
OSCILLATION OF SECTIONAL CURVATURE AND IRREDUCIBLE COM-
PONENTS OF THE RIEMANN TENSOR

Recall the irreducible O(n)-orthogonal decomposition of the (4,0) algebraic
Riemann curvature tensor, for n ≥ 4 [Besse, p. 48]:

R = W +
1

n− 2
Ric◦ ⃝∧ g +

scalar

2n(n− 1)
g ⃝∧ g,

where ⃝∧ is the Kulkarni-Nomizu product of two symmetric 2-forms:

(h⃝∧ k)(x, y, z, t) = h(x, z)k(y, t)− h(y, z)k(x, t) + h(y, t)k(x, z)− h(x, t)k(y, z).

We show here that the Weyl and Ric◦ components, as well as all entries of R
except for sectional curvatures, can be bounded by a dimensional constant times
the sectional curvature oscillation, κ− κ.

Let κ, κ be the maximum and minimum sectional curvatures at a point (over
all two-planes.) Given an orthonormal frame (ei), denote by Kij = sect{ei, ej},
the sectional curvature of the 2-plane spanned by ei, ej . We have for the scalar
curvature:

scalar = 2
∑
j>1

K1j + 2
∑

1<i<j

Kij ,

and for the trace-free Ricci curvature Ric◦:

Ric◦(e1, e1) =
∑
j>1

K1j −
2

n

∑
j>1

K1j −
2

n

∑
1<i<j

Kij

=
n− 2

n

∑
j>1

K1j −
2

n

∑
1<i<j

Kij

≤ n− 2

n
(n− 1)κ− 2

n

(n− 1)(n− 2)

2
κ =

(n− 1)(n− 2)

n
(κ− κ).

Thus:

|Ric◦| ≤ (n− 1)(n− 2)

n
(κ− κ).

We now consider bounds on the Riemann tensor entries. For entries with four
different vectors, we have Berger’s bound, see [Bre, p.5] for a proof:

|R(e1, e2, e3, e4)| ≤
2

3
(κ− κ).

One sees easily that (Ric◦ ⃝∧ g)(e1, e2, e3, e4) = 0 and (g⃝∧ g)(e1, e2, e3, e4) = 0,
and hence also for the Weyl tensor:

|W (e1, e2, e3, e4)| ≤
2

3
(κ− κ).

Consider now the calculation:

2sect{e1, e2+e3} = R(e1, e2+e3, e1, e2+e3) = R(e1, e2, e1, e2)+R(e1, e3, e1, e3)+2R(e1, e2, e1, e3).
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It implies:

R(e1, e2, e1, e3) = sect{e1, e2 + e3} −
1

2
sect{e1, e2} −

1

2
sect{e1, e3},

and thus:
|R(e1, e2, e1, e3)| ≤ κ− κ.

One also easily checks the decomposition:

R(e1, e2, e1, e3) = W (e1, e2, e1, e3) +
1

n− 2
Ric◦(e2, e3),

from which the bound on the Weyl tensor follows:

|W (e1, e2, e1, e3)| ≤ (1 +
n− 1

n
)(κ− κ).

For the sectional curvature-type entries, we obviously have:

R(e1, e2, e1, e2) = sect{e1, e2} ≤ κ.

For the Weyl tensor, consider:

W (e1, e2, e1, e2) = sect{e1, e2} −
1

n− 2
(Ric◦(e1, e1) +Ric◦(e2, e2))−

scalar

n(n− 1)
.

Thus (since scalar/n(n− 1) is an average of sectional curvatures):

W (e1, e2, e1, e2) ≤ κ− 2

n− 2

(n− 1)(n− 2)

n
(κ− κ)− κ,

or:

|W (e1, e2, e1, e2)| ≤ (1 +
2(n− 1)

n
)(κ− κ).

We conclude that, for a constant cn > 0 depending only on dimension:

|W |+ 1

n− 2
|Ric0|+

∑
{|R(ei, ej , ek, el)|; three or four different indices}| ≤ cn(κ−κ).

while, for each i ̸= j:

sect{ei, ej} ≤ κ ≤ (κ− κ) + κ ≤ (κ− κ) +
scalar

n(n− 1)
.

In summary:

|R− scalar

n(n− 1)
g ⃝∧ g| ≤ cn(κ− κ) ≤ cn(

κ

κ
− 1)κ ≤ cn

n(n− 1)
(
κ

κ
− 1)scalar.
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Discussion/ exercises.

1. For n ≥ 4, we have an orthogonal decomposition of the space of algebraic
curvature tensors of an inner-product space (V, g):

CB = W ⊕R⊕ S,

where S = Rg ⃝∧ g, W = Ker(Rc), the kernel of the Ricci contraction map:

Rc : CB → Sym2V, Rc(R)(x, y) =
∑
i

R(x, ei, y, ei).

Remark: Rc(h⃝∧ g) = (n− 2)h+ (trgh)g.
Also R = Ker(τ), the kernel of the double trace map:

τ : CB → R, τ(R) =
∑
i,j

R(ei, ej , ei, ej).

Vanishing of each of the components of R has the usual geometric meaning:
W = 0 (W component vanishes) characterizes locally conformally flat metrics,
Ric0 = 0 (R component vanishes) characterizes Einstein metrics.

Finally, recall that CB is the kernel of the Bianchi map from C = Sym2(Λ
2
V )

to itself (b2 = b):

b(R)(x, y, z, t) =
1

3
{R(x, y, z, t) +R(z, x, y, t) +R(y, z, x, t)}.

(i) Compute the dimensions of the vector spaces and subspaces defined here,
when n ≥ 4.

(ii) Describe the corresponding decomposition when n = 3.

2. As established in [Bre, p.53], the Hamilton vector field Q(R) = R2 +R#

maps CB to CB . Thus the following question is natural: how does Q behave with
respect to the orthogonal decomposition of CB? Are any of the subspaces W,
R, S invariant under Q? (Note that invariance of W ⊕ S (resp. W ⊕R, resp.
R⊕S) means, via Hamilton’s maximum principle, Ricci flow preserves the class
of Einstein metrics (resp. constant curvature metrics, resp. conformally flat
metrics).
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