0(x) = f0(x).

This concludes the proof of the extension lemma. Note the oriented manifold
N is arbitrary at this point.

Degree zero extension theorem. Let (W,ω) be a compact oriented
(n+1)-dimensional manifold with boundary ∂W = M , with the boundary
orientation ∂ω (outward normal.) Let f :M → Sn be a smooth map. Then
if deg(f) = 0, f extends to a continuous map f̄ :W → Sn.

Proof. Let y ∈ Sn be a regular value of f . By the degree hypothesis,
the finite set f−1(y) has equal numbers of points of (+) and (-) type. Thus
we may find finitely many disjoint embedded oriented neat arcs K1, . . . ,Km

inW , each Ki connecting a (-) point in f−1(y) to a (+) point. (See [Hirsch],
p.126 for the geometric argument)

By the extension lemma just proved, there exists W0 ⊂ W open neigh-
borhood of K = ⊔iKi and g :W0 → Sn agreeing with f on ∂W0 ∩M , with
y as a regular value, and such that g−1(y) = K. Let U ⊂ W be a smaller
open neighborhood of K, such that U ⊂W0 and ∂U ⊂W0 \K.

Let X = ∂U ∪ (M \ U); note X is a closed subset of W \ U . Define
h : X → Sn \ {y} via:

h = g on ∂U ; h = f on M \ U.
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By the Tietze extension theorem, since X is closed in W \ U , h extends
continuously to H : W \ U → Sn \ {y}. Now the desired extension is given
by:

f̄ :W → Sn; f̄ = H on W \ U ; f̄ = g on U.

Since H = g on ∂U , f̄ is continuous on W . And f̄ = f on ∂W = M , since
f̄ = H = h = f on M \ U and f̄ = g = f on U ∩M .

Applying the theorem to W =M × [0, 1], we have the homotopy classi-
fication theorem:

Corollary. Let f, g : Mn → Sn, where Mn is compact, oriented, with-
out boundary. Then:

deg(f) = deg(g) ⇒ f ≃ g.
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