OSCILLATION OF SECTIONAL CURVATURE AND IRREDUCIBLE COM-
PONENTS OF THE RIEMANN TENSOR

Recall the irreducible O(n)-orthogonal decomposition of the (4,0) algebraic
Riemann curvature tensor, for n > 4 [Besse, p. 48]:
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where @) is the Kulkarni-Nomizu product of two symmetric 2-forms:

(hDk)(z,y,2,t) = h(z, 2)k(y,t) — h(y, 2)k(z,t) + h(y, O k(z, 2) — h(x, t)k(y, 2).

We show here that the Weyl and Ric® components, as well as all entries of R
except for sectional curvatures, can be bounded by a dimensional constant times
the sectional curvature oscillation, K — k.

Let R, k be the maximum and minimum sectional curvatures at a point (over
all two-planes.) Given an orthonormal frame (e;), denote by K;; = sect{e;,e;},
the sectional curvature of the 2-plane spanned by e;, e;. We have for the scalar

curvature:
scalar = QZKU + 2 Z Kij,
j>1 1<i<j

and for the trace-free Ricci curvature Ric°:

Ric®(e1,e1) = ZKU - %ZKU - % Z Kij

j>1 j>1 1<i<j
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Thus: ) )
IRic°| < %(E—@).

We now consider bounds on the Riemann tensor entries. For entries with four
different vectors, we have Berger’s bound, see [Bre, p.5] for a proof:
2 _
|R(61, €2, €3, 64)| < g(’{ - @)'

One sees easily that (Ric® ® g)(e1, ez, e3,e4) =0 and (¢ ® g)(e1,e2,e3,e4) =0,
and hence also for the Weyl tensor:

|W(€1,627€3,64)| S (E_ﬁ)
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Consider now the calculation:

2sect{e1,eates} = R(e1,eates, e1,ea+e3) = R(eq,e2,e1,e2)+R(e1,e3,e1,e3)+2R(e1,ea,e1,e3).



It implies:
1 1
R(ey,e2,e1,€3) = sect{er,e2 +e3} — isect{el, e} — 58661‘{61, es},

and thus:
|R(e1,e2,61,e3)| <R — k.

One also easily checks the decomposition:

1
R(eq,e2,e1,e3) = Wer,ea,e1,e3) + mRiCO(EQ,Bg),

from which the bound on the Weyl tensor follows:

n—1

|W ey, ez, e e3) < (14

)(F — ).
For the sectional curvature-type entries, we obviously have:

R(ey,ea,e1,e2) = sect{er,ea} <R.
For the Weyl tensor, consider:

1 scalar

W(ey,ea,e1,e2) = sect{er,ea} — m(Rico(el, e1) + Ric®(eq, e3)) — m

Thus (since scalar/n(n — 1) is an average of sectional curvatures):

2 (n—=1)(n-2)
n—2 n

(F — K) — K,

W(ela €2,€1, 62) S R —
or:
2(n—1)

[Wer ez, ene0)| < (14+ =

)(F = &)

We conclude that, for a constant ¢,, > 0 depending only on dimension:
1
|W|+m|Rico|+Z{|R(ei, ej, ek, er)|; three or four different indices}| < ¢, (F—k).

while, for each i # j:

l
Sect{%ea’}gé(ﬁfﬁ)ws(Ew)+%'
In summary:
scalar 5 e =
| n(n71)9@9|_c (FR—K)<c (ﬁ )& n(nfl)(@ )scalar



Discussion/ exercises.

1. For n > 4, we have an orthogonal decomposition of the space of algebraic
curvature tensors of an inner-product space (V g):

Ce=WaoRES,

where S = Rg @® g, W = Ker(Rc), the kernel of the Ricci contraction map:

Re: CB — Sym2V7 RC(R)(I’, y) = ZR($7 €i, y7e’i)'

Remark: Re(h ® g) = (n — 2)h + (trgh)g.
Also R = Ker(7), the kernel of the double trace map:

7:Cg =R, 7(R)= ZR(ei,ej,ei,ej).
%,

Vanishing of each of the components of R has the usual geometric meaning:
W =0 (W component vanishes) characterizes locally conformally flat metrics,
Ric® = 0 (R component vanishes) characterizes Einstein metrics.

Finally, recall that Cp is the kernel of the Bianchi map from C = Syma(A})
to itself (b? = b):

1
b(R)(z,y, z,t) = g{R(x,y, z,t) + R(z,x,y,t) + Ry, z,x,t) }.

(i) Compute the dimensions of the vector spaces and subspaces defined here,
when n > 4.
(ii) Describe the corresponding decomposition when n = 3.

2. As established in [Bre, p.53], the Hamilton vector field Q(R) = R? + R#
maps Cp to Cp. Thus the following question is natural: how does Q behave with
respect to the orthogonal decomposition of Cg? Are any of the subspaces W,
R, S invariant under Q? (Note that invariance of W @& S (resp. W & R, resp.
R ®S) means, via Hamilton’s maximum principle, Ricci flow preserves the class
of Einstein metrics (resp. constant curvature metrics, resp. conformally flat
metrics).



