Sliced spacetimes. Let (V^{n+1}, g) be a Lorentzian manifold with signature $(-+\ldots+)$, diffeomorphic to $M^n \times R$. We assume V carries a time function t, meaning the integral curves of the vector field ∂_t , dual to the differential dt (i.e. $dt[\partial_t] \equiv 1$) are positive-oriented timelike, and foliate V. The level sets M_t of t are spacelike n-manifolds, diffeomorphic to M. Let n be the future-directed timelike unit vector field normal to the level sets M_t . (t, x_i) are adapted local coordinates, with associated vector fields (∂_t, ∂_i) , with $\partial_i \in TM_t$. We have the decomposition:

$$\partial_t = Nn + X, \quad X = X^i \partial_i, \qquad n = \frac{1}{N} (\partial_t - X)$$

for a function $N = -g(n, \partial_t) > 0$ in V (the 'lapse function') and vector field $X \in TM_t$ (the 'shift vector field'), |X| < N. (Note N and X are uniquely determined by the time function t and the metric g.) Denoting by D and ∇ the Levi-Civita connections for g and for the induced metric γ on M_t (resp.), we define the second fundamental form K of M_t via:

$$D_YW = \nabla_Y W + K(Y, W)n, \quad K(Y, W) = -\gamma(D_Y W, n) = \gamma(D_Y n, W), \quad Y, W \in TM_t.$$

To find the expression for the metric g in the frame $\{\partial_t, \partial_i\}$, we compute:

$$g(\partial_t, \partial_t) = -N^2 + |X|^2, \quad g(\partial_k, \partial_t) = X^j \gamma_{jk}, \quad g(\partial_k, \partial_l) = \gamma_{kl}.$$

This gives, recalling $dx^k dt = (1/2)(dx^k \otimes dt + dt \otimes dx^k)$:

$$g = (-N^{2} + |X|^{2})dt^{2} + 2X^{j}\gamma_{jk}dx^{k}dt + \gamma_{ij}dx^{i}dx^{j}$$
$$= -N^{2}dt^{2} + \gamma_{ij}(dx^{i} + X^{i}dt)(dx^{j} + X^{j}dt).$$

We compute the covariant derivative $D_n n$:

$$\begin{split} \langle D_n n, \partial_j \rangle &= -\langle n, D_n \partial_j \rangle = -\langle n, D_{\partial_j} n \rangle + \langle n, [\partial_j, n] \rangle = \langle n, [\partial_j, n] \rangle, \\ [\partial_j, n] &= -\frac{\partial_j N}{N} n - \frac{1}{N} [\partial_j, X], \\ \langle D_n n, \partial_j \rangle &= -\frac{\partial_j N}{N} \langle n, n \rangle = \frac{\partial_j N}{N}, \end{split}$$

hence:

$$D_n n = \gamma^{ij} \frac{\partial_i N}{N} \partial_j = \frac{1}{N} \nabla^{\gamma} N.$$

For a tangent vector field $Z \in TM_t$, define the operator:

$$\mathcal{L}_0 Z = [\partial_t, Z] - [X, Z].$$

Note that if $Z = b^i \partial_i$, $[\partial_t, Z] = (\partial_t b^j) \partial_j \in TM_t$, so $\mathcal{L}_0 Z \in TM_t$. This implies:

$$[n, Z] = \left[\frac{1}{N}(\partial_t - X), Z\right] = \frac{1}{N}\mathcal{L}_0 Z - Z(\frac{1}{N})(\partial_t - X) = \frac{1}{N}\mathcal{L}_0 Z + \frac{Z(N)}{N}n.$$

Decomposition of the curvature tensor. Let $Y, Z \in TM_t$ be vector fields on V.

$$\langle D_Y D_n n, Z \rangle = \langle \nabla_Y (\frac{\nabla N}{N}), Z \rangle = \frac{1}{N} \nabla^2 N(Y, Z) - \frac{Y(N)Z(N)}{N^2}.$$

$$\langle D_n D_Y n, Z \rangle = n \langle D_Y n, Z \rangle - \langle D_Y n, D_n Z \rangle$$

$$= n(K(Y, Z)) - \langle D_Y n, D_Z n \rangle - \langle D_Y n, [n, Z] \rangle$$

$$= n(K(Y, Z)) - K^2(Y, Z) - \frac{1}{N} K(Y, \mathcal{L}_0 Z).$$

$$\langle D_{[Y,n]} n, Z \rangle = -\frac{Y(N)}{N} \langle D_n n, Z \rangle - \frac{1}{N} \langle D_{\mathcal{L}_0 Y} n, Z \rangle$$

$$= -\frac{Y(N)Z(N)}{N^2} - \frac{1}{N} K(\mathcal{L}_0 Y, Z).$$

Thus we have the curvature component:

$$R^{V}(Y, n, n, Z) = \langle D_{Y}D_{n}n - D_{n}D_{Y}n - D_{[Y,n]}n, Z \rangle$$

$$= \frac{1}{N}\nabla^{2}N(Y, Z) + K^{2}(Y, Z) - n(K(Y, Z)) + \frac{1}{N}K(Y, \mathcal{L}_{0}Z) + \frac{1}{N}K(\mathcal{L}_{0}Y, Z)$$

$$= \frac{1}{N}\nabla^{2}N(Y, Z) + K^{2}(Y, Z) - \frac{1}{N}(\mathcal{L}_{0}K)(Y, Z),$$

where we define:

$$(\mathcal{L}_0K)(Y,Z) = \partial_t(K(Y,Z)) - X(K(Y,Z)) - K(\mathcal{L}_0Y,Z) - K(Y,\mathcal{L}_0Z).$$

We also have the Gauss and Codazzi equations (where $X, Y, Z, W \in TM_t$):

$$R^{V}(X, Y, Z, W) = R^{M}(X, Y, Z, W) + K(X, W)K(Y, Z) - K(Y, W)K(X, Z),$$

$$R^{V}(X, Y, n, Z) = (\nabla_{X}K)(Y, Z) - (\nabla_{Y}K)(X, Z).$$

The constraint equations. Define $Q(Y,Z) = R^V(Y,n,n,Z)$ (symmetric). Then $Rc^V(n,n) = tr_{\gamma}Q$, while:

$$Rc^{V}(X,Y) = \sum_{i} R^{V}(X,e_{i},e_{i},Y) - R^{V}(X,n,n,Y),$$

hence from the Gauss equation:

$$Rc^V(X,Y) = Rc^M(X,Y) + HK(X,Y) - K^2(X,Y) - Q(X,Y), \quad X,Y \in TM,$$
 where $H = tr_{\gamma}K$. For the scalar curvature:

$$\begin{split} R^V &= -Rc^V(n,n) + \sum_j Rc^V(e_j,e_j) \\ &= R^M + H^2 - |K|^2 - 2tr_{\gamma}Q. \end{split}$$

For the Einstein tensor, the terms involving Q cancel, and we obtain:

$$G^{V}(n,n) = Rc^{V}(n,n) - \frac{1}{2}R^{V}g(n,n) = Rc^{V}(n,n) + \frac{R^{V}}{2}$$
$$= \frac{1}{2}(R^{M} + H^{2} - |K|^{2}).$$

So the Einstein vacuum equation $G^V = 0$ gives the 'Hamiltonian constraint':

$$R^M + H^2 - |K|^2 = 0$$
 on M .

The 'momentum constraint' follows from:

$$G^{V}(X,n) = \sum_{i} (\nabla_{e_i} K)(e_i, X) - X(H), \quad X \in TM.$$

The evolution equations.

(i) For the metric on M:

$$\partial_t \gamma = \mathcal{L}_X \gamma + 2NK$$
, or $\mathcal{L}_0 \gamma = 2NK$.

Proof.

$$\mathcal{L}_{X}\gamma(\partial_{i},\partial_{j}) = \gamma(\nabla_{\partial i}X,\partial_{j}) + \gamma(\nabla_{\partial_{j}}X,\partial_{i})$$

$$= g(D_{\partial t}\partial_{i},\partial_{j}) + g(D_{\partial_{t}}\partial_{j},\partial_{i}) - N[g(D_{\partial_{i}}n,\partial_{j}) + g(D_{\partial_{j}}n,\partial_{j})]$$

$$= \partial_{t}\gamma_{ij} - 2NK_{ij}.$$

(ii) For the second fundamental form:

$$\mathcal{L}_0K = \nabla^2 N + N(K^2 - Q)$$
, where $Q = -Rc^V + Rc^M + HK - K^2 \in Sym_2(TM)$.

Proof. Follows directly from what was proved above:

$$Q = N^{-1}\nabla^2 N + K^2 - N^{-1}\mathcal{L}_0 K.$$

Einstein metrics and static metrics.

The Einstein metric condition $Rc^V = \lambda g$ is equivalent to two:

$$Rc_{|TM}^{V} = \lambda \gamma, \quad Rc^{V}(n,n) = tr_{\gamma}Q = -\lambda,$$

where the second one can also written as:

$$-\lambda = N^{-1}\Delta N + |K|^2 - N^{-1}tr\mathcal{L}_0K,$$

or equivalently:

$$\Delta N + \lambda N = tr \mathcal{L}_0 K - N|K|^2.$$

The first one can be written in the form:

$$Rc^{M} + HK - K^{2} - \lambda \gamma = N^{-1}\nabla^{2}N + K^{2} - N^{-1}\mathcal{L}_{0}K.$$

Taking traces, we find:

$$R^{M} - n\lambda = N^{-1}\Delta N + 2|K|^{2} - H^{2} - N^{-1}tr\mathcal{L}_{0}K.$$

Comparing the two scalar equations, we find for the scalar curvature:

$$R^{M} = (n-1)\lambda + |K|^{2} - H^{2}.$$

The Ricci curvature of M is given by:

$$Rc^{M} - \lambda \gamma = N^{-1}\nabla^{2}N + 2K^{2} - HK - N^{-1}\mathcal{L}_{0}K.$$

If $K \equiv 0$ on V (product case, with $g = -N^2 dt^2 \oplus \gamma$), this simplifies to:

$$Rc^M - \lambda \gamma = N^{-1}\nabla^2 N, \quad \Delta N + \lambda N = 0.$$

(So N is a 'static potential' on M.) Solving for λ we have in the product case:

$$Rc^{M} = N^{-1}(\nabla^{2}N - (\Delta N)\gamma).$$

In the general case:

$$Rc^{M} = N^{-1}(\nabla^{2}N - (\Delta N)\gamma) + 2K^{2} - HK - |K|^{2}\gamma - N^{-1}(\mathcal{L}_{0}K - (tr\mathcal{L}_{0}K)\gamma).$$