

MATH 664, SPRING 2026–PROBLEM SET 1

1. (i) Show that a CW complex is contractible if it is an increasing union of subcomplexes  $X_1 \subset X_2 \subset \dots$  such that each inclusion  $X_i \hookrightarrow X_{i+1}$  is nullhomotopic.
- (ii) Show that  $S^\infty = \bigcup_{n \geq 0} S^n$  is contractible. (Increasing union via equatorial inclusion  $S^n \hookrightarrow S^{n+1}$ .)
2. Show that if  $f : X \rightarrow Y$  is a homotopy equivalence, then the induced homomorphisms  $f_* : \pi_n(X, x_0) \rightarrow \pi_n(Y, f(x_0))$  are isomorphisms for all  $n$ .
3. If  $p : \tilde{X} \rightarrow X$  is a covering map,  $A \subset X$ ,  $\tilde{A} = p^{-1}(A)$ ,  $x_0 \in A$  and  $p(\tilde{x}_0) = x_0$ , then  $p_* : \pi_n(\tilde{X}, \tilde{x}_0) \rightarrow \pi_n(X, x_0)$  is an isomorphism for all  $n \geq 2$ .
4. Show that an  $n$ -connected,  $n$ -dimensional CW complex is contractible.
5. Show that a CW complex deformation retracts onto any contractible subcomplex. *Hint:* Homotopy extension property.
6. Show that if  $X$  and  $Y$  are CW complexes, with  $X$   $m$ -connected and  $Y$   $n$ -connected, then the pair  $(X \times Y, X \vee Y)$  is  $(m+n+1)$ -connected.
7. Show that the set of free homotopy classes  $[X, Y]$  is finite if  $X$  is a finite connected CW complex and  $\pi_p(Y)$  is finite for all  $p \leq \dim(X)$ .
8. Show that a map  $f : X \rightarrow Y$  of connected CW complexes is a homotopy equivalence if it induces an isomorphism on  $\pi_1$  and if a lift  $\tilde{f} : \tilde{X} \rightarrow \tilde{Y}$  to the universal covers induces isomorphisms on homology groups.
9. Show that a map between connected  $n$ -dimensional CW complexes is a homotopy equivalence if it induces isomorphisms on  $\pi_p$  for all  $p \leq n$ .  
*Hint:* Pass to the universal cover and use homology.
10. If an  $n$ -dimensional CW complex  $X$  contains a subcomplex  $Y$  homotopy equivalent to  $S^n$ , show that the map  $\pi_n(Y) \rightarrow \pi_n(X)$  induced by inclusion is injective. *Hint:* Hurewicz isomorphism.
11. Show that the spaces  $S^n \times \mathbb{R}P^m$  and  $S^m \times \mathbb{R}P^n$  ( $m \neq n$ ) have the same homotopy groups, but are not homotopy equivalent.
12. Prove that the space of all unordered sets of  $n$  points in  $\mathbb{R}^\infty$  (or  $S^\infty$ ) is a  $K(S_n, 1)$ , where  $S_n$  is the symmetric group.
13. Show that the spaces  $S^1 \times S^1$  and  $S^1 \vee S^1 \vee S^2$  have isomorphic homology groups, but nonisomorphic homotopy groups.