ENERGY-MOMENTUM: spherically symmetric initial data sets !

1. Spherically symmetric Positive Mass Theorem.

We consider metrics in M = R™ \ By of the form:

_ dr?
I=V)

+7r2dw?,  (r,w) € [R,00) x S"7L.
Geometrically, r > R is the “area radius”, in the sense that the (n — 1)-

dimensional area of the sphere {r} x S"~! = S, is:

|Srlg = wp_1r" L

Since v = V'V, is the outward unit normal of S, the first variation formula
gives for the mean curvature H(r) of Sy:

n—1

-1
Wn 1"t or H(r) = LV, 73
T

Wn 1 H(r)r L =VV8,|S,], = VV

The second fundamental form of S, is A = %\/\7 L,_1.

We compute the scalar curvature RM of M in the metric g. Recall the for-
mula for the differential (first variation) of the mean curvature of a hypersurface
3}, with respect to a normal variation with velocity field ¢v:

DH[¢pv] = —Aso + %(RZ —RM 42 — H)o.

And with ¢ = 1:
DH[v] = =(R* — RM — |A? — H?).

In the spherically symmetric case, for ¥ = S,.:

-1 — 1) (-2
ap="=1" HQZMV, Rsrzugnx
T r r
and also:
V v v
v(H) = VVO.H = (n— 1)\/?&(4) =(n— 1)[_7,72 + ﬂ]
This gives:
—r n—1 ,
RM = —2u(H) + RS~ — [A2 = H? = "~ [(n = 2)(1 = V) =1V

LCourse notes, based on [D. Lee, pp. 251-254], and including some computations omitted
there.



Under the assumption R > 0, this implies a monotonicity relation:

B2y = -2 - V) v = TRV 0,

Remark. If n = 3, r"~2(1 — V) is the Hawking mass of S,, up to a constant
depending on n.

ADM mass. Assume g is asymptotically flat; in particular, V(r) — 1 as
r — 0o. Recall the definition:

1 . . 2t
m=——/—1Iim i — giii)vedo, vy = —.

2(7L — l)wn—l po /ST (g’L]vJ g]]ﬂ) 0 0 r
(With implicit summation over repeated indices.) We compute this for rota-

tionally symmetric g. Writing g = § + e, where § is the euclidean metric:

1 1
e= (V —1)dr?, troe = v 1.

Thus we have: .

;ﬂ@i(troe) =710, (troe) = Tar(v)-

For the other term, consider:

Zl‘ djei; = Z[a (z" ew) dijeij = Z[aj(e(xiai’aj)) - (% -b

1
= — —1).
Za (rdy, ;) = (37 = 1)
Since
e(roy, 0;) = (9, 0r)oe(roy, 0y) = 77‘(— —1) =2 (= —1),
we have: 1
Za (rdy, 0;)) = n(5; = 1) + Oy (

Thus the mass integrand is given by:

inajeij—xiai(troe) = n(%—l)—i—r@r(%)—(V—l)—rar(v) = (n—l)(v—l).

.3

We conclude:

since V(r) — 1 as r — oo.



In the case R =0, so M = R" with the spherically symmetric g, necessarily
V(r) — 1 as r — 04. Thus if the scalar curvature RM > 0, the monotone
function m(r) = 37" 2(1 — V) increases from 0 to m, and we have m > 0 (and
it’s easy to see that m = 0 only if g is the euclidean metric)-the Riemannian
positive mass theorem in the spherically symmetric case.

For R > 0, and assuming Sg is minimal for the rotationally symmetric metric
n—2
g, we know V(R) = 0, and thus m(r) increases from 1R"~2 = %(%)m to

Wn—1
m, and we conclude:

the Riemannian Penrose inequality in the spherically symmetric case.

2. Spherically symmetric initial data sets.

We consider initial data sets (M, g, k), where M = R"\ Bg = [R,00) x S"~1

and: 02 N
_ar- 25 2 _ ko, 2 K
g—V—I—rdw, k Vdr +n7176
with V' > 0, ko, & functions of 7. We see that, with v = vV ,: ko = k(v,v),k =
trgis, k = ; k(ei, e;), with (e;) € T'S, g-orthonormal. The asymptotic flatness
conditions assumed on (g, k) are:

de2

-2
V =14+02(r"%), ko=0:(r"7Y, k=0.(r"7"), asr — oo, with ¢ > RT

The ADM energy-momentum vector of (g, k) is defined as:

1

. 4 1 _ ,
E= mh}p /ST (9ij,j—9j5:)vodo, P = OIS 1171}1 /ST(kij—(trgk‘)gij)Véda,

with summation convention.

It is easy to see that the ADM momentum (F;) vanishes, in the spherically
symmetric case:

k(0 o) — (trok) = = ko™ — (ko + 1) 2 = —r ™
(055 10) (Tg)r 0 (0+/<6)T e

while [¢ a'r"~'do(x) = 0 for all 7.
We now compute expressions for the energy density © and normal component
of the current density, (J,v),. First, since (tryk)* = (ko + £)* and |k[|2 =
2 K2
kg + 755

-2
n k2.
1

1 1
poi= R + (trgk)? — [K[3] = S[RM + 2nko + —

Turning now to the current density,

(J,v)g = (divgk)(v) — v(trgk),



where, with eg = v and (e;) € T'S, orthonormal,

(divgk)(v) = 3 (Ve k) (er,v) S lelklen, 1)) — kew, Ve,v) — k(Ve,eq,v)

i>0 i>0

=VV0rko — > k(ei,Ve,v) = > (Ve,ei, )k,
i>1 i>1
where in the last two sums the term ¢ = 0 vanishes since V.,v L v and
k(eg,e;) = 0. We have, in view of the sign convention adopted for the sec-
ond fundamental form of S,.:

K
Z k(e;, Ve, v) = Z k(ei,ej)(e;, Ve, v) = Z k(e ei)A(ei, e;) = p— 1H
i>1 i,7>1 [

Combining this with:

v(trgk) = VVO, (ko + k),
we find: .
(J,v) = VO ko — ——H + ko H — VV O, (ko + k)
Ork
=H(— ko —
( n—1+ 0 n—l)’
where we used vV = TH- (cf. [Lee, Exercise 7.47)).
3. Dominant energy condition and monotonicity.
Combining the above we find, where H > 0:
K RM 1 nk> RM  p=(n=1) n 2
A e Lo Bl sl T LG

Now recall from part (1) above:

%RM —(n- 1)r*<”*1>ar[%r”*2(1 —Vy.

This motivates defining:

R P 7 R2
And we have:
Ormy, = e [ — r (J,v)]
rllk — n—1 K H\ .

(cp. the Claim in [Lee, p.252].)

Since V = r2H?/(n — 1)?, we have the alternative expression:

mi(r) = 57" 2+ g (6~ H)
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Recall the inward and outward expansion scalars for Si are defined as:
97:I€—H, 9+:K}+H.
Thus, if Sg is either a MOTS (65 = 0) or a MITS (f_ = 0), we have x? = H?,

so my(R) = $R"? = %(%ﬁ'i)ﬁ:f

On the other hand, recall k? = O(r=2¢=2) with ¢ > ”772, or 2¢ +2 > n.
So k2r™ — 0 at infinity, and from the first expression for mj; we conclude

my(00) = lim, 1r"=2(1 - V(r)) = E.

Since H = =2V = ==1(14+ O(r~7)) and k = O(r~%!), we have |x| < H
at infinity. This implies |x| < H for all » > R, assuming Sg is an outermost
MOTS or MITS (otherwise there would be some r > R for which 6,6_ = 0,
contradicting ‘outermost’.) Now recall the DEC p > |J| to see that:

|/€|
> — > — >
(Jov)y > p 7 |J| > pn—1J| >0,

which implies from the calculation in (2) that my(r) is monotone nondecreasing.
Thus we have the Penrose inequality for spherically symmetric data sets:

Theorem. Assume (M, g, k) (spherically symmetric) satisfies the DEC u >
|J] and that Sg is an outermost MOTS or MITS. Then we have the lower bound:

118 n—
g |p|> L(Bnlst,

2 Wn—1

4. The case of equality: embedding spherically symmetric metrics
into Schwarzschild spacetime.

We wish to show that if equality holds in the Penrose inequality for spheri-
cally symmetric data sets (M, g, k), then (M, g) can be isometrically embedded
as a spacelike hypersurface in Schwarzschild spacetime S,,, with mass parameter
m, with k as its second fundamental form. Write the Schwarzschild metric as:

2
G = —Vindt® + V4724w, Vi =1— —
r—

P> = (2m)7E.
Let f(r),r > 1o be a radial function on M = R" \ B,,. Use f to embed M as
a spacelike hypersurface in S,,, the graph of f (we need |f’| < V! for this.)
Denote the embedding by:

FM*)MfCSmy F(r,w):(f(r),r,w),

that is, ¢ = f(r). Pulled back to M, the induced metric is spherically symmetric,

Of the form:
dr? 2, 2 -1 1 "2
gf_—i‘,f“r”’ dw, Lf = [/m —[/m(f)



To see this, consider:
Vit =(0r,0r)g, = ((f'(r)0:,0:), (f' ()01, 1)) g,. = =V ([')* + Vi,

and this will be positive (as needed for a spacelike embedding) if |f/| < VL.

Next we consider the second fundamental form k¢ of the graph, and claim
that, pulled back to M, it has the form:

o —

dr? ! d -1
OVLf nlildw2, vvherek({:ﬁs/foVm7 nf:nT Vi =V

(We already know Vy > V,,,.)

Proof of the claim. We first compute the unit timelike normal n to the graph
M;. Let n = (0, f'V20,) € TS,,. With F.0, = f'0; + 0., we have:

(0, Fu0p = (0, f'01 + Or) g, = =Vin /' + V. 'V 1 =0,

(.10 g = —Vin + Vi () Vi = Vi (=14 V2 (F)?) <0,

So 1 is normal to the graph M, and future-timelike. To get a unit vector, set
w? = (1 =V2(f)?)Vm, and let n = L. Then g,,(n,n) = —1.

We compute the second fundamental form of the graph M, pulled back to
M. First note that:

_ Vm VB (f)? A R Y i
V=t T s e TV T T e w

To simplify the notation, let b = w™V,2 ' = /Vj — V;,. Then:
Kt (8,,0,) = <VF*8,,,(£), F.0,),, =a+b+c+d,
and compute using:
(06,00) = Vi, (05,0r) =0, (0,0,) =V}, Vp,0, = Vo,

(where V denotes the Levi-Civita connection for g, in S,,) to find:

@ = ()1 0,000 + (V0,(h0,), 0] = 5 (1) WV,

w/

1
b= f'(Vo, (w0 + hd,,),0) — f/(ﬁvm - %Vé)a

'V
2w

—1 h/ h —1y\/
d= (Vs (w0 + hoy,0r) = Vo + §(Vm )

c=f'(Vo,(w0; + ho,),0,) =

)



Thus:

+b+ +d——1(f)v’h+f —Vin +hvl—ﬁ1 (%)
¢ creT Ty 272
and the claim is that this equals:
Vi (VVe = Vi) = B (V= Vi (f)?).
We compute:
/7i Iy V2 1 w 2VmV,lniQV7iw/7 ,
VL B w’ B wV,,
C Vwf w2f 2V2f
and thus
/ !/ ! £l !/ !/

w w2 2V,

and we see two terms from (*) are already matched. As for the remaining terms,
on the one hand, in (*):

1 ! N2 hv’r{u h ! N2 1 flv'r;z 2 1\2
—_— — = — — - ) = — 1
SVl Ph= g = =Vl + ) = =5 V() +1),
and on the other, in (**):
V/ f/ wvl f/ V/ f/ w2 V/ f/ ) o
_m m —__m 29— V= _— m 1
e = 2 ) = VA,

and we see that (*) and (**) are indeed equal.

With v = /V;0, the outward unit vector to S,, we then have:

) = (/Vi—=Vm),

so we have established the first part of the claim, regarding k7 (v, v),
Turning now to xf, let e € T'S, be a unit vector. Then, using F*n =

w V2 f10,:

/2
kl =k (v,v) = Vik! (8,,8,) = (fﬁ

Kf S, * * S, * 1 1f/V731
= kf(e,e) = (Ve (F™n),e)y, = —(F"n,V2re)s, = (F™n, ;8,,>ST =S
Thus V2

-1 -1
,if:”r ﬂ;f:"r Vi = Vi,
as claimed.



