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Abstract

A linear stability analysis is performed on the interface formed during the directional solidification of a dilute
binary alloy in the presence of a weak, time-dependent flow. In one case, the flow is generated by a simple harmonic,
lateral oscillation of the crystal, resulting in solidification into a compressed Stokes boundary layer. In a second,
more general, case, the crystal also has a mean horizontal velocity. The presence of the flow can either stabilize or
destabilize the two-dimensional system relative to the case with no flow, with the result depending on the Schmidt
number, segregation coefficient, and the frequency of the oscillations.

1. Introduction

The microstructures of solids are determined
during their formation, and are, in part, a result
of instabilities at the solid-liquid interface. Met-
allurgists and crystal growers realize that un-
steady convection in the melt has a significant
effect on this interfacial morphology. Natural
convection in the melt can be generated by buoy-
ancy, expansion or contraction upon phase-
change, and thermo-soluto capillary effects, the
last two playing significant roles in microgravity
environments. These flows are strongly nonparal-
lel in nature, frequently exhibiting three-dimen-
sional and time-dependent structures. Flow can
also be generated by external forcing, such as
rotation of the crystal during the solidification
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process. There has been much speculation that
such flows could be used to gain better control
over interfacial morphology, selecting patterns
and length scales, and possibly stabilizing an oth-
erwise unstable interface.

The focus here will be on directional solidifica-
tion, which provides a simple configuration for
the study of morphological instability. This ar-
rangement consists of unidirectional solidification
in which a binary alloy is pulled across a fixed
temperature gradient at constant speed (Fig. 1).
The solid-liquid interface will establish itself at a
fixed position in a laboratory frame of reference.

In the absence of flow, there is a steady basic
state that features a planar interface and an
exponentially decaying concentration profile in
the melt. The concentration profile has a discon-
tinuity at the interface due to solute rejection.
The potential for morphological instability exists
as a result of the adverse concentration gradient
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Fig. 1. Unidirectional solidification setup shown with basic
state temperature, concentration, and velocity profiles.

which raises the melting temperature of the so-
lute-laden material near the interface. The mor-
phological instability of the solid-liquid interface
is primarily governed by three parameters: the
average concentration of solute C_, the pulling
speed V', and the overall temperature gradient G.
Mullins and Sekerka [14] performed a linear sta-
bility analysis on this system, and found that the
interface undergoes a cellular instability for a
certain range of the parameters, resulting in a
steady corrugated interface.

Numerous studies have been done investigat-
ing the effect of flow during directional solidifica-
tion. As with most fluid systems, the analysis is
considerably simplified by focussing on parallel-
flow situations. Delves {7] studied solidification
into a Blasius boundary layer, using a parallel-flow
approximation. Coriell, McFadden, Boisvert and
Sekerka [2] numerically investigated solidification
into a plane Couette flow (linear velocity profile).
These studies found that disturbances with wave
vectors parallel to the flow are stabilized. Distur-
bances with wave vectors perpendicular to the
flow are left unaffected, a result that will hold for
any flow with only one nontrivial velocity compo-
nent in the plane of the crystal interface.

Forth and Wheeler [8] investigated solidifica-
tion into a parallel flow with the asymptotic suc-
tion profile (ASP). Such a profile would result
from translating the crystal horizontally at con-
stant speed during directional solidification. They
present linear stability results from asymptotics
valid for large Schmidt number. It is clear from
their results that the flow can either stabilize or
destabilize disturbances parallel to the flow, with

the longer wavelength disturbances tending to
grow slower, and the shorter wavelength distur-
bances tending to grow faster. They pointed out
that their asymptotic expansions are not uni-
formly valid in the limit of long waves or large
Reynolds numbers. They also presented results of
a numerical study that indicates that shorter
wavelengths are further stabilized by increasing
the Reynolds number.

Hobbs and Metzener [10] also considered how
the flow with the ASP affects morphological sta-
biltty. Their work is primarily concerned with
resolving the nonuniformities for long-wave dis-
turbances encountered near the absolute stability
boundary. They use singular perturbation tech-
niques to consider the limits of small flow speed,
small segregation coefficient, and large Schmidt
number.

Merchant and Davis [13] considered the effect
of a temporally modulated stagnation-point flow
on the morphological stability of a directionally-
solidifying interface. They studied the influence
of this unsteady, nonparallel flow using a long-
wave analysis, and found that low-frequency mod-
ulation was always stabilizing, while high-
frequency modulation was always destabilizing.

For a more extensive review of research on the
role of convection in solidification see Coriell,
McFadden and Sekerka [3], Glicksman, Coriell
and McFadden [9], Davis [4-6], and Coriell and
McFadden [1].

In this paper we study the influence of a
Stokes boundary layer on morphological stability.
One can imagine this flow being generated by
oscillating the crystal in the horizontal plane as
the material is solidified upward (Fig. 1). The
boundary layer is compressed as a result of flow
perpendicular to the interface generated by the
pulling velocity. We refer to this flow configura-
tion as a compressed Stokes layer (CSL). The
relationship between a Stokes layer and a CSL is
analogous to that between plane Couette flow
and a flow with the ASP.

As with these previous studies, we neglect all
other sources of convection: gravity, changes in
density during phase change, and thermo-soluto
capillary effects. We also neglect the influence of
any horizontal boundaries by assuming the spatial
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domain to be infinite. This is justified because the
length scale of the instabilities to be studied is
much smaller than the width of any realistic con-
tainer. Like the ASP, the CSL is also a parallel
flow, but this time-dependent basic state intro-
duces a new control parameter, the frequency,
into the system that may potentially be manipu-
lated to the crystal growers advantage.

To gain further control over the system through
the use of a forced flow, one can combine an
oscillatory motion of the crystal with a steady
translation. We report linear stability results for
this general case in the limit of small forcing. We
consider the two-dimensional case since distur-
bances perpendicular to the parallel flow are
unaffected.

We begin in the next section by presenting the
governing equations and making a few simplifying
assumptions. In Section 3, we present the lin-
earized disturbance equations and briefly review
the results for the case without flow. In Section 4,
we look at the CSL by itself, and in Section 5, we
review the ASP results, pointing out some minor
differences with the results of Hobbs and Met-
zener [10]. In Section 6 we explore the combined
case, and in Section 7 we offer some explanation
of the physical mechanisms involved in this sys-
tem. Finally, in Section 8 we summarize and
conclude.

2. Governing equations

Consider a coordinate system with x-axis lo-
cated at the mean position of the crystal inter-
face, moving with the front, and a z-axis that is
fixed in the laboratory frame of reference. The
equations governing the system in the fluid region
are the Navier—Stokes, continuity, solute diffu-
sion, and thermal diffusion equations:

1
u,+u-Vu—Vu,= ——Vp+vVu, (2.1a)
p
V-u=0, (2.1b)
C,+u-VC—VC,=DV’C, (2.1¢)
T, +u VI —VT,=«V°T, (2.1d)

where u is the fluid-velocity vector, p is the fluid
pressure, C is the concentration of the dilute
component of the binary mixture, 7' is the tem-
perature in the fluid, p is the density of the
mixture (assumed equal in both the liquid and
solid phase), « is the thermal diffusivity, and D is
the solute diffusivity. The subscripts denote dif-
ferentiation with respect to time (¢) and space
(x, z). V is the gradient operator, and V? is the
Laplacian. The translational term in these equa-
tions is the result of the fluid velocity being
measured in the reference frame of the quiescent
fluid. This is done so that the vertical velocity at
the interface will be zero.

We shall make the frozen-temperature approx-
imation [12]. In this limit we neglect latent heat,
assume equal thermal properties in the liquid and
solid phases, and assume that the diffusion of
heat is much faster than the diffusion of solute.
Under these assumptions the temperature field
has a fixed linear profile,

T=T,+Gz, (2.2)

where T, is the temperature at the interface in
the basic state and G is the temperature gradi-
ent.

We shall be investigating what happens when
the crystal undergoes lateral motion. To simplify
our analysis, we transform to a reference frame
where the crystal is stationary, and the fluid in
the far field moves instead. This involves the
following two changes:

u—-u+U[(1-R) cos (wt) +R], (2.3a)

x—->x+U

sin (wt) + Rt |, (2.3b)

where u(x, 0, t) = U[(1 — R) cos (wt) + R] is the
horizontal velocity of the crystal in the old refer-
ence frame. Here, the amplitude of the velocity
oscillations added to the magnitude of the steady
shear is U, R indicates the fraction of the flow
that is steady, and w is the frequency of the
oscillations. When R = 0, the flow will be purely
oscillatory. When R = 1, the flow will be a steady
shear. These transformations leave the equations
unchanged, except for a time dependent forcing
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term in the horizontal component of the Navier—
Stokes equations.

We nondimensionalize our equations with the
following scalings:

x> (D/V)x (2.4a)
u—Uu (2.4b)
t—t/w (2.4¢c)
p—pUlp (2.4d)
T (GD/VYT+T, (2.4¢)
C—o(C,—C./k)C+C,/k, (2.41)

where D is the solute diffusivity, V7 is the crystal
pulling speed, p is the material density, C,, is the
far field concentration, and k is the segregation
coefficient.

With these revisions, the governing equations
are

Qu,+eu - Vu—u.

= ~Vp+ SV u+i(1-R)Qsin 1, (2.5a)
Vou=0, (2.5b)
QC,+eu-VC-C.=V*C, (2.5¢)
T=z, (2.5d)
where
N=wD/V"* (2.6)

is the nondimensional frequency, S = v /D is the
Schmidt number, and € = U/V is the velocity
ratio.

As z-> =, the far-field boundary conditions
are

u— —[(1—R)cost+R]. (2.72)
w — 0, (2.7b)
o1, (2.7¢)

and the interfacial conditions are evaluated at the
interface z = h(x, t) are

u=20, (2.8a)
C=M '"h-2I'H, (2.8b)
(1+0h)[1+(k-DC]=C.—C.h,. (2.80¢)
Here, the morphological number is

M=mVC[(1—-1/k)/GD. (2.9)

where m is the liquidus slope in the phase dia-
gram of the alloy. The surface energy parameter

18
I'=T,yV/DLymC/1—1/k), (2.10)

where 7, is the melting temperature of the pure
material, y is the surface free energy, and L, is
the latent heat per unit volume. Finally, the mean
curvature of the interface, H, is given by

2H=V-[vh(1+| VR (2.11)

3. Linear stability analysis

The basic state for this system takes the form

= (1-R)[e 5 cos(t —Az) —cos ]

+R(e™*/* = 1), (3.1a)
w=0, (3.1b)
C=1-¢", (3.1¢)
h=0, (3.1d)

where A4 and B are constants given in Appendix
A. To analyze the response of this state to in-
finitesimal perturbations, we disturb each of these
quantities, and separate the disturbances into
normal modes

u=tn+i(z,1)e** e +cc., (3.2a)
w=w(z,1)e" e’ +c.c., (3.2b)
C=C+C(z,1) e e’ +cc., (3.2¢)
h=h(t) el e’ +c.c. (3.2d)

Here we are seeking time-periodic eigenfunc-
tions, and o is the Floquet exponent. If the real
part of ¢ is not zero, then the disturbances will
experience a net growth or decay over one pe-
riod. It will turn out that o is identically zero on
the neutral curve in the limit € — 0. This means
that, in this limit, the response will have the same
frequency as the forcing.

By taking the curl of the Navier-Stokes equa-
tions twice, and using the continuity equation to
simplify the result, we arrive at a fourth-order
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disturbance equation for the vertical component
of the disturbance velocity. Combining this with
the disturbance equation for the solute field we
have a sixth-order boundary-value problem. Be-
cause the shape of the interface is also undeter-
mined, we require an additional interfacial condi-
tion, giving us a total of seven boundary condi-
tions.
In the fluid we have

(D2+ D -a?-023,)C

=e(iaiiC +e™* W) + Qoé, (3.3a)
(D?-a?)[S(D?—a?) + D — 08, |w
= iae[@(D? - o) — WDa]
+Q0(D? - a?)W, (3.3b)

where D indicates 8/0z and 9, indicates 8/9r.
In the far field, as z — o, we have

C(z,1) -0, (3.4)
w(z,t) >0, (3.4b)
Dw(z, t) - 0. (3.4c)

The interfacial conditions, transferred to z =0,
are

M 'h=h(1-a’T)+C, (3.59)

(k—=1)(C+h)+02h,=DC - (1-0a)h, (3.5b)
w=0, (3.5¢)
DW = iahDi. (3.5d)

To proceed further with the analysis, we as-
sume the lateral motion of the crystal is weak so
that the parameter e is small, and expand the
dependent variables as series in powers of e,

W=y W, + .. (3.62)
h=hy+eh +..., (3.6b)
C=Co+eC +eCo+.... (3.6¢0)

We shall seek conditions on the morphological
number M such that the system is neutrally sta-
ble. To this end, we assume that the real part of

o is zero, and expand both M~! and the imagi-
nary part of ¢ in powers of e:

M '=M,+eM,+ ..., (3.7a)

o=eo/+.... (3.7b)

The lower-order terms omitted from these last
expansions turn out to be zero, and we have
shown explicitly only the terms necessary to re-
solve the leading-order correction to the neutral-
stability curve.

We substitute these expansions into the distur-
bance equations, set the coefficients of corre-
sponding powers of € to zero, and obtain the
following sequence of equations to be solved suc-
cessively:

L, Co=(D?+D -a?-23,)C,=0, (3.8a)
L,y =(D?=a?)[S(D?—-a?) + D — 09,]|w,
=0, (3.8b)
LG, =iaiCy+ e~ wy+a,C,, (3.8¢)
L,w, =iau(D?*—a*)W,—iaw,Du
+ o(D?* — a®)W,, (3.8d)
LG, =iauC, +e* W, +0,C,. (3.8¢)

The interfacial boundary conditions give (after
eliminating /)

DC, = (k + Bk — 1)C,, (3.92)
Wo =0, (3.9b)
DWw, = iaBC,Da, (3.9)
DC, = (k + Bk —1)C, + B23,C, + Bo,C,,
(3.9d)
W, =0, (3.9¢)
Dw, =iaBC,Di, (3.9f)

DC, = [k + Bk —1]C, + B2,C, — kB>M,C,
+Ba,Cy, (3.9g)

where B = (M, +a’I"'— 1),
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Table 1
The parameter values used in the calculations (unless indi-
cated otherwise)

Parameter Symbol  Value Units
Kinematic viscosity v 243x107%  em®/s
Solute diffusivity D 3.0%x1077° cm? /s
Liquidus slope m —2.33 K/wt%
Melting point T, 600.6 K
Surface free energy y 42.6 vsrg/cmZ
Latent heat per unit Ly 2.56x10° f:rg/cm3
volume
Far field concentration C, 0.01 wt%
Temperature gradient G 200.0 K/cm
Pulling speed V 0.01 cm/s
Segregation coefficient & 0.3 -
Schmidt number S 81.0 -
Surface energy I 0.6 -

parameter

At leading order, the problem reduces to the
morphological stability problem in the absence of
flow, and the results are equivalent to those found
by Mullins and Sekerka [14]:

Co=b, e ", (3.10a)

(3.10b)

Here b, is an arbitrary constant that does not
affect the result of the linear stability analysis,
and will be taken to be unity, and s, is

s()=%(l+V1+4a2).

To illustrate these results, we choose parame-
ter values characteristic of a lead—tin alloy (un-
less indicated otherwise). These choices are pre-
sented in Table 1.

Fig. 2 shows the neutral-stability curve for a
lead-tin system in the absence of flow with I
fixed. If M, is above this curve for a given
wavenumber, then a disturbance with that
wavenumber will decay. Similarly, if M, is below
this curve for a given wavenumber, then the dis-
turbance will grow. For the interface to be stable
for an arbitrary disturbance, M, must be above
this curve for all «. The wavenumber for the least
stable mode is denoted as «., and the corre-
sponding morphological number, M_, is called
the critical morphological number, denoting the
threshold of instability.

1

My=1—a’lI'—k(k+s,-1) .

(3.11)

AT
1

0.70 i
|

5]

. —

G.ET BTN del

Fig. 2. Directional solidification without flow: M~ ! versus a
for § = 81.0, & = 0.3 and I" = 0.6. The region above the curve

corresponds to a stable (S) interface, and the region below the
curve corresponds to an unstable (U) interface.

Fig. 3 gives M_'=M,. and «_ as functions of
I 1f M,<M,., then the interface is unstable.
For I > 1 /k the interface is always stable; this is

Fig. 3. Directional solidification without flow: The critical
value (maximized over wavenumbers) of M, ' and the critical
wavenumber as a function of I' for §=81.0 and k =0.3.
Stable and unstable regions lie above and below the M '-
versus-I" curve, respectively. The absolute stability limit is
I'.=1/k.
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known as the absolute stability limit. The critical
wavenumber indicates, on a linear theory basis,
the width of the cells that form when the inter-
face becomes unstable.

Up to this point we have presented the equa-
tions and boundary conditions for the general
flow we wish to consider — a combination of an
ASP and a CSL. Although these two flows com-
bine linearly to form the basic state, this is not
the case in the disturbance equations, where the
basic state appears in the coefficients of the
equations. However, to the order in e that we are
interested in, the two components do not inter-
act, and the general response can be obtained by
adding the response to each component deter-
mined separately. An explanation for why this is
so will be provided in Section 6, but for now we
find it convenient to proceed by considering each
element of the flow separately.

4. Response to a compressed Stokes layer

For this section, R =0, so & will be
cos(t —Az) —cos ¢, (4.1)

and o will turn out to be identically zero on the
neutral curve.
The solutions to Eqgs. (3.8b) through (3.8d) are

u=e B

Wo=ag(e ** —e ") e —c.c., (4.2a)
él = (b1 ef(s(]+F)z + b2 e*(a‘*‘l)-’ +b3 e*(s1+])z
+b, e +bse ") e —cc, (4.2b)

wl =a1 e—53z+a2 ef(s,+F)z +a3 e—-(a+?)z
+a, e +ase " +cc.+ TDM. (4.2¢)

The coefficients and exponents in these expres-
sions are given in Appendix A. The time-depen-
dent modes (TDM) in the solution for W, have
been omitted because they do not affect the
leading-order correction to the neutral-stability
boundary.

At leading order, the flow is forced through
the boundary condition (3.5d), leading to a time-
periodic response. At O(e), the disturbance con-
centration field, é,, is also time periodic, but W,
consists of both time-dependent and steady parts.

M2

0.00020

0.000%0

L
A

0.00000

-0.00010

N

0=1

|4 o FUVE S I R I B S S SN S D B U B U A U I U S

—0.00020 4T LS. 0 e e |
C. Q.50 1.00 1.50 2.00

04
Fig. 4. Directional solidification into CSL: M, versus «a for
§=281.0, k=03 and various (2. M, is independent of I
When M, is above the x-axis, the influence of the flow is
destabilizing, and when M, is below the x-axis, the influence
of the flow is stabilizing. As 2 >, M, — 0, and as 20,
M, approaches a steady state. Note that for £2 =1 the flow is
stabilizing for all wavenumbers.

o
o

Only the steady parts of w, affect the neutral-sta-
bility results, however. M, is determined to be
zero at this order.

The correction to the neutral-stability curve,
M,, is determined by applying a solvability condi-
tion to the O(e?) solute equation. This condition
is necessary because the steady forcing terms at
this order reproduce, upon separation of vari-
ables, the eigenfunction of the leading-order
problem. The leading-order problem is homoge-
neous, and has nontrivial solutions, so the inho-
mogeneous problem found at this order will have
solutions only if the inhomogeneity satisfies

1
M =—fe_(s°_1)z f(z) dz, (4.3)
2 sz

where f(z) is the forcing term in the O(e?) solute
equation.

A plot of M,(a) for various nondimensional
forcing frequencies is shown in Fig. 4. It turns out
that M, is independent of I', the surface energy
parameter. Note that the actual neutral-stability
curve is given by the sum M, + e’M,, where
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Fig. 5. Directional solidification into CSL: Regions of the
a~{) plane where the flow stabilizes (S) or destabilizes (D)
the interface relative to the case without flow. §=81.0 and
¢ = 0.3: result is independent of I

e=U/V is assumed small. When M, >0, the
flow destabilizes the interface, and when M, <0,
the flow stabilizes. As {2 — «, the Stokes bound-
ary-layer thickness, &5, =(2v/w)'/?, approaches
zero, and the flow has a vanishingly small effect
on stability. As {2 — 0, the boundary-layer thick-
ness approaches that for the ASP, §,4p=v/D,
and the flow approaches a quasisteady limit, with
M, approaching a finite value. The quasisteady
limit of M, is qualitatively similar to the result
for the ASP (see section 5 and Fig. 7).

Fig. 4 reveals that for many values of {2 the
effect of the flow on morphological stability can
be either stabilizing or destabilizing, depending
on the wavenumber of the disturbance. However,
there is a range of {2 values for which the flow
stabilizes the interface against disturbances of
arbitrary wavenumber. This window of stabiliza-
tion is seen more clearly in Fig. 5, where we
indicate the regions of the a—f2 plane where the
flow stabilizes (M, < 0) and destabilizes (M, > 0)
the interface compared to the no-flow case.

For the lead—tin system, the range of (2 for
which the flow is necessarily stabilizing is approx-
imately 1-50. This corresponds to a dimensional
oscillation frequency of f=0.5-25.0 cycles per
second for a pulling speed of 100 um/s.

When (2 lies outside of the window of stabi-
lization, the actual influence the flow will have
depends on the location of the critical wavenum-
ber for the onset of instability in the case without
flow. If this critical wavenumber lies in one of the
regions of the a—f2 plane where the flow is
destabilizing, then the flow will make the inter-
face less stable. Since €’M, is assumed to be
much smaller than that of M|, we can assert the
converse as well; for if the peak of the curve in
Fig. 2 is slightly stabilized when some point away
from the peak is slightly destabilized, the net
effect will be to stabilize the interface. The possi-
ble exceptions to the this last claim would occur if
the two points in question were close together.
This would happen when the values of «, and 2
indicate a location close to one of the boundaries
in Fig. 5.

As an example of how the various parameters
conspire to influence the stability of the interface,
consider two cases: one in which the flow can
either stabilize or destabilize depending on «,
and one in which the flow always stabilizes the
interface. Notice from Fig. 3 that the location of
a, is determined by I' only given § and k. Using

<

-t.eocto 4
| SO
| / .
]

-0.Co0s 4

Fig. 6. Directional solidification into CSL: Plot of Ms(a,)
versus [* for §$=81.0, Kk =0.3 and 2 ={0.5, 1.0}. Note that
when {2 =1 the flow has stabilized the interface for all I”, but
when (2= 0.5 the flow is destabilizing for a range of I".
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this relationship between I' and «_, in Fig. 6 we
plot Mx(I') for the two scenarios just described.
These curves are the corrections to the curve
shown in Fig. 3, where we plot My(I"). The lower
curve corresponds to a value of 2 =1, which
places it inside of the window of stabilization in
Fig. 5; M, is negative for all values of I' along
this curve, indicating the flow will stabilize the
system for all values of I' as expected. The upper
curve corresponds to a value of 2 = 0.5, which
means there is a range of critical wavenumbers
that will place it in the region of destabilization in
the lower portion of Fig. 5. Along this curve, M,
starts out negative, then becomes positive before
returning to negative values as I' is increased.
The values of I for which M, is positive corre-
spond to situations where the CSL will destabilize
the interface relative to the no-flow case, i.e.
a (I) lies in the region of destabilization.

All of our results to this point have been for a
specific alloy. We find that the window of stabi-
lization persists for a wide range of material
parameters (segregation coefficient and Schmidt
number). There is a tendency for the window to
rise with increasing Schmidt number, and to nar-
row with increasing segregation coefficient.

5. Response to an asymptotic suction profile

For this section R =1, so u will be
i=1—-e7%/5 (5.1)

and o, will turn out to be nonzero, indicating the
presence of travelling waves.
The solutions to Egs. (3.8b) through (3.8d) are

Wo=ag(e ** —e™"17) (5.2a)

(jl =b, e~ (s0+1/8)z +b, e-(a+ Dz + b, e~ (s1+Dz

+ b,z €77 (5.2b)
‘,’{;1=a1 e_-"lz_J,_az e*(X1+1/S)z_{__a3 e—(a+1/S)z
+a,e “tasze (5.2¢)

The coefficients and exponents in these expres-
sions are given in Appendix B. Note that al-
though similar notation is used, these are not

\%2

0.0C0C6
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Fig. 7. Directional solidification into ASP: M, versus « for
S§ =81.0, k =0.3. M, is independent of I". When M, >0, the
influence of the flow is destabilizing, and when M, <0, the
influence of the flow is stabilizing. The quasisteady limit of
the CSL case is shown for comparison.

necessarily the same coefficients and exponents
as in the previous section.

In Fig. 7 we plot M, versus a for the ASP and
the quasisteady limit of the CSL. The ASP result,
as with M, for the CSL, is independent of I', but
there are no other parameters to vary for the
ASP. Qualitatively, the result for the ASP agrees
with Fig. 5 in the article by Hobbs and Metzener
[10], except for long-waves. Their paper indicates
that M, ~ a2 as a — 0. We find that M, is O(1)
in this limit. Personal communication with Hobbs
has revealed that some minor algebraic errors are
responsible for these discrepancies. The focus of
their paper is on a long-wave analysis designed to
resolve the nonuniformity in the expansion of
M~" as @ — 0. Despite the fact that M, is O(1)
and not O(a~?) as a — 0, there is still a nonuni-
formity in the expansion since M, — 0 as a — 0.
It would appear, however, that this nonuniformity
does not seriously impair the validity of the ex-
pansion, since our results agree qualitatively (a
quantitative comparison has not been made) with
the uniform results they present in later sections
of their paper.



326 T.P. Schulze, S.H. Davis / Journal of Crystal Growth 143 (1994) 317333

6. Combined response

For this section, 0 <R <1, and & is a linear
combination of the basic states for the CSL and
ASP, taking the form

1w=(1 —R)[e*'“ cos (t —Az) — cos t]
+R(e "/ =1). (6.1)

Notice that the CSL portion of the flow is time
periodic and the ASP portion is steady. The
steady basic-state concentration profile does not
depend on the flow.

One’s understanding of this system can be
greatly enhanced by simply recognizing which
terms are steady and which are time periodic. In
general, a time-periodic forcing function will not
have a net effect on the long-term behavior of the
system, unless it is coupled with another time-
periodic forcing to produce “steady-streaming’.

Using the results for the CSL and ASP, it
turns out that we can simply add solutions to find
the morphological response to the combined flow.
When we scek asymptotic solutions in the limit
€ — 0, the basic state appears only in the inhomo-
geneous terms of disturbance equations and
boundary conditions. When the products in these
inhomogeneous terms are expanded, the inhomo-
geneities are seen to contain terms that corre-
spond to those encountered when the CSL and
ASP were considered individually, plus some ad-
ditional time-periodic terms that do not affect the
leading-order morphological-stability results.
Thus, there is no coupling of the two solutions at
this order.

So, for this section

M,=(R—1)My5 +RM¢p. (6.2)

where Mg, is the M, of Section 4, and M, ,gp is
the M, of Section 5.

For the combined flow, we investigate the in-
fluence of the parameters R and {2 with the
segregation coefficient and Schmidt number fixed
at the values for a lead—tin alloy. We do so by
looking at a diagram analogous to that shown in
Fig. 5, where we mapped out regions of the a—{2
plane where the flow stabilized and destabilized
the interface with respect to the no-flow results.

01 e e

TR T T O T
C10 020 Q.30 C.a40 050 AbG

X
Fig. 8. Directional solidification into combined flow: Regions
of the a—4{2 plane where the flow stabilizes (S) or destabilizes
(D) the interface relative to the case without flow. S = 81.0,
« = 0.3, and R = 0.5. The dashed vertical line corresponds to
the case R =1 (ASP only), with the region to the left of the
line destabilizing, and the region to the right stabilizing.

Fig. 5 is the result for the CSL only (R = 0). For
the ASP (R =1) our results are independent of
{2, and this diagram consists of a single vertical
line emanating from « = 0.55. Disturbances with
wavenumbers larger (smaller) than this will be
stabilized (destabilized). For intermediate values
of R the curves shown in Fig. 5 evolve into the
simple picture just described as R is increased
from zero to one. In Fig. 8 we show the result for
R = 0.5. Notice that there is no window of stabi-
lization,

7. Mechanisms affecting stability

In this section we shall provide a physical
interpretation of our results in terms of mecha-
nisms that promote or inhibit morphological in-
stability. We begin with the no-flow case, which
serves as the leading-order effect for both flows,
followed by the CSL and, finally, a few comments
on the ASP.

The fate of the interface is controlled by the
temperature and concentration fields, along with
surface tension on the interface. In the model we



T.P. Schulze, S.H. Davis /Journal of Crystal Growth 143 (1994) 317-333 327

are using, the temperature field is fixed and lin-
ear, with a positive gradient, i.e. the temperature
increases into the melt. This has a stabilizing
effect on the interface; for if cells start to form,
advancing portions of the interface will meet with
higher temperatures than portions lagging be-
hind, and will be melted back.

The local melting temperature is determined
by the Gibbs—-Thomson equation:

T=Ty—2TyHy/Ly+mC, (7.1)

where T is the temperature of the interface
(melting temperature), T, is the melting temper-
ature of the pure material, H is the mean curva-
ture of the interface, y is the surface free energy,
L, is the latent heat per unit volume, and m is
the liquidus slope in the phase diagram. The
second term in the right-hand side of this equa-

tion accounts for the Gibbs—-Thomson effect, or
capillary undercooling, which dictates that the
local melting temperature is decreased by an
amount proportional to the local curvature. Pro-
truding sections of the interface will tend to be
melted back as a result; thus, surface energy
stabilizes the interface. The third term accounts
for constitutional undercooling, adjusting the
melting temperature by an amount proportional
to the local solute concentration.

It is the mechanism of constitutional under-
cooling that drives the instability. To understand
this, we analyze the concentration linearized
about the interface:

C(x,0+H,t) ~CT(0) +#(x, t) C.(0)
+C'(x,0,1), (7.2)

-0.5 b " 2

-6 -3 =2

2 4 6

Fig. 9. Directional solidification without flow: The interfacial disturbance superposed (not to scale) on the disturbance concentra-
tion field (rescaled to agree in sign with the dimensional C) when flow is absent. Notice that the higher concentrations (dark
regions) are near the peaks of the interfacial disturbance, lowering the local melting temperature. This has a stabilizing influence

on the interface.
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where the primed quantities are the small pertur-
bations to the basic state. The first term on the
right-hand side is independent of x and ¢, and
contributes to the basic state. The next term is
the source of the instability; for advancing por-
tions of the solid will encounter lower solute
concentrations as a result of the negative gradi-
ent, 52(0), of the basic-state concentration field.
This results in lower melting temperatures, and
promotes continued growth. The last term is sta-
bilizing because the disturbance to the concentra-
tion field raises the concentration in the neigh-
borhood of a peak in the interface disturbance,
resulting in a higher melting temperature. This
last effect is illustrated in Fig. 9, where we super-
pose the interface shape on the disturbance so-
lute field for a disturbance composed of a single

Fourier mode. It is exclusively through this means
that flow affects the linear stability of the inter-
face — surface energy and interface shape have
no direct effect.

There is nothing in our model that allows the
interface to react directly to hydrodynamic forces;
the solidified material is considered non-com-
pliant. Also, recall that the temperature field is
fixed in this model. That being the case, the only
effect that the flow has on stability is to alter the
distribution of solute. We have already noted that
such effects are absent at leading order. For the
CSL, there are also no steady effects at O(e)
because the concentration field at this order is
time periodic and has zero mean. At O(e?) there
are both steady and time-periodic forcing terms,
with the steady terms giving rise to a steady

)"\

é 4 6

Fig. 10. Directional solidification into CSL: The steady streamlines for the flow disturbance impinge on the peaks of the interfacial
disturbance for the lead-tin system when 2 = 1.0. This dilutes the local solute concentration, raising the local melting

temperature. This has a destabilizing influence on the interface.
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contribution to the concentration field. Once
again, stability is affected through the mechanism
of constitutional undercooling; when the concen-
tration of solute is increased over the peaks of a
disturbance, the disturbance is stabilized, and
when this concentration is decreased, the distur-
bance is destabilized. This lateral redistribution
of solute is determined by the convective fluxes
that force the system. Eq. (3.8¢), reproduced be-
low, reveals that two types of forcing terms act on
the system at this order:

LC,=e 7w, +iauC,. (7.3)

First, there is the convection of the base concen-
tration field by the disturbance flow field, and

second, there is the convection of the disturbance
concentration field by the base flow.

Recall that only steady changes in the concen-
tration field affect stability. In Fig. 10 we plot the
steady streamlines for the disturbance velocity
field and the leading-order interfacial distur-
bance for a single Fourier mode. Notice that the
streamlines are impinging on the peaks of the
disturbance. This means that material that is less
solute-laden is being swept toward the peaks from
the far-field, lowering the local concentration,
which has a destabilizing effect. For other param-
eter values or disturbance wavenumbers, the
streamlines can be made to impinge on the val-
leys instead, but the streamlines always have the

N e, "

i

-6 -4 -2

2 4 6

Fig. 11. Directional solidification into CSL: The flux of solute (iauél of Eq. (7.3)) produced by the interaction of the steady flow
field disturbance and the base concentration field (rescaled to agree in sign with the dimensional C) for the lead—tin system when
£ =1.0. The sinks of solute (lighter regions) are over the valleys in the interfacial disturbance, lowering the local melting

temperature. This has a destabilizing influence on the interface.
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same period as the interface disturbance and are
exactly in or out of phase with it. In Fig. 11 we
plot the solute flux that results from the interac-
tion of these streamlines with the basic-state con-
centration field. Notice that the sinks of solute
flux are over the peaks in the interface distur-
bance.

The streamlines for the base flow are simply
lines parallel to the flat interface, which do noth-
ing to transport the base concentration, but inter-
act with the time-periodic correction to the con-
centration field to produce a steady flux of solute.
In Fig. 12 we plot this flux field and the disturbed
interface, as before. Notice that there is a source

of solute flux above each peak in the interface
disturbance. This stabilizes the interface.

In general these two types of fluxes may com-
pete or cooperate depending on material parame-
ters and disturbance wavenumber. In the case for
which we generate these illustrative plots, they
compete, and the second, stabilizing, effect wins.
This is in agreement with the results presented in
Section 4, since these plots are for an {2 lying
within the window of stabilization.

We have just demonstrated that the CSL can
cnhance interfacial stability by the lateral redis-
tribution of solute. Because the instability is
driven by the negative vertical concentration gra-

" .

=6 -7 -2

2 4 6

Fig. 12. Directional solidification into CSL: The steady flux of solute (e ““#, of Eq. (7.3)) produced by the interaction of the base
flow field and the concentration field disturbance (rescaled to agree in sign with the dimensional C) for the lead-tin system when
2 =1.0. The sinks of solute (lighter regions) are over the peaks in the interfacial disturbance, lowering the local melting
temperature. This has a stabilizing influence on the interface. The magnitude of this effect is greater than the one shown in the

previous figure.
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dient of the basic state, one might think that the
key to stabilizing the interface would lie in
smoothing this gradient. If one computes the
average vertical concentration gradient, one finds
that there is no contribution from linear theory.
By retaining higher-order terms one arrives at the
following equation for the average solute concen-
tration by integrating over one cycle in time and
one wavelength in x, and simplifying the result
using the continuity equation:

C,,+C, =Cw. (7.4)

Here the overline indicates average over time and
space, and the primed quantities are the eigen-
functions determined by linear theory. Solving
this equation with the averaged boundary condi-
tions (C —» 0 at z =0 and as z — =) reveals that
the flow actually steepens the concentration gra-
dient in some cases where, according to linear
theory, the flow stabilizes the interface.

With the ASP the situation is similar, but now
the solute fluxes responsible for shaping the con-
centration field are steady only when viewed in a
reference frame that moves with the O(e) wave
speed, . As a result, cells should tilt when the
interface become unstable.

8. Conclusions

The linear stability analysis has shown that by
fixing the frequency of horizontal oscillations of a
crystal during its formation one can decrease the
range of pulling speeds for which the interface
becomes unstable to two-dimensional distur-
bances. This stabilization is achieved for a finite
range of frequencies which we refer to as a win-
dow of stabilization. This result is in contrast to
the result of Merchant and Davis [13] in their
study of an imposed time-periodic stagnation-
point flow, where they find that stabilization oc-
curs for a range of low frequencies, including
zero. We find that this window of stabilization
closes as we increase the segregation coefficient,
and rises as we increase the Schmidt number.

When the interface remains unstable in the
presence of a CSL, microstructure is significantly

affected. Corrugations are formed in the pattern
of nonuniformities that normally consists of
stripes perpendicular to the mean interface posi-
tion, and the length scale of the surface morphol-
ogy is adjusted.

To gain further control over the systems re-
sponse, one might combine oscillatory motion
with a steady translation. In experimental or
practical situations, such flows can be approxi-
mated by combining an oscillatory and steady
crystal rotation. In the limit we have considered -
a weak forcing of the flow — we have shown that
the individual responses to these two types of
flow can be superposed to determine the com-
bined response. We find that the window of stabi-
lization is destroyed by the presence of the steady
motion.

In general, the flow affects the stability of the
interface by producing periodic changes in the
concentration field that have the same spatial
scale as the dominant mode of the interface dis-
turbance. These adjustments to the concentration
then promote or inhibit instability through the
mechanism of constitutional undercooling.

For a practical application of these ideas it
would be necessary to understand the effect of a
strongly forced flow; for the change produced by
what we assumed was a small forcing, will, of
course, be small. This can be approached by
considering the problem in the limit of large
Schmidt number, or by attacking the problem
numerically. As we noted earlier, Forth and
Wheeler [8] have done this for the ASP. Their
results are similar to the results presented here
and in Hobbs and Metzener [10] for the small
velocity-ratio limit. The numerical results of Forth
and Wheeler also indicate that the trends shown
for the small velocity-ratio limit continue for
larger velocity ratios. It remains to be seen if this
is true for the Stokes-layer problem.

A more serious impediment to the practical
use of these flows is that they affect only distur-
bances with wave vectors parallel to them. So
even if we dramatically stabilize the two-dimen-
sional system, we do nothing to stabilize the
three-dimensional system. Kelly and Hu {11] have
shown that the onset of Rayleigh—-Bénard convec-
tion can be delayed by imposing a nonplanar
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oscillation onto the system, which extends the
stabilization to three-dimensional disturbances.
Such a scheme to stabilize the present system
seems promising.
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Appendix A

The constants in Eq. (3.1) are

\/—1+\/1+16S2.(22

A= Y , (A.la)
L+ 1+ 3(=1+V1 + 165702)
B= ,  (A.lb)
28
and we define
r=B+1iA4, (A.2a)
F=B—-iA. (A.2b)

The exponents in Eq. (3.10) and Egs. (4.2a)
through (4.2¢) are

so=(1+V1+4a)/2, (A.3a)
si=(1+V1+48%>+4iSQ2)/28, (A.3b)
s;= (1+ V1 +4a’+4i02) /2, (A.3c)
s;= (1+V1+45%7)/28. (A.3d)

The coefficients in Egs. (4.2a) through (4.2¢) are

ay= —lra/2(s, —a), (A.4a)

ay=(ha—j)/(a—s3), (A.4b)

a,

_ (iaga/2)(a® —si +7?)

s+ R —@?][S(s, +7) —Sat -5, 7|
(A4c)

—iaa,r?/2
a,= 3 :
[(a+?)‘—a2“S(a+f)2—Saz—a/*f]

(A.4d)

ay=(J2=53)/(a—s3), (A.de)

as=aya/212, (A.4f)

b = ta/2 ,

T (r+ 25y — 1) — i’ (A-dg)
by=ay/(a—142), (A.4h)
by=—a,S/[S(s, —i2) +s, +i02], (A.41)
by=a/20, (A.4))

bs=[i02Bb, +by(1 +a—i02B —s,)
+b5(1+10B +5,—5,) + b (1028 +r)]
X(s,—1-108) ", (A.4k)

where

ji=—3(a,+a;+as+cc.), (A.5a)

jo=—3{(s, +F)a, + (@ +F)ay +s,a5 + c.c.

—siaB[F(b, +b,+by+b,+bs) +cc.]}

(A.5b)

The correction to the neutral stability curve, M,,
is

1 a, a, a,
M,=— + = + =
Bk | s, sy Tr+s,+s, a +T+ s,
a, as b,
+ —_ —-_—
ats, s,+5 2s,+r—1
by bs by bs
+ + +
a+tsy, Syts 2sg—1  syt+s,—1
_ bl _ b2 _ b}
2B+2sq—~1 a+r+s, Fr+s,ts,
b b
— = - = +c.c.|. (A.6)
F+2sg—1 F+sy
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Appendix B

The exponents in Eqgs. (5.2a) through (5.2¢) are

so=(1+V1+4a®)/2, (B.1a)
5= (1+VI+48%2)/25. (B.1b)

The coefficients in Egs. (5.2a) through (5.2¢c) are

a,=iaB/S(s, —a), (B.2a)

a, =iay/(1+28a), (B.2b)

a,= —iaga(l -s,8)/2s,(1+3s,8), (B.2c)
—i 2 _ 2\io. —

o= iag(a® = s1)(io, — a) (B.2d)

 —4535 + 352 + 4a%s5,S —a?’
a,=[(a,+a,)(s,S—1) —iap(b, + b, +b;)
—(ea,—ay+ays,)S|/(a—s,)S, (B.2e)

as=[(a; +a,)(1—a$) +iap(b, + b, +b;)
+(aa; —as+a,s))S|/(a—s)S, (B.2f)
by =—-iaS/(2s;+1/S-1), (B.2g)
by,=ay/a, (B.2h)
by=—ayS/s(S+1), (B.2i)
by= (o, +ia)/(1-2s,). (B.2j)

The wavespeed o, is
o ={—ia+ (1-250)[bo/S+ (@ +1-s55)b,
+(5,+1-50)b,]}(1 — B +2855) "
(B.3)

and the correction to the inverse morphological
number is

1 a a,
M,=—7- S —1
Bk|a+sy+S at+s;+S
a, a, as
+ 2
So+s8,.  a+sy,  Sgts;

b b
+(oy +ia) = -+ =
25¢—1+8 a+s,
b, b,
+ + >
Sots;  25,-1
—la & + &
25— 1+2871  a+sy+S7!
b, b,
1 + 2
Sgts+8§ 2s0—l+S_1
+Bo(b; + by +by)|. (B.4)
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