ENERGY-MOMENTUM: spherically symmetric initial data sets 1

1. Spherically symmetric Positive Mass Theorem.

We consider metrics in $M = \mathbb{R}^n \setminus B_R$ of the form:

$$g = \frac{dr^2}{V(r)} + r^2 d\omega^2, \quad (r, \omega) \in [R, \infty) \times S^{n-1}.$$

Geometrically, $r \geq R$ is the "area radius", in the sense that the (n-1)-dimensional area of the sphere $\{r\} \times S^{n-1} = S_r$ is:

$$|S_r|_q = \omega_{n-1} r^{n-1}.$$

Since $\nu = \sqrt{V}\partial_r$ is the outward unit normal of S_r , the first variation formula gives for the mean curvature H(r) of S_r ::

$$\omega_{n-1}H(r)r^{n-1} = \sqrt{V}\partial_r |S_r|_g = \sqrt{V}\frac{n-1}{r}\omega_{n-1}r^{n-1}, \text{ or } H(r) = \frac{n-1}{r}\sqrt{V}.$$

The second fundamental form of S_r is $A = \frac{1}{r} \sqrt{V} \mathbb{I}_{n-1}$.

We compute the scalar curvature R^M of M in the metric g. Recall the formula for the differential (first variation) of the mean curvature of a hypersurface Σ , with respect to a normal variation with velocity field $\phi\nu$:

$$DH[\phi\nu] = -\Delta_{\Sigma}\phi + \frac{1}{2}(R^{\Sigma} - R^M - |A|^2 - H^2)\phi.$$

And with $\phi \equiv 1$:

$$DH[\nu] = \frac{1}{2}(R^{\Sigma} - R^M - |A|^2 - H^2).$$

In the spherically symmetric case, for $\Sigma = S_r$:

$$|A|^2 = \frac{n-1}{r}^2$$
, $H^2 = \frac{(n-1)^2}{r^2}V$, $R^{S_r} = \frac{(n-1)(n-2)}{r^2}$,

and also:

$$\nu(H) = \sqrt{V}\partial_r H = (n-1)\sqrt{V}\partial_r (\frac{\sqrt{V}}{r}) = (n-1)[-\frac{V}{r^2} + \frac{V'}{2r}].$$

This gives:

$$R^{M} = -2\nu(H) + R^{S-r} - |A|^{2} - H^{2} = \frac{n-1}{r^{2}}[(n-2)(1-V) - rV'].$$

 $^{^{1}\}mathrm{Course}$ notes, based on [D. Lee, pp. 251-254], and including some computations omitted there.

Under the assumption $R^M \geq 0$, this implies a monotonicity relation:

$$\frac{d}{dr}[r^{n-2}(1-V)] = r^{n-3}[(n-2)(1-V) - rV'] = \frac{r^{n-1}}{n-1}R^M \ge 0.$$

Remark. If n = 3, $r^{n-2}(1 - V)$ is the Hawking mass of S_r , up to a constant depending on n.

ADM mass. Assume g is asymptotically flat; in particular, $V(r) \to 1$ as $r \to \infty$. Recall the definition:

$$m = \frac{1}{2(n-1)\omega_{n-1}} \lim_{r} \int_{S_r} (g_{ij,j} - g_{jj,i}) \nu_0^i d\sigma, \quad \nu_0^i = \frac{x^i}{r}.$$

(With implicit summation over repeated indices.) We compute this for rotationally symmetric g. Writing $g = \delta + e$, where δ is the euclidean metric:

$$e = (\frac{1}{V} - 1)dr^2, \quad tr_0e = \frac{1}{V} - 1.$$

Thus we have:

$$\sum_{i} x^{i} \partial_{i}(tr_{0}e) = r \partial_{r}(tr_{0}e) = r \partial_{r}(\frac{1}{V}).$$

For the other term, consider:

$$\sum_{i,j} x^i \partial_j e_{ij} = \sum_i [\partial_j (x^i e_{ij}) - \delta_{ij} e_{ij} = \sum_i [\partial_j (e(x^i \partial_i, \partial_j)) - (\frac{1}{V} - 1)]$$
$$= \sum_i \partial_j (e(r \partial_r, \partial_j)) - (\frac{1}{V} - 1).$$

Since

$$e(r\partial_r, \partial_j) = \langle \partial_j, \partial_r \rangle_0 e(r\partial_r, \partial_r) = \frac{x^j}{r} r(\frac{1}{V} - 1) = x^j (\frac{1}{V} - 1),$$

we have:

$$\sum_{i} \partial_{j}(e(r\partial_{r}, \partial_{j})) = n(\frac{1}{V} - 1) + r\partial_{r}(\frac{1}{V}).$$

Thus the mass integrand is given by:

$$\sum_{i,j} x^i \partial_j e_{ij} - x^i \partial_i (tr_0 e) = n(\frac{1}{V} - 1) + r \partial_r (\frac{1}{V}) - (\frac{1}{V} - 1) - r \partial_r (\frac{1}{V}) = (n - 1)(\frac{1}{V} - 1).$$

We conclude:

$$m = \lim_r \frac{1}{2(n-1)\omega_{n-1}}(\omega_{n-1}r^{n-1})\frac{n-1}{r}(\frac{1}{V}-1) = \lim_r \frac{1}{2}r^{n-2}(\frac{1}{V}-1) = \lim_r \frac{1}{2}r^{n-2}(1-V),$$

since $V(r) \to 1$ as $r \to \infty$.

In the case R=0, so $M=\mathbb{R}^n$ with the spherically symmetric g, necessarily $V(r)\to 1$ as $r\to 0_+$. Thus if the scalar curvature $R^M\geq 0$, the monotone function $m(r)=\frac{1}{2}r^{n-2}(1-V)$ increases from 0 to m, and we have $m\geq 0$ (and it's easy to see that m=0 only if g is the euclidean metric)—the Riemannian positive mass theorem in the spherically symmetric case.

For R>0, and assuming S_R is minimal for the rotationally symmetric metric g, we know V(R)=0, and thus m(r) increases from $\frac{1}{2}R^{n-2}=\frac{1}{2}(\frac{|S_R|_g}{\omega_{n-1}})^{\frac{n-2}{n-1}}$ to m, and we conclude:

$$m \ge \frac{1}{2} \left(\frac{|S_R|_g}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}},$$

the Riemannian Penrose inequality in the spherically symmetric case.

2. Spherically symmetric initial data sets.

We consider initial data sets (M, g, k), where $M = \mathbb{R}^n \setminus B_R = [R, \infty) \times S^{n-1}$ and:

$$g = \frac{dr^2}{V} + r^2 d\omega^2, \quad k = \frac{k_0}{V} dr^2 + \frac{\kappa}{n-1} r^2 d\omega^2$$

with V > 0, k_0 , κ functions of r. We see that, with $\nu = \sqrt{V}\partial_r$: $k_0 = k(\nu, \nu)$, $\kappa = tr_{g|S_r}k = \sum_i k(e_i, e_i)$, with $(e_i) \in TS_r$ g-orthonormal. The asymptotic flatness conditions assumed on (g, k) are:

$$V = 1 + O_2(r^{-q}), \quad k_0 = O_1(r^{-q-1}), \quad \kappa = O_1(r^{-q-1}), \text{ as } r \to \infty, \text{ with } q > \frac{n-2}{2}.$$

The ADM energy-momentum vector of (g, k) is defined as:

$$E = \frac{1}{2(n-1)\omega_{n-1}} \lim_{r} \int_{S_r} (g_{ij,j} - g_{jj,i}) \nu_0^i d\sigma, \quad P_i = \frac{1}{(n-1)\omega_{n-1}} \lim_{r} \int_{S_r} (k_{ij} - (tr_g k)g_{ij}) \nu_0^j d\sigma,$$

with summation convention.

It is easy to see that the ADM momentum (P_i) vanishes, in the spherically symmetric case:

$$k(\partial_i, \nu_0) - (tr_g k) \frac{x^i}{r} = k_0 \frac{x^i}{r} - (k_0 + \kappa) \frac{x^i}{r} = -\kappa \frac{x^i}{r},$$

while $\int_{S_r} x^i r^{n-1} d\sigma(x) = 0$ for all r.

We now compute expressions for the energy density μ and normal component of the current density, $\langle J, \nu \rangle_g$. First, since $(tr_g k)^2 = (k_0 + \kappa)^2$ and $|k|_g^2 = k_0^2 + \frac{\kappa^2}{n-1}$,

$$\mu := \frac{1}{2} [R^M + (tr_g k)^2 - |k|_g^2] = \frac{1}{2} [R^M + 2\kappa k_0 + \frac{n-2}{n-1}\kappa^2].$$

Turning now to the current density,

$$\langle J, \nu \rangle_g = (div_g k)(\nu) - \nu(tr_g k),$$

where, with $e_0 = \nu$ and $(e_i) \in TS_r$ orthonormal,

$$(div_g k)(\nu) = \sum_{i \ge 0} (\nabla_{e_i} k)(e_i, \nu) \sum_{i \ge 0} [e_i(k(e_i, \nu)) - k(e_i, \nabla_{e_i} \nu) - k(\nabla_{e_i} e_i, \nu) - k(\nabla_{e_i} e_i, \nu) - \sum_{i \ge 1} \langle \nabla_{e_i} e_i, \nu \rangle k_0,$$

where in the last two sums the term i=0 vanishes since $\nabla_{e_0}\nu\perp\nu$ and $k(e_0,e_i)=0$. We have, in view of the sign convention adopted for the second fundamental form of S_r :

$$\sum_{i\geq 1} k(e_i, \nabla_{e_i} \nu) = \sum_{i,j\geq 1} k(e_i, e_j) \langle e_j, \nabla_{e_i} \nu \rangle = \sum_i k(e_i, e_i) A(e_i, e_i) = \frac{\kappa}{n-1} H$$

Combining this with:

$$\nu(tr_a k) = \sqrt{V} \partial_r (k_0 + \kappa),$$

we find:

$$\langle J, \nu \rangle = \sqrt{V} \partial_r k_0 - \frac{\kappa}{n-1} H + k_0 H - \sqrt{V} \partial_r (k_0 + \kappa)$$
$$= H(-\frac{\partial_r \kappa}{n-1} + k_0 - \frac{\kappa}{n-1}),$$

where we used $\sqrt{V} = \frac{rH}{n-1}$ (cf. [Lee, Exercise 7.47]).

3. Dominant energy condition and monotonicity.

Combining the above we find, where H > 0:

$$\mu - \frac{\kappa}{h} \langle J, \nu \rangle = \frac{R^M}{2} + \frac{1}{n-1} [r\kappa \partial_r \kappa + \frac{n\kappa^2}{2}] = \frac{R^M}{2} + \frac{r^{-(n-1)}}{2(n-1)} \partial_r (r^n \kappa^2).$$

Now recall from part (1) above:

$$\frac{1}{2}R^{M} = (n-1)r^{-(n-1)}\partial_{r}\left[\frac{1}{2}r^{n-2}(1-V)\right].$$

This motivates defining:

$$m_k(r) := \frac{1}{2}r^{n-2}(1-V) + \frac{r^n\kappa^2}{2(n-1)^2}.$$

And we have:

$$\partial_r m_k = \frac{r^{n-1}}{n-1} [\mu - \frac{\kappa}{H} \langle J, \nu \rangle].$$

(cp. the Claim in [Lee, p.252].)

Since $V = r^2 H^2/(n-1)^2$, we have the alternative expression:

$$m_k(r) = \frac{1}{2}r^{n-2}\left[1 + \frac{r^2}{(n-1)^2}(\kappa^2 - H^2)\right].$$

Recall the inward and outward expansion scalars for S_R are defined as:

$$\theta_- = \kappa - H, \quad \theta_+ = \kappa + H.$$

Thus, if S_R is either a MOTS $(\theta_+ = 0)$ or a MITS $(\theta_- = 0)$, we have $\kappa^2 = H^2$, so $m_k(R) = \frac{1}{2}R^{n-2} = \frac{1}{2}(\frac{|S_R|_g}{\omega_{n-1}})^{\frac{n-2}{n-1}}$.

On the other hand, recall $\kappa^2 = O(r^{-2q-2})$ with $q > \frac{n-2}{2}$, or 2q+2 > n. So $\kappa^2 r^n \to 0$ at infinity, and from the first expression for m_k we conclude $m_k(\infty) = \lim_r \frac{1}{2} r^{n-2} (1 - V(r)) = E$.

Since $H = \frac{n-1}{r}\sqrt{V} = \frac{n-1}{r}(1+O(r^{-q}))$ and $\kappa = O(r^{-q-1})$, we have $|\kappa| < H$ at infinity. This implies $|\kappa| \le H$ for all r > R, assuming S_R is an outermost MOTS or MITS (otherwise there would be some r > R for which $\theta_+\theta_- = 0$, contradicting 'outermost'.) Now recall the DEC $\mu \ge |J|$ to see that:

$$\mu - \frac{\kappa}{H} \langle J, \nu \rangle \ge \mu - \frac{|\kappa|}{H} |J| \ge \mu - |J| \ge 0,$$

which implies from the calculation in (2) that $m_k(r)$ is monotone nondecreasing. Thus we have the *Penrose inequality for spherically symmetric data sets*:

Theorem. Assume (M, g, k) (spherically symmetric) satisfies the DEC $\mu \ge |J|$ and that S_R is an outermost MOTS or MITS. Then we have the lower bound:

$$E - |P| \ge \frac{1}{2} \left(\frac{|S_R|_g}{\omega_{m-1}} \right)^{\frac{n-2}{n-1}}.$$

4. The case of equality: embedding spherically symmetric metrics into Schwarzschild spacetime.

We wish to show that if equality holds in the Penrose inequality for spherically symmetric data sets (M, g, k), then (M, g) can be isometrically embedded as a spacelike hypersurface in Schwarzschild spacetime \mathcal{S}_m with mass parameter m, with k as its second fundamental form. Write the Schwarzschild metric as:

$$g_m = -V_m dt^2 + V_m^{-1} dr^2 + r^2 d\omega^2, \quad V_m = 1 - \frac{2m}{r^{n-2}}, \quad r > r_m = (2m)^{\frac{1}{n-2}}.$$

Let $f(r), r \geq r_0$ be a radial function on $M = \mathbb{R}^n \setminus B_{r_0}$. Use f to embed M as a spacelike hypersurface in \mathcal{S}_m , the graph of f (we need $|f'| < V_m^{-1}$ for this.) Denote the embedding by:

$$F: M \to \mathcal{M}_f \subset \mathcal{S}_m, \quad F(r, \omega) = (f(r), r, \omega),$$

that is, t = f(r). Pulled back to M, the induced metric is spherically symmetric, of the form:

$$g_f = \frac{dr^2}{V_f} + r^2 d\omega^2, \quad V_f^{-1} = V_m^{-1} - V_m(f')^2.$$

To see this, consider:

$$V_f^{-1} = \langle \partial_r, \partial_r \rangle_{g_f} = \langle (f'(r)\partial_t, \partial_r), (f'(r)\partial_t, \partial_r) \rangle_{g_m} = -V_m(f')^2 + V_m^{-1}$$

and this will be positive (as needed for a spacelike embedding) if $|f'| < V_m^{-1}$.

Next we consider the second fundamental form k_f of the graph, and **claim** that, pulled back to M, it has the form:

$$k^{f} = k_{0}^{f} \frac{dr^{2}}{V_{f}} + \frac{\kappa^{f}}{n-1} d\omega^{2}$$
, where $k_{0}^{f} = \frac{d}{dr} \sqrt{V_{f} - V_{m}}$, $\kappa^{f} = \frac{n-1}{r} \sqrt{V_{f} - V_{m}}$.

(We already know $V_f \geq V_m$.)

Proof of the claim. We first compute the unit timelike normal n to the graph \mathcal{M}_f . Let $\eta = (\partial_t, f'V_m^2 \partial_r) \in T\mathcal{S}_m$. With $F_*\partial_r = f'\partial_t + \partial_r$, we have:

$$\langle \eta, F_* \partial_r = \langle \eta, f' \partial_t + \partial_r \rangle_{g_m} = -V_m f' + V_m^{-1} V_m^2 f' = 0,$$

$$\langle \eta, \eta \rangle_{q_m} = -V_m + V_m^{-1}(f')^2 V_m^4 = V_m (-1 + V_m^2(f')^2) < 0.$$

So η is normal to the graph \mathcal{M}_f , and future-timelike. To get a unit vector, set $w^2 = (1 - V_m^2(f')^2)V_m$, and let $n = \frac{\eta}{w}$. Then $g_m(n,n) = -1$.

We compute the second fundamental form of the graph \mathcal{M}_f , pulled back to M. First note that:

$$V_f = \frac{V_m}{1 - V_m^2(f')^2} \Rightarrow V_f - V_m = \frac{V_m^3(f')^2}{1 - V_m^2(f')^2} \Rightarrow \sqrt{V_f - V_m} = \frac{V_m^{3/2} f'}{\sqrt{1 - V_m^2(f')^2}} = \frac{V_m^2 f'}{w}.$$

To simplify the notation, let $h = w^{-1}V_m^2 f' = \sqrt{V_f - V_m}$. Then:

$$k^f(\partial_r, \partial_r) = \langle \nabla_{F_*\partial_r}(\frac{\eta}{w}), F_*\partial_r \rangle_{g_m} = a + b + c + d,$$

and compute using:

$$\langle \partial_t, \partial_t \rangle = -V_m, \quad \langle \partial_t, \partial_r \rangle = 0, \quad \langle \partial_r, \partial_r \rangle = V_m^{-1}, \quad \nabla_{\partial_t} \partial_r = \nabla_{\partial_r} \partial_t$$

(where ∇ denotes the Levi-Civita connection for g_m in \mathcal{S}_m) to find:

$$a = (f')^{2} [w^{-1} \langle \nabla_{\partial_{t}} \partial_{t}, \partial_{t} \rangle + \langle \nabla_{\partial_{t}} (h \partial_{r}), \partial_{t} \rangle] = -\frac{1}{2} (f')^{2} h V'_{m},$$

$$b = f' \langle \nabla_{\partial_{r}} (w^{-1} \partial_{t} + h \partial_{r},), \partial_{t} \rangle - f' (\frac{w'}{w^{2}} V_{m} - \frac{1}{2w} V'_{m}),$$

$$c = f' \langle \nabla_{\partial_{t}} (w^{-1} \partial_{t} + h \partial_{r}), \partial_{r} \rangle = \frac{f' V'_{m}}{2w},$$

$$d = \langle \nabla_{\partial_{r}} (w^{-1} \partial_{t} + h \partial_{r}, \partial_{r}) \rangle = \frac{h'}{V_{m}} + \frac{h}{2} (V_{m}^{-1})'.$$

Thus:

$$a + b + c + d = -\frac{1}{2}(f')^{2}V'_{m}h + f'\frac{w'}{w^{2}}V_{m} + h'V_{m}^{-1} - \frac{h}{2}\frac{V'_{m}}{V_{m}^{2}}, \quad (*)$$

and the claim is that this equals:

$$V_f^{-1}(\sqrt{V_f - V_m})' = h'(V_m^{-1} - V_m(f')^2).$$

We compute:

$$\begin{split} h' &= \frac{1}{2h}(V_f' - V_m') = \frac{1}{2h}[(\frac{V_m^2}{w^2})' - V_m'] = \frac{w}{2V_m^2f'}[\frac{2V_mV_m'}{w^2} - \frac{2V_m^2w'}{w^2} - V_m'] \\ &= \frac{V_m'}{V_mwf'} - \frac{w'}{w^2f'} - \frac{wV_m'}{2V_m^2f'}, \end{split}$$

and thus:

$$h'(V_m^{-1} - V_m(f')^2) = -\frac{V_m'f'}{w} + \frac{w'f'V_m}{w^2} + \frac{wV_m'f'}{2V_m} + h'V_m^{-1}, \quad (**)$$

and we see two terms from (*) are already matched. As for the remaining terms, on the one hand, in (*):

$$-\frac{1}{2}V'_m(f')^2h - \frac{hV'_m}{2V_m^2} = -\frac{h}{2}V'_m((f')^2 + \frac{1}{V_m^2}) = -\frac{f'V'_m}{2w}(V_m^2(f')^2 + 1),$$

and on the other, in (**):

$$-\frac{V'_m f'}{w} + \frac{wV'_m f'}{2V_m} = -\frac{V'_m f'}{2w} (2 - \frac{w^2}{V_m}) = -\frac{V'_m f'}{2w} (1 + V_m^2 (f')^2),$$

and we see that (*) and (**) are indeed equal.

With $\nu = \sqrt{V_f} \partial_r$ the outward unit vector to S_r , we then have:

$$k_0^f = k^f(\nu, \nu) = V_f k^f(\partial_r, \partial_r) = (\frac{f'V_m^2}{v})' = (\sqrt{V_f - V_m})',$$

so we have established the first part of the claim, regarding $k^f(\nu,\nu)$,

Turning now to κ^f , let $e \in TS_r$ be a unit vector. Then, using $F^*n = w^{-1}V_m^2 f'\partial_r$:

$$\frac{\kappa^f}{n-1} = k^f(e,e) = \langle \nabla_e^{S_r}(F^*n), e \rangle_{g_f} = -\langle F^*n, \nabla_e^{S_r}e \rangle_{S_r} = \langle F^*n, \frac{1}{r}\partial_r \rangle_{S_r} = \frac{1}{r}\frac{f'V_m^2}{w}.$$

Thus:

$$\kappa^f = \frac{n-1}{r} \frac{V_m^2 f'}{w} = \frac{n-1}{r} \sqrt{V_f - V_m},$$

as claimed.