
ENERGY-MOMENTUM: spherically symmetric initial data sets 1

1. Spherically symmetric Positive Mass Theorem.

We consider metrics in M = Rn \BR of the form:

g =
dr2

V (r)
+ r2dω2, (r, ω) ∈ [R,∞)× Sn−1.

Geometrically, r ≥ R is the “area radius”, in the sense that the (n − 1)-
dimensional area of the sphere {r} × Sn−1 = Sr is:

|Sr|g = ωn−1r
n−1.

Since ν =
√
V ∂r is the outward unit normal of Sr, the first variation formula

gives for the mean curvature H(r) of Sr::

ωn−1H(r)rn−1 =
√
V ∂r|Sr|g =

√
V
n− 1

r
ωn−1r

n−1, or H(r) =
n− 1

r

√
V .

The second fundamental form of Sr is A = 1
r

√
V In−1.

We compute the scalar curvature RM of M in the metric g. Recall the for-
mula for the differential (first variation) of the mean curvature of a hypersurface
Σ, with respect to a normal variation with velocity field ϕν:

DH[ϕν] = −∆Σϕ+
1

2
(RΣ −RM − |A|2 −H2)ϕ.

And with ϕ ≡ 1:

DH[ν] =
1

2
(RΣ −RM − |A|2 −H2).

In the spherically symmetric case, for Σ = Sr:

|A|2 =
n− 1

r

2

, H2 =
(n− 1)2

r2
V, RSr =

(n− 1)(n− 2)

r2
,

and also:

ν(H) =
√
V ∂rH = (n− 1)

√
V ∂r(

√
V

r
) = (n− 1)[− V

r2
+

V ′

2r
].

This gives:

RM = −2ν(H) +RS−r − |A|2 −H2 =
n− 1

r2
[(n− 2)(1− V )− rV ′].

1Course notes, based on [D. Lee, pp. 251-254], and including some computations omitted
there.
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Under the assumption RM ≥ 0, this implies a monotonicity relation:

d

dr
[rn−2(1− V )] = rn−3[(n− 2)(1− V )− rV ′] =

rn−1

n− 1
RM ≥ 0.

Remark. If n = 3, rn−2(1 − V ) is the Hawking mass of Sr, up to a constant
depending on n.

ADM mass. Assume g is asymptotically flat; in particular, V (r) → 1 as
r → ∞. Recall the definition:

m =
1

2(n− 1)ωn−1
lim
r

∫
Sr

(gij,j − gjj,i)ν
i
0dσ, νi0 =

xi

r
.

(With implicit summation over repeated indices.) We compute this for rota-
tionally symmetric g. Writing g = δ + e, where δ is the euclidean metric:

e = (
1

V
− 1)dr2, tr0e =

1

V
− 1.

Thus we have: ∑
i

xi∂i(tr0e) = r∂r(tr0e) = r∂r(
1

V
).

For the other term, consider:∑
i,j

xi∂jeij =
∑

[∂j(x
ieij)− δijeij =

∑
[∂j(e(x

i∂i, ∂j))− (
1

V
− 1)

=
∑
j

∂j(e(r∂r, ∂j))− (
1

V
− 1).

Since

e(r∂r, ∂j) = ⟨∂j , ∂r⟩0e(r∂r, ∂r) =
xj

r
r(

1

V
− 1) = xj(

1

V
− 1),

we have: ∑
j

∂j(e(r∂r, ∂j)) = n(
1

V
− 1) + r∂r(

1

V
).

Thus the mass integrand is given by:∑
i,j

xi∂jeij−xi∂i(tr0e) = n(
1

V
−1)+r∂r(

1

V
)−(

1

V
−1)−r∂r(

1

V
) = (n−1)(

1

V
−1).

We conclude:

m = lim
r

1

2(n− 1)ωn−1
(ωn−1r

n−1)
n− 1

r
(
1

V
−1) = lim

r

1

2
rn−2(

1

V
−1) = lim

r

1

2
rn−2(1−V ),

since V (r) → 1 as r → ∞.
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In the case R = 0, so M = Rn with the spherically symmetric g, necessarily
V (r) → 1 as r → 0+. Thus if the scalar curvature RM ≥ 0, the monotone
function m(r) = 1

2r
n−2(1− V ) increases from 0 to m, and we have m ≥ 0 (and

it’s easy to see that m = 0 only if g is the euclidean metric)–the Riemannian
positive mass theorem in the spherically symmetric case.

For R > 0, and assuming SR is minimal for the rotationally symmetric metric

g, we know V (R) = 0, and thus m(r) increases from 1
2R

n−2 = 1
2 (

|SR|g
ωn−1

)
n−2
n−1 to

m, and we conclude:

m ≥ 1

2
(
|SR|g
ωn−1

)
n−2
n−1 ,

the Riemannian Penrose inequality in the spherically symmetric case.

2. Spherically symmetric initial data sets.

We consider initial data sets (M, g, k), where M = Rn \BR = [R,∞)×Sn−1

and:

g =
dr2

V
+ r2dω2, k =

k0
V

dr2 +
κ

n− 1
r2dω2

with V > 0, k0, κ functions of r. We see that, with ν =
√
V ∂r: k0 = k(ν, ν), κ =

trg|Sr
k =

∑
i k(ei, ei), with (ei) ∈ TSr g-orthonormal. The asymptotic flatness

conditions assumed on (g, k) are:

V = 1+O2(r
−q), k0 = O1(r

−q−1), κ = O1(r
−q−1), as r → ∞, with q >

n− 2

2
.

The ADM energy-momentum vector of (g, k) is defined as:

E =
1

2(n− 1)ωn−1
lim
r

∫
Sr

(gij,j−gjj,i)ν
i
0dσ, Pi =

1

(n− 1)ωn−1
lim
r

∫
Sr

(kij−(trgk)gij)ν
j
0dσ,

with summation convention.

It is easy to see that the ADM momentum (Pi) vanishes, in the spherically
symmetric case:

k(∂i, ν0)− (trgk)
xi

r
= k0

xi

r
− (k0 + κ)

xi

r
= −κ

xi

r
,

while
∫
Sr

xirn−1dσ(x) = 0 for all r.

We now compute expressions for the energy density µ and normal component
of the current density, ⟨J, ν⟩g. First, since (trgk)

2 = (k0 + κ)2 and |k|2g =

k20 +
κ2

n−1 ,

µ :=
1

2
[RM + (trgk)

2 − |k|2g] =
1

2
[RM + 2κk0 +

n− 2

n− 1
κ2].

Turning now to the current density,

⟨J, ν⟩g = (divgk)(ν)− ν(trgk),
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where, with e0 = ν and (ei) ∈ TSr orthonormal,

(divgk)(ν) =
∑
i≥0

(∇eik)(ei, ν)
∑
i≥0

[ei(k(ei, ν))− k(ei,∇eiν)− k(∇eiei, ν⟩

=
√
V ∂rk0 −

∑
i≥1

k(ei,∇eiν)−
∑
i≥1

⟨∇eiei, ν⟩k0,

where in the last two sums the term i = 0 vanishes since ∇e0ν ⊥ ν and
k(e0, ei) = 0. We have, in view of the sign convention adopted for the sec-
ond fundamental form of Sr:∑

i≥1

k(ei,∇eiν) =
∑
i,j≥1

k(ei, ej)⟨ej ,∇eiν⟩ =
∑
i

k(ei, ei)A(ei, ei) =
κ

n− 1
H

Combining this with:
ν(trgk) =

√
V ∂r(k0 + κ),

we find:
⟨J, ν⟩ =

√
V ∂rk0 −

κ

n− 1
H + k0H −

√
V ∂r(k0 + κ)

= H(− ∂rκ

n− 1
+ k0 −

κ

n− 1
),

where we used
√
V = rH

n−1 (cf. [Lee, Exercise 7.47]).

3. Dominant energy condition and monotonicity.

Combining the above we find, where H > 0:

µ− κ

h
⟨J, ν⟩ = RM

2
+

1

n− 1
[rκ∂rκ+

nκ2

2
] =

RM

2
+

r−(n−1)

2(n− 1)
∂r(r

nκ2).

Now recall from part (1) above:

1

2
RM = (n− 1)r−(n−1)∂r[

1

2
rn−2(1− V )].

This motivates defining:

mk(r) :=
1

2
rn−2(1− V ) +

rnκ2

2(n− 1)2
.

And we have:

∂rmk =
rn−1

n− 1
[µ− κ

H
⟨J, ν⟩].

(cp. the Claim in [Lee, p.252].)

Since V = r2H2/(n− 1)2, we have the alternative expression:

mk(r) =
1

2
rn−2[1 +

r2

(n− 1)2
(κ2 −H2)].
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Recall the inward and outward expansion scalars for SR are defined as:

θ− = κ−H, θ+ = κ+H.

Thus, if SR is either a MOTS (θ+ = 0) or a MITS (θ− = 0), we have κ2 = H2,

so mk(R) = 1
2R

n−2 = 1
2 (

|SR|g
ωn−1

)
n−2
n−1 .

On the other hand, recall κ2 = O(r−2q−2) with q > n−2
2 , or 2q + 2 > n.

So κ2rn → 0 at infinity, and from the first expression for mk we conclude
mk(∞) = limr

1
2r

n−2(1− V (r)) = E.

Since H = n−1
r

√
V = n−1

r (1 +O(r−q)) and κ = O(r−q−1), we have |κ| < H
at infinity. This implies |κ| ≤ H for all r > R, assuming SR is an outermost
MOTS or MITS (otherwise there would be some r > R for which θ+θ− = 0,
contradicting ‘outermost’.) Now recall the DEC µ ≥ |J | to see that:

µ− κ

H
⟨J, ν⟩ ≥ µ− |κ|

H
|J | ≥ µ− |J | ≥ 0,

which implies from the calculation in (2) that mk(r) is monotone nondecreasing.
Thus we have the Penrose inequality for spherically symmetric data sets:

Theorem. Assume (M, g, k) (spherically symmetric) satisfies the DEC µ ≥
|J | and that SR is an outermost MOTS or MITS. Then we have the lower bound:

E − |P | ≥ 1

2
(
|SR|g
ωn−1

)
n−2
n−1 .

4. The case of equality: embedding spherically symmetric metrics
into Schwarzschild spacetime.

We wish to show that if equality holds in the Penrose inequality for spheri-
cally symmetric data sets (M, g, k), then (M, g) can be isometrically embedded
as a spacelike hypersurface in Schwarzschild spacetime Sm with mass parameter
m, with k as its second fundamental form. Write the Schwarzschild metric as:

gm = −Vmdt2 + V −1
m dr2 + r2dω2, Vm = 1− 2m

rn−2
, r > rm = (2m)

1
n−2 .

Let f(r), r ≥ r0 be a radial function on M = Rn \ Br0 . Use f to embed M as
a spacelike hypersurface in Sm, the graph of f (we need |f ′| < V −1

m for this.)
Denote the embedding by:

F : M → Mf ⊂ Sm, F (r, ω) = (f(r), r, ω),

that is, t = f(r). Pulled back toM , the induced metric is spherically symmetric,
of the form:

gf =
dr2

Vf
+ r2dω2, V −1

f = V −1
m − Vm(f ′)2.
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To see this, consider:

V −1
f = ⟨∂r, ∂r⟩gf = ⟨(f ′(r)∂t, ∂r), (f

′(r)∂t, ∂r)⟩gm = −Vm(f ′)2 + V −1
m ,

and this will be positive (as needed for a spacelike embedding) if |f ′| < V −1
m .

Next we consider the second fundamental form kf of the graph, and claim
that, pulled back to M , it has the form:

kf = kf0
dr2

Vf
+

κf

n− 1
dω2, where kf0 =

d

dr

√
Vf − Vm, κf =

n− 1

r

√
Vf − Vm.

(We already know Vf ≥ Vm.)

Proof of the claim. We first compute the unit timelike normal n to the graph
Mf . Let η = (∂t, f

′V 2
m∂r) ∈ TSm. With F∗∂r = f ′∂t + ∂r, we have:

⟨η, F∗∂r = ⟨η, f ′∂t + ∂r⟩gm = −Vmf ′ + V −1
m V 2

mf ′ = 0,

⟨η, η⟩gm = −Vm + V −1
m (f ′)2V 4

m = Vm(−1 + V 2
m(f ′)2) < 0,

So η is normal to the graph Mf , and future-timelike. To get a unit vector, set
w2 = (1− V 2

m(f ′)2)Vm, and let n = η
w . Then gm(n, n) = −1.

We compute the second fundamental form of the graph Mf , pulled back to
M . First note that:

Vf =
Vm

1− V 2
m(f ′)2

⇒ Vf−Vm =
V 3
m(f ′)2

1− V 2
m(f ′)2

⇒
√
Vf − Vm =

V
3/2
m f ′√

1− V 2
m(f ′)2

=
V 2
mf ′

w
.

To simplify the notation, let h = w−1V 2
mf ′ =

√
Vf − Vm. Then:

kf (∂r, ∂r) = ⟨∇F∗∂r (
η

w
), F∗∂r⟩gm = a+ b+ c+ d,

and compute using:

⟨∂t, ∂t⟩ = −Vm, ⟨∂t, ∂r⟩ = 0, ⟨∂r, ∂r⟩ = V −1
m , ∇∂t∂r = ∇∂r∂t

(where ∇ denotes the Levi-Civita connection for gm in Sm) to find:

a = (f ′)2[w−1⟨∇∂t
∂t, ∂t⟩+ ⟨∇∂t

(h∂r), ∂t⟩] = −1

2
(f ′)2hV ′

m,

b = f ′⟨∇∂r
(w−1∂t + h∂r, ), ∂t⟩ − f ′(

w′

w2
Vm − 1

2w
V ′
m),

c = f ′⟨∇∂t(w
−1∂t + h∂r), ∂r⟩ =

f ′V ′
m

2w
,

d = ⟨∇∂r
(w−1∂t + h∂r, ∂r⟩ =

h′

Vm
+

h

2
(V −1

m )′.
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Thus:

a+ b+ c+ d = −1

2
(f ′)2V ′

mh+ f ′ w
′

w2
Vm + h′V −1

m − h

2

V ′
m

V 2
m

, (∗)

and the claim is that this equals:

V −1
f (

√
Vf − Vm)′ = h′(V −1

m − Vm(f ′)2).

We compute:

h′ =
1

2h
(V ′

f − V ′
m) =

1

2h
[(
V 2
m

w2
)′ − V ′

m] =
w

2V 2
mf ′ [

2VmV ′
m

w2
− 2V 2

mw′

w2
− V ′

m]

=
V ′
m

Vmwf ′ −
w′

w2f ′ −
wV ′

m

2V 2
mf ′ ,

and thus:

h′(V −1
m − Vm(f ′)2) = −V ′

mf ′

w
+

w′f ′Vm

w2
+

wV ′
mf ′

2Vm
+ h′V −1

m , (∗∗)

and we see two terms from (*) are already matched. As for the remaining terms,
on the one hand, in (*):

−1

2
V ′
m(f ′)2h− hV ′

m

2V 2
m

= −h

2
V ′
m((f ′)2 +

1

V 2
m

) = −f ′V ′
m

2w
(V 2

m(f ′)2 + 1),

and on the other, in (**):

−V ′
mf ′

w
+

wV ′
mf ′

2Vm
= −V ′

mf ′

2w
(2− w2

Vm
) = −V ′

mf ′

2w
(1 + V 2

m(f ′)2),

and we see that (*) and (**) are indeed equal.

With ν =
√

Vf∂r the outward unit vector to Sr, we then have:

kf0 = kf (ν, ν) = Vfk
f (∂r, ∂r) = (

f ′V 2
m

w
)′ = (

√
Vf − Vm)′,

so we have established the first part of the claim, regarding kf (ν, ν),
Turning now to κf , let e ∈ TSr be a unit vector. Then, using F ∗n =

w−1V 2
mf ′∂r:

κf

n− 1
= kf (e, e) = ⟨∇Sr

e (F ∗n), e⟩gf = −⟨F ∗n,∇Sr
e e⟩Sr

= ⟨F ∗n,
1

r
∂r⟩Sr

=
1

r

f ′V 2
m

w
.

Thus:

κf =
n− 1

r

V 2
mf ′

w
=

n− 1

r

√
Vf − Vm,

as claimed.
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