
~N~H

CRYSTAL
GROWTH

ELSEVIER Journalof CrystalGrowth 143 (1994)317—333

Theinfluenceof oscillatoryandsteadyshearson interfacial
stability duringdirectionalsolidification

T.P. Schuize,S.H. Davis *

Departmentof EngineeringSciencesandAppliedMathematics,NorthwesternUniversity, Evanston,Illinois 60208, USA

Received21 December1993; manuscriptreceivedin final form 10 June1994

Abstract

A linear stability analysisis performedon the interfaceformed during the directional solidification of a dilute
binary alloy in the presenceof a weak,time-dependentflow. In onecase,theflow is generatedby a simpleharmonic,
lateraloscillationof the crystal, resulting in solidification into a compressedStokesboundarylayer. In a second,
more general,case,the crystal also hasa meanhorizontalvelocity.The presenceof the flow can eitherstabilizeor
destabilizethe two-dimensionalsystemrelativeto the casewith no flow, with the result dependingon the Schmidt
number,segregationcoefficient, and thefrequencyof the oscillations.

1. Introduction process.There has been much speculationthat
such flows could be usedto gain better control

The microstructuresof solids are detennined over interfacial morphology, selecting patterns
during their fonnation,and are, in part, a result andlengthscales,andpossiblystabilizingan oth-
of instabilities at the solid—liquid interface.Met- erwise unstableinterface.
allurgists and crystal growers realize that un- The focusherewill be on directionalsolidifica-
steadyconvection in the melt has a significant tion, which provides a simple configuration for
effect on this interfacial morphology. Natural the study of morphological instability. This ar-
convectionin the melt canbegeneratedby buoy- rangementconsistsof unidirectionalsolidification
ancy, expansion or contraction upon phase- in which a binary alloy is pulled acrossa fixed
change,and thermo-solutocapillary effects, the temperaturegradientat constantspeed(Fig. 1).
last two playing significant roles in microgravity The solid—liquid interfacewill establishitself at a
environments.Theseflows arestronglynonparal- fixed position in a laboratoryframeof reference.
lel in nature,frequently exhibiting three-dimen- In the absenceof flow, thereis a steadybasic
sional and time-dependentstructures.Flow can state that features a planar interface and an
also be generatedby external forcing, such as exponentially decaying concentrationprofile in
rotation of the crystal during the solidification the melt. The concentrationprofile hasa discon-

tinuity at the interface due to solute rejection.
The potential for morphologicalinstability exists
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V the longer wavelength disturbancestending to
/ grow slower, and the shorterwavelengthdistur-

~ / ~ bancestending to grow faster. They pointed out
/ Liquid that their asymptotic expansionsare not uni-

- - ______ formly valid in the limit of long waves or large

Reynoldsnumbers.They also presentedresultsof

I Solid Ucos(o~t) a numerical study that indicates that shorter/ < wavelengthsare further stabilized by increasing
I _____________________ the Reynoldsnumber.

Fig. I. Unidirectional solidification setup shown with basic Hobbsand Metzener[101also consideredhow
statetemperature.concentration,andvelocity profiles, the flow with the ASP affectsmorphologicalsta-

bility. Their work is primarily concernedwith
resolving the nonuniformitiesfor long-wave dis-

which raisesthe melting temperatureof the so- turbancesencounterednearthe absolutestability
lute-ladenmaterialnear the interface.The mor- boundary.They use singular perturbationtech-
phological instability of the solid—liquid interface niques to considerthe limits of small flow speed,
is primarily governedby three parameters:the small segregationcoefficient, and large Schmidt
averageconcentrationof solute C~,the pulling number.
speedV, andthe overalltemperaturegradientG. MerchantandDavis [131consideredthe effect
Mullins and Sekerka[14] performeda linear sta- of a temporally modulatedstagnation-pointflow
bility analysison this system,and found that the on the morphological stability of a directionally-
interface undergoesa cellular instability for a solidifying interface. They studied the influence
certain range of the parameters,resulting in a of this unsteady,nonparallelflow using a long-
steadycorrugatedinterface, wave analysis,andfound that low-frequencymod-

Numerousstudieshave been done investigat- ulation was always stabilizing, while high-
ing the effect of flow during directionalsolidifica- frequencymodulationwas alwaysdestabilizing.
tion. As with most fluid systems,the analysis is For a moreextensivereview of researchon the
considerablysimplified by focussingon parallel- role of convection in solidification see Coriell,
flow situations. Delves [71studied solidification McFaddenand Sekerka [3], Glicksman, Conch
into a Blasiusboundarylayer, usinga parallel-flow and McFadden[9], Davis [4—6],and Coriell and
approximation.Coriell, McFadden,Boisvert and McFadden[1].
Sekerka[2] numericallyinvestigatedsolidification In this paper we study the influence of a
into a planeCouetteflow (linearvelocity profile). Stokesboundarylayeron morphologicalstability.
Thesestudiesfound that disturbanceswith wave One can imagine this flow being generatedby
vectorsparallelto the flow arestabilized.Distur- oscillating the crystal in the horizontal planeas
bances with wave vectors perpendicularto the the material is solidified upward (Fig. 1). The
flow are left unaffected,a result that will hold for boundarylayer is compressedas a result of flow
any flow with only one nontrivial velocity compo- perpendicularto the interface generatedby the
nent in the planeof the crystal interface, pulling velocity. We refer to this flow configura-

Forth and Wheeler[8] investigatedsolidifica- tion as a compressedStokes layer (CSL). The
tion into a parallel flow with the asymptoticsuc- relationshipbetweena Stokeslayerand a CSL is
tion profile (ASP). Such a profile would result analogousto that between plane Couette flow
from translatingthe crystal horizontally at con- and a flow with the ASP.
stantspeedduring directionalsolidification. They As with thesepreviousstudies,we neglectall
present linear stability results from asymptotics other sourcesof convection: gravity, changesin
valid for large Schmidt number. It is clear from densityduring phasechange,and thermo-soluto
their results that the flow can eitherstabilize or capillaryeffects.We also neglectthe influenceof
destabilizedisturbancesparallel to the flow, with any horizontalboundariesby assumingthe spatial
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domainto beinfinite. This is justifiedbecausethe where u is the fluid-velocity vector,p is thefluid
length scale of the instabilities to be studied is pressure,C is the concentrationof the dilute
much smallerthan the width of any realisticcon- componentof the binary mixture, T is the tern-
tamer. Like the ASP, the CSL is also a parallel perature in the fluid, p is the density of the
flow, but this time-dependentbasic state intro- mixture (assumedequal in both the liquid and
ducesa new control parameter,the frequency, solidphase),K is the thermaldiffusivity, and D is
into the systemthat may potentially be manipu- the solute diffusivity. The subscriptsdenotedif-
lated to the crystalgrowersadvantage. ferentiation with respectto time (t) and space

To gainfurthercontroloverthesystemthrough (x, z). V is the gradientoperator,and V2 is the
the use of a forced flow, one can combine an Laplacian.The translationalterm in theseequa-
oscillatory motion of the crystal with a steady tions is the result of the fluid velocity being
translation.We report linear stability results for measuredin the referenceframe of the quiescent
this generalcasein the limit of small forcing. We fluid. This is done so that the vertical velocity at
consider the two-dimensionalcase since distur- the interfacewill bezero.
bances perpendicularto the parallel flow are Weshallmakethe frozen-temperatureapprox-
unaffected. imation [12]. In this limit we neglectlatent heat,

We begin in the next sectionby presentingthe assumeequalthermal propertiesin theliquid and
governingequationsandmaking a few simplifying solid phases,and assumethat the diffusion of
assumptions.In Section 3, we present the lin- heat is much faster than the diffusion of solute.
earizeddisturbanceequationsand briefly review Under theseassumptionsthe temperaturefield
theresultsfor the casewithout flow. In Section4, has a fixed linear profile,
we look at the CSL by itself, andin Section5, we
review the ASP results,pointing out some minor T = T

0 + Gz, (2.2)
differenceswith the results of Hobbs and Met- .where T is the temperatureat the interface in
zener[10]. In Section 6 we explorethe combined .the basic state and G is the temperaturegradi-
case,and in Section7 we offer someexplanation
of the physical mechanismsinvolved in this sys- en . ,We shall be investigatingwhat happenswhen
tern. Finally in Section 8 we summarizeand .

the crystalundergoeslateralmotion. To simplify
conclude.

our analysis,we transformto a referenceframe
where the crystal is stationary,and the fluid in
the far field moves instead. This involves the

2. Governing equations following two changes:

Consider a coordinatesystemwith x-axis lo- u —*u + U[(1 —R)cos (wt) +R1, (2.3a)
cated at the meanposition of the crystal inter- 1 R
face, moving with the front, and a z-axis that is ~ ~ + u — sin (wt) + Rt (2.3b)
fixed in the laboratory frame of reference.The w
equationsgoverningthesystemin thefluid region
are the Navier—Stokes,continuity, solute diffu- where u(x, 0, t) = U[(1 — R) cos (wt) + R] is the
sion, andthermaldiffusion equations: horizontalvelocity of the crystal in the old refer-

enceframe. Here, the amplitude of the velocity
1 2 oscillationsaddedto the magnitudeof the steady

uf+u Vu Vu = ——Vp+vV u, (2.la) . .

p shear is U, R indicates the fraction of the flow

— ‘2 1b~ that is steady, and w is the frequency of theU — 0, I~. . ‘~ oscillations.When R = 0, the flow will be purely

Cf + u’ VC — VC~= DV
2C, (2.lc) oscillatory.When R = 1, theflow will be a steady

shear.Thesetransformationsleave the equations
r”r srr — ~2T f~) 1,-fl .U vi — — K i unchanged,except for a time dependentforcing
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term in the horizontalcomponentof the Navier— where m is the liquidus slope in the phasedia-
Stokesequations. gramof the alloy. The surfaceenergyparameter

We nondirnensionalizeour equationswith the is
following scalings:

T’=T~1yV/DLvmC’~(1—1/k), (2.10)
x—s(D/V)x (2.4a)

where Tm is the meltingtemperatureof the pure
u —s Uu (2.4b) material, y is the surfacefree energy,and L~,is

—* t/w (2.4c) thelatent heatperunit volume.Finally, the mean
curvatureof the interface, H, is given byp—spUVp (2.4d)

T-s (GD/V)T+ 1~ (2.4e) 2H= V’ [vh(1 + Vh 2)] -1/2 (2.11)

C —~s(C0. — C0./k)C+ C0./k, (2.4f)

where D is the solutediffusivity, V is the crystal
pulling speed,p is thematerialdensity,C.~is the 3. Linear stability analysis
far field concentration,and k is the segregation
coefficient. The basic state for this systemtakesthe form

With theserevisions,the governingequations —

ii = (1 — R) [e~ cos(t —Az) — cos t}are

Qu,+euVuu. +R(e’~~1), (3.Ia)

= —Vp+SV
2u+i(1 —R)f2 sin t, (2.5a) ~‘=0, (3.lb)

Vu =0, (2.5b) C= I —e~, (3.Ic)

(IC, + EU’ VC— C.. = V2C, (2.5c) ~ = o, (3.ld)

T=z. (2.5d) where A and B are constantsgiven in Appendix

where A. To analyze the responseof this stateto in-
finitesimalperturbations,we disturbeachof these

Q=wD/V2 (2.6)
quantities, and separatethe disturbancesinto

is the nondimensionalfrequency,S = o/D is the normal modes
Schmidt number, and � = U/V is the velocity —

ii = u + u( z, I) e’~~e’t’ + cc., (3.2a)ratio.
As z —s ~, the far-field boundaryconditions w = i~(z, t) e~ e°’+ c.c., (3.2b)

arc
C=C+C(z, t) e”” e~Tt+c.c., (3.2c)

u—s —[(l—-R) cos t+R1. (2.7a)
h=h(t) e”~e’~’+c.c. (3.2d)

(2.7b)
C —s I, (2.7c) Here we are seeking time-periodic eigenfunc-

tions, and if is the Fhoquetexponent.If the real
andthe interfacialconditionsare evaluatedat the part of if is not zero, then the disturbanceswill
interfacez = h(x, t) are

experiencea net growth or decay over one pc-
u = 0. (2.8a) nod. It will turn out that cr is identically zeroon

the neutral curve in the limit e —~ 0. This means
C = M ‘h — 21H, (2.8b) that, in this limit, the responsewill havethe same
(1 + (lh,) [1 + (k — 1)C1 = c’~— ~ (2.8c) frequencyas the forcing.

By taking the curl of the Navier—Stokesequa-Here, the morphologicalnumberis
tions twice, and usingthe continuity equation to

M = mVC
0.(1 — 1/k)/GD. (2.9) simplify the result, we arrive at a fourth-order
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disturbance equation for the vertical component if is zero, and expandboth M’ and the imagi-
of the disturbance velocity. Combining this with nary part of cr in powers of e:
the disturbance equation for the solute field we
have a sixth-order boundary-value problem. Be- M~=M0 + e

2M
2+ ...~ (3.7a)

causethe shapeof the interfaceis also undeter- if = �~yn+ .... (3.7b)
mined,we requirean additional interfacialcondi-
tion, giving us a total of sevenboundarycondi- The lower-ordertermsomittedfrom theselast
tions. expansionsturn out to be zero, and we have

In the fluid we have shown explicitly only the terms necessaryto re-
solve the leading-ordercorrectionto the neutral-

Ir~
2 r~ 2 r~a\A

+ —a 0,)L stability curve.
Wesubstitute these expansions into the distur-

= E(iauC+ e~s~)+ Quê, (3.3a) bance equations,set the coefficients of corre-

(D2 _a2)[S(D2 —a2) + D ~ spondingpowers of to zero, and obtain the
following sequenceof equationsto be solvedsue-

= iae[ü(D2 — a2)i~— ~D2~] cessively:

+ Qu(D2— a2)~, (3.3b) L~C
0 (D

2 + D — a2 — uI1a~)C
0 = 0, (3.8a)

where D indicates a/az and ~ indicates a/at. L2~g~(D2_a
2)[S(D2_a2)+D—(Ia,Is~o

In the far field, as z —~ ~, we have
=0, (3.8b)

C(z, t) —*0, (3.4a)

i~(z, t) —*0, (3.4b) L~C~= iai~C
0 + e~~ + u1C0, (3.8c)

D~(z, t) —s 0. (3.4c) L2f~~= iai7(D
2 — a2)~

0— ia~0D
2ü

The interfacialconditions,transferredto z = 0, + o’
1(D

2 — a2)s~
0, (3.8d)

are
L~C2= iaüCi + e~~ + uiC~. (3.8e)

M~h=h(1 —a
21)+C, (3.5a)

The interfacial boundary conditions give (after
(k — 1)(~+~) +fl~,=D~— (1 —u)~, (3.5b) eliminating h)

(3.5c) D~
0=(k+/3k—1)c~0, (3.9a)

D~=iahDi7. (3.5d) ~~o=O, (3.9b)

To proceedfurther with the analysis,we as- D~0= ia~0Di~, (3.9c)
sume the lateral motion of the crystal is weak so
that the parameter � is small, and expand the Dc~’~= (k +/3k — 1)~~+~.~na41+/

3ifiC~,
dependent variables as series in powers of �, (3.9d)

= ~o + ~w
1+ ..., (3.6a) ~ = o, (3.9e)

= 0 + + (3.6b) D~i~= iaf3~iDü, (3.9f)

= + + �~ +.... (3.6c) D~2= [k + ~k — 1]~2+ ~na42— k~2M2~0

Weshall seek conditions on the morphological +I3criCi, (3.9g)
number M such that the system is neutrally sta-
ble. To this end,we assumethat the realpart of where13 = (M0 + a

21—
1)_i
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Table 1 V
The parametervalues used in the calculations(unless indi-
catedotherwise)

1130 -~

Parameter Symbol Value Units

Kinematicviscosity v 2.435<l0-~ cm
2/s ,.1 --

Solutediffusivity D 3.0x 10- cm2/s ~‘

Liquidus slope rn —2.33 K/wt0~
Melting point T~, 600.6 K
Surfacefreeenergy y 42.6 erg/cm2
Latentheat perunit L~, 2.56x 10” erg/cm3

volume 15 -

Farfield concentration CO,- 0.01 wtV
Temperaturegradient G 200.0 K/cm
Pulling speed V 0.01 cm/s -~-c H
Segregationcoefficient k 0.3 — -

Schmidtnumber S 81.1) — _j /
Surfaceenergy 1 1)6 —

parameter -,

0.00 ~ ~--..-.---~ - __~/ —

(500 fl5~1. .5.111 1.50 11511

At leading order, the problem reducesto the Fig. 2. Directional solidificaiion without flow: M versus

morphologicalstability problemin the absenceof for S = 81.0. k = 0.3 and 1’ = 0.6. The region above thecurve

flow, andthe resultsareequivalentto thosefound correspondsto a stable(SI inicrface,andtheregion belowthe

by Mullins andSekerka[i4]: curvecorrespondsto an unstable(U) interface.

= b
0 e’°

2, (3.lOa) Fig. 3 gives M/’ M
11~and a~as functionsof

M0 = 1 — a
2!’ — k ( k + — 1) — (3. lOb) F. If M

0 <M0~. then the interface is unstable.For 1> 1/k the interfaceis alwaysstable;this is
Here b11 is an arbitraryconstantthat doesnot

affect the result of the linear stability analysis,
andwill be taken to be unity, and s,, is

S0 = ~(l + + 4a
2). (3.11)

To illustrate theseresults,we chooseparame- -

ten valuescharacteristicof a lead—tin alloy (un-
less indicatedotherwise).Thesechoicesarepre-
sentedin Table 1. -,

Fig. 2 shows the neutral-stability curve for a
lead—tin system in the absenceof flow with 1’ N,
fixed. If Mo is above this curve for a given c so -H, ~ ~

wavenumber, then a disturbance with that H V
0 ~ -

wavenumberwill decay Similarly if M11 is below
this curve for a given wavenumber then the dis _____.15 ~

tunbancewill grow. For the interfaceto be stable 0.20 .20 0 00 3 DC -

for an arbitrary disturbance,M0 must be above
this curve for all a.The wavenumberfor theleast Fig. 3. Directional solidification without flow: The critical
stable mode is denoted as a,, and the corre- value(maximizedover wavenumbers)of M0. and the critical

wavenumberas a function of F for S = 81.0 and k 1)3.
sponding morphological number M is called . .

C Stable and unstableregions lie above and below the MC -

the critical morphologicalnumber, denoting the versus-Fcurve, respectively The absolute stability limit is

thresholdof instability. 1/ = 1/k.
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known as the absolutestability limit. The critical M2
wavenumber indicates, on a linear theory basis,
the width of the cells that form when the inter- 0.00020 ~ 0= 1

facebecomesunstable.
Up to this point we havepresentedthe equa-

tions and boundary conditions for the general o000:o

flow we wish to consider— a combination of an
ASP anda CSL. Although thesetwo flows com-
bine linearly to form the basic state,this is not
the casein the disturbanceequations,where the 0.00000

basic state appears in the coefficients of the
equations. However, to the order in � that we are

0=1000

act, and the generalresponsecanbe obtainedbyinterestedin, the two componentsdo not inter- 000010 N
adding the responseto each component deter- 0=1

mined separately.An explanationfor why this is 000020 ~ ‘====~ I

so will be provided in Section 6, but for now we 0.00 050 1.00 1.50 2.00

find it convenientto proceedby consideringeach Fig. 4. Directional solidification into CSL: M2 versusa for
elementof the flow separately. S= 81.0, k = 0.3 and various 12. M2 is independentof F.

When M2 is above the x-axis, the influence of the flow is
destabilizing,andwhen M2 is belowthe x-axis, the influence

4. Responseto a compressedStokeslayer of theflow is stabilizing. As 12 —s ~, M2 —~0, and as (1 —* 0,
M2 approachesa steadystate.Note that for 12 = 1 theflow is
stabilizing for all wavenumbers.

For this section, R = 0, so i~will be

= e~ cos(t—Az) — cos t, (4.1) Only the steady parts of ~ affect the neutral-sta-

and if will turn out to be identically zero on the bility results,however. M~is determined to be
neutralcurve, zeroat this order.

The solutionsto Eqs.(3.8b) through (3.8d)are The correction to the neutral-stabilitycurve,

= a0(e~— e’
0’2) e°— c.c., (4.2a) M

2, is determined by applying a solvability condi-tion to the O(�2) solute equation.This condition

~1~i= (bi e )+r)Z + b2 e~fl2 + b3 e’~~ is necessarybecausethe steadyforcing terms at
this order reproduce,upon separationof van-

+b4 esoz+ b5 e~2z) cit — cc., (4.2b) ables, the eigenfunction of the leading-order

= a1 es3z + a2 eU+~ + a3 e~~2 problem.The leading-orderproblem is homoge-
neous,and has nontrivial solutions,so the inho-

+ a4 e_az+ a5 e

51z + cc.+ TDM. (4.2c) mogeneousproblemfound at this orderwill have

The coefficients and exponentsin theseexpres- solutionsonly if the inhomogeneitysatisfies
sions are given in AppendixA. The time-depen- 1
dent modes(TDM) in the solution for ~ have M

2 = ~~fe_003”~ f(z) dz, (4.3)
been omitted becausethey do not affect the
leading-ordercorrection to the neutral-stability wheref(z) is theforcing term in the O(E2) solute
boundary. equation.

At leading order, the flow is forced through A plot of M2(a) for various nondimensional
the boundarycondition (3.5d), leadingto a time- forcingfrequenciesis shownin Fig. 4. It turns out
periodic response.At O(�), the disturbancecon- that M2 is independentof F, the surfaceenergy
centrationfield, ~, is also time periodic,but ~ parameter.Note that the actualneutral-stability
consistsof bothtime-dependentandsteadyparts. curve is given by the sum M0 + �

2M
2, where
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1 . = When (2 lies outsideof the window of stabi-
lization, the actual influence the flow will have

1 00- dependson the location of the critical wavenum-

ben for the onsetof instability in the casewithout
- flow. If thiscritical wavenumberlies in oneof the

regions of the a—il plane where the flow is
destabilizing,then the flow will make the inter-
face less stable. Since e2M.-, is assumedto be
much smaller than that of M

10, we can assertthe
converseas well; for if the peakof the curve in
Fig. 2 is slightly stabilizedwhen some point away

1 - from the peak is slightly destabilized, the net
effect will he to stabilize the interface.The possi-

_____________________________ ble exceptionsto the this lastclaim would occur if
15 4 .5 1 23 1-3 the two points in questionwere close together.

This would happenwhen thevaluesof aC and (1
Fig. 5. Directional solidification into CSL: Regions of the indicatea location closeto oneof the boundaries
u—fl plane where the flow stabilizes (5) or destabilizes(D) V 5
the interface relative to the casewithout flow. S 81.0 and ifl 1g.
k = 0.3: resultis independentof F. As an exampleof how the various parameters

conspireto influencethe stability of the interface,
consider two cases:one in which the flow can

� = U/V is assumedsmall. When M2 > 0, the either stabilize or destabilizedependingon ct~,
flow destabilizesthe interface,andwhen M2 <0, and one in which the flow always stabilizesthe
the flow stabilizes.As (2 —s ~, the Stokesbound- interface. Notice from Fig. 3 that the location of
asy-layerthickness. SSL = (2r’/w)’ 2 approaches cr~is determinedby I’ only given S and k. Using
zero, and the flow has a vanishingly small effect
on stability. As (2 —s 0, the boundary-layerthick-
ness approachesthat for the ASP, ~A5I~ = o/D, ‘

andthe flow approachesa quasisteadylimit, with
M2 approachinga finite value. The quasisteady -
limit of M2 is qualitatively similar to the result
for the ASP (see section 5 and Fig. 7).

Fig. 4 revealsthat for many values of (2 the ~ I
effect of the flow on morphologicalstability can
be either stabilizing or destabilizing,depending
on the wavenumbenof the disturbance.However,
there is a range of (2 values for which the flow
stabilizes the interface against disturbancesof 1)

arbitrary wavenumber.This window of stabiliza- ‘ 1.

f/on is seen more clearly in Fig. 5, where we
indicatethe regionsof the a—fl planewhere the
flow stabilizes(M2 <0) and destabilizes (M2> 0) -
the interfacecomparedto the no-flow case. 1 2 - r- ~— —~——

For the lead—tin system, the rangeof (2 for 2 1 DO =00

which the flow is necessarilystabilizingis approx- - . .
Fig. 6. Directional solidification into CSL: Plot of M~(a.)

imately 1—50. This correspondsto a dimensional versus l~for 5—81.0, k —0.3 and 12 = (0.5, i.0}. Note that
oscillation frequencyof f 0.5—25.0 cycles per when 12 1 the flow hasstabilizedthe interfacefor all l, hut
secondfor a pulling speedof 100 ~sm/s. when 12 = 0.5 theflow is destabilizingfor a rangeof 1’.
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this relationshipbetweenF and a~,in Fig. 6 we V2
plot M2(F) for the two scenariosjust described. 0 0O00~

These curves are the corrections to the curve I
shownin Fig. 3, wherewe plot M0(F). The lower 0.00005

curve correspondsto a value of (2 = 1, which
places it inside of the window of stabilization in 0,00004 \ ASP

Fig. 5; M2 is negative for all values of F along
0.0000 3

this curve, indicating the flow will stabilize the
systemfor all valuesof F as expected.The upper
curve corresponds to a value of .11 = 0.5, which
means there is a range of critical wavenumbers 0.00001

that will placeit in the regionof destabilizationin
the lower portion of Fig. 5. Along this curve, M2
starts out negative, then becomes positive before 0 00001

returning to negative values as F is increased.
The valuesof F for which M2 is positive corre- -0.00002

0.00 0.50 1.00 1.50 2.00

spondto situationswherethe CSL will destabilize
the interface relative to the no-flow case, i.e.

Fig. 7. Directional solidification into ASP: M2 versus a for
a~(F)lies in the regionof destabilization. S= 81.0, k = 0.3. M2 is independentof F. When M, > 0, the

All of our resultsto thispoint havebeenfor a influenceof the flow is destabilizing,and when M2 <0, the

specific alloy. We find that the window of stabi- influenceof the flow is stabilizing. The quasisteadylimit of

lization persists for a wide range of material the CSL easeis shownfor comparison.

parameters (segregation coefficient and Schmidt
number).There is a tendencyfor the window to
rise with increasingSchmidt number,and to nar- necessarilythe samecoefficients and exponents
row with increasingsegregationcoefficient, as in the previoussection.

In Fig. 7 we plot M2 versusa for theASP and
the quasisteadylimit of the CSL. The ASP result,

5. Responseto an asymptoticsuction profile as with M2 for the CSL, is independent of F, but
there are no other parametersto vary for the

For this section R = 1, so i~will be ASP. Qualitatively, the result for the ASP agrees
with Fig. 5 in the article by Hobbs and Metzener

ü = 1 — ~ (5.1) [101,except for long-waves.Their paper indicates

and if1 will turn out to be nonzero,indicatingthe that M2 a
2 as a 0. We find that M

2 is 0(1)
in this limit. Personalcommunicationwith Hobbs

presence of travelling waves, has revealed that some minor algebraic errors are
The solutions to Eqs. (3.8b) through(3.8d) are

responsiblefor thesediscrepancies.The focusof

= a1~(e’~— eSIz) (5.2a) their paperis on a long-waveanalysisdesignedto
resolve the nonuniformity in the expansionof

= b1 e Ss+i/S)z + b2 ~ + b3 eSi+~ M~ as a 0. Despitethe fact that M2 is 0(1)

+ b4zeS1z (5.2b) andnot O(a”
2) as a —, 0, thereis still a nonuni-

formity in the expansionsince M
0 —* 0 as a —* 0.

= a~e“s~z+ a2 e—(Si ± i/S)z + a3 e ~ + l/S)z It would appear,however,that this nonuniformity
does not seriously impair the validity of the ex-

+ a4 e~z+ a5z eSIz (5.2c) .

pansion, since our results agree qualitatively (a
The coefficients and exponentsin theseexpres- quantitativecomparisonhasnot beenmade)with
sions are given in Appendix B. Note that al- the uniform resultsthey presentin latersections
though similar notation is used, theseare not of their paper.
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6. Combined response

For this section, 0 <R < I, and ü is a linear
combination of the basic statesfor the CSL and
ASP, taking the form

ü=(l _R)[e_02 cos(t—Az)— cos

(6.1)

Notice that the CSL portion of the flow is time 1 .

periodic and the ASP portion is steady. The
steadybasic-stateconcentrationprofile does not
dependon the flow.

One’s understandingof this system can be — _____

greatly enhancedby simply recognizing which ‘‘00TNNH N TN ‘TN s.1.,o .150. 070

terms are steadyandwhich are time periodic. In .3

general,a time-periodicforcing function will not Fig. 8. Directional solidification into combinedflow: Regions
havea net effect on the long-termbehaviorof the of the u—Il planewhere the flow stabilizes(S)or destabilizes

(D) the interface relative to the casewithout flow = 81.0.
system, unless it is coupledwith anothertime- k = 0.3, and R= 0.5. The dashedvertical line correspondsto

periodicforcing to produce“steady-streaming”. the caseR = I (ASP only), with the region to the left of the

Using the results for the CSL and ASP, it line destabilizing,and theregion to the right stabilizing.

turns out that we cansimply addsolutionsto find
the morphologicalresponseto thecombinedflow.
When we seek asymptoticsolutions in the limit Fig. 5 is the result for the CSL only (R = 0). For
� -‘-s 0, the basicstateappearsonly in the inhomo- the ASP (R = 1) our resultsare independentof
geneous terms of disturbance equations and 11, and this diagramconsistsof a single vertical
boundaryconditions.Whentheproductsin these line emanatingfrom a 0.55. Disturbanceswith
inhomogeneoustermsare expanded,the inhomo- wavenumberslarger (smaller) than this will he
geneities are seen to contain terms that corre- stabilized(destabilized).For intermediatevalues
spondto thoseencounteredwhen the CSL and of R the curves shown in Fig. 5 evolve into the
ASP wereconsideredindividually, plus some ad- simple picture just describedas R is increased
ditional time-periodictermsthat do not affect the from zero to one. In Fig. 8 we showthe result for
leading-order morphological-stability results. R = 0.5. Notice that thereis no window of stabi-
Thus,thereis no coupling of the two solutionsat lization.
this order.

So, for this section

M2 = (R — l)M,s1 + RMSA5P, (6.2) 7. Mechanisms affecting stability

where M2SL is the M7 of Section 4, and M2ASIO is In this section we shall provide a physical
the M2 of Section 5. interpretationof our results in terms of mecha-

For the combinedflow, we investigate the in- nisms that promote or inhibit morphological in-
fluence of the parametersR and (2 with the stability. We begin with the no-flow case,which
segregationcoefficientandSchmidtnumberfixed servesas the leading-ordereffect for both flows,
at the values for a lead—tin alloy. We do so by followed by the CSL and,finally, a few comments
looking at a diagramanalogousto that shown in on the ASP.
Fig. 5, wherewe mappedout regionsof the a—fl The fate of the interfaceis controlled by the
planewhere the flow stabilized and destabilized temperatureandconcentrationfields, along with
the interfacewith respectto the no-flow results. surfacetensionon the interface.In the model we
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are using, the temperature field is fixed and lin- tion accounts for the Gibbs—Thomson effect, or
ear, with a positive gradient, i.e. the temperature capillary undercooling,which dictates that the
increasesinto the melt. This has a stabilizing local melting temperatureis decreasedby an
effect on the interface; for if cells start to form, amount proportional to the local curvature. Pro-
advancing portions of the interface will meet with truding sections of the interface will tend to be
higher temperaturesthan portions lagging be- melted back as a result; thus, surface energy
hind, and will be melted back. stabilizes the interface. The third term accounts

The local melting temperatureis determined for constitutional undercooling, adjusting the
by the Gibbs—Thomsonequation: melting temperatureby an amount proportional

T= TM — 2TMH’y/Lv + mC, (7.1) to the local solute concentration.
It is the mechanismof constitutional under-

where T is the temperatureof the interface cooling that drives the instability. To understand
(meltingtemperature),TM is the meltingtemper- this, we analyze the concentration linearized
atureof the purematerial, H is the meancurva- about the interface:
tureof the interface,y is the surfacefree energy,
L~ is the latent heatperunit volume, and m is C(x, 0 + h’, t) C(0) + h’(x, t) C.,(0)
the liquidus slope in the phase diagram. The
second term in the right-hand side of this equa- + C’(x, 0, t), (7.2)

1.5

0.5 “

17X

—0.5 - —6 —4 —2 0 2 4 6

Fig. 9. Directionalsolidification without flow: The interfaeial disturbancesuperposed(not to scale)on the disturbanceconcentra-
tion field (resealedto agreein sign with the dimensionalC) whenflow is absent.Notice that the higher concentrations(dark
regions)arenearthepeaksof the interfacial disturbance,lowering the local melting temperature.This hasa stabilizing influence
on the interface.



328 T.P. Schulze,5.1/. Dat-is /Journa/of Crystal Growth 143 (1994) 317—333

where theprimedquantitiesare the small pertur- Fouriermode. It is exclusivelythroughthis means
bationsto the basic state.The first term on the that flow affects the linear stability of the inter-
right-hand side is independentof x and t, and face — surfaceenergy and interface shape have
contributesto the basic state.The next term is no direct effect.
the sourceof the instability; for advancingpor- There is nothing in our model that allows the
tions of the solid will encounter lower solute interfaceto reactdirectly to hydrodynamicforces;
concentrationsas a result of the negativegradi- the solidified material is considerednon-corn-
ent, C(O), of the basic-stateconcentrationfield, pliant. Also, recall that the temperaturefield is
This results in lower melting temperatures,and fixed in this model. Thatbeing the case,the only
promotescontinuedgrowth.The last term is sta- effect that the flow has on stability is to alter the
bilizing becausethe disturbanceto the concentra- distribution of solute.Wehavealreadynotedthat
tion field raisesthe concentrationin the neigh- such effectsare absentat leading order. For the
borhood of a peak in the interfacedisturbance, CSL, there are also no steady effects at O(�)
resulting in a higher melting temperature.This becausethe concentrationfield at this order is
lasteffect is illustrated in Fig.9, wherewe super- time periodic andhas zeromean.At O(e2) there
pose the interface shapeon the disturbanceso- are both steadyand time-periodicforcing terms,
lute field for a disturbancecomposedof a single with the steady terms giving rise to a steady

Z

Fig. 10. Directional solidification into CSL: The steadystreamlinesfor theflow disturbanceimpinge on the peaksof the interfacial
disturbance for the lead—tin system when 11 = 1.0. This dilutes the local solute concentration,raising the local melting
temperature.This has a destabilizinginfluenceon the interface.
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contribution to the concentration field. Once second,thereis the convectionof the disturbance
again,stability is affectedthroughthe mechanism concentrationfield by the baseflow.
of constitutionalundercooling;when the concen- Recall that only steady changes in the concen-
tration of solute is increasedover the peaksof a tration field affectstability. In Fig. 10 we plot the
disturbance,the disturbance is stabilized, and steady streamlinesfor the disturbancevelocity
when this concentrationis decreased,the distur- field and the leading-order interfacial distur-
bance is destabilized.This lateral redistribution bancefor a singleFourier mode.Notice that the
of solute is determinedby the convectivefluxes streamlinesare impinging on the peaksof the
that force the system. Eq. (3.8e), reproducedbe- disturbance.This meansthat materialthat is less
low, reveals that two types of forcing terms act on solute-laden is being swept toward the peaks from
the system at this order: the far-field, lowering the local concentration,

which hasa destabilizingeffect. Forotherparam-
L1C2 = e_z ~ + iaüCi. (7.3) eter values or disturbance wavenumbers, the
First, thereis the convectionof the baseconcen- streamlinescan be madeto impinge on the val-
tration field by the disturbance flow field, and leys instead, but the streamlines always have the

3

2

‘:1-

0
—6 —4 —‘2 I) 2 4 t

Fig. 11. Directional solidification into CSL: The flux of solute(iaflf~iof Eq.(7.3)) producedby the interactionof the steadyflow
field disturbanceandthebaseconcentrationfield (resealedto agreein sign with the dimensionalC) for thelead—tin systemwhen
12 = 1.0. The sinks of solute (lighter regions) are over the valleys in the interfacial disturbance,lowering the local melting
temperature.This hasa destabilizinginfluenceon the interface.
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sameperiod as the interfacedisturbanceand are of solute flux above each peak in the interface
exactly in or out of phasewith it. In Fig. 11 we disturbance.This stabilizesthe interface.
plot the solute flux that results from the interac- In generalthesetwo types of fluxes may corn-
tion of thesestreamlineswith the basic-statecon- peteor cooperatedependingon materialparame-
centrationfield. Notice that the sinks of solute ters anddisturbancewavenumber.In the casefor
flux are over the peaks in the interface distur- which we generatethese illustrative plots, they
bance. compete,and the second,stabilizing, effect wins.

The streamlinesfor the baseflow are simply This is in agreementwith the resultspresentedin
linesparallelto the flat interface,which do noth- Section 4, since theseplots are for an (2 lying
ing to transportthe baseconcentration,but inter- within the window of stabilization.
act with the time-periodiccorrectionto the con- We havejust demonstratedthat the CSL can
centrationfield to producea steadyflux of solute. enhanceinterfacial stability by the lateral redis-
In Fig. 12 we plot this flux field andthe disturbed tribution of solute. Because the instability is
interface,as before. Notice that thereis a source driven by the negativevertical concentrationgra-

3

1._s 5’

Fig. 12. Directionalsolidification into CSL: The steadyflux of solute(e~ik
1of Eq.(7.3)) producedby the interactionof thebase

flow field and theconcentrationfield disturbance(resealedto agreein sign with the dimensionalC) for the lead—tin systemwhen
12 = 1.0. The sinks of solute (lighter regions) are over the peaks in the interfacial disturbance,lowering the local melting
temperature.This hasa stabilizing influenceon the interface.The magnitudeof this effect is greaterthan the one shownin the
previousfigure.



T.P. Schuize,S.H. Davis /Journalof CrystalGrowth 143 (1994) 317—333 331

dient of the basic state,onemight think that the affected.Corrugationsare formed in the pattern
key to stabilizing the interface would lie in of nonuniformities that normally consists of
smoothing this gradient. If one computes the stripesperpendicularto the meaninterfaceposi-
averagevertical concentrationgradient,onefinds tion, andthe length scaleof the surfacemorphol-
that thereis no contributionfrom linear theory. ogy is adjusted.
By retaininghigher-ordertermsonearrivesat the To gain further control over the systemsre-
following equationfor the averagesoluteconcen- sponse,one might combine oscillatory motion
tration by integratingover one cycle in time and with a steady translation. In experimental or
one wavelengthin x, and simplifying the result practical situations, such flows can be approxi-
usingthe continuity equation: mated by combining an oscillatory and steady

crystalrotation.In the limit we haveconsidered—

+ C~~ (7.4) a weak forcing of theflow — we haveshownthat
the individual responsesto these two types of

Heretheoverline indicatesaverageover time and
flow can be superposedto determinethe corn-space,and the primed quantitiesare the eigen-
bined response.We find that thewindow of stabi-

functions determinedby linear theory. Solving lization is destroyedby thepresenceof the steady
this equationwith the averagedboundarycondi-

motion.
lions (C ‘—s 0 at z = 0 and as z —÷ cc) revealsthat
the flow actuallysteepensthe concentrationgra- In general,the flow affects the stability of the

interface by producing periodic changesin the
dient in some caseswhere, accordingto linear
theory, the flow stabilizesthe interface, concentration field that have the same spatial

scaleas the dominantmodeof the interfacedis-
With the ASP the situationis similar,but now

the solute fluxes responsiblefor shapingthe con- turbance.Theseadjustmentsto the concentration
centrationfield aresteadyonly whenviewedin a then promote or inhibit instability through the
referenceframe that moves with the O(�) wave mechanismof constitutionalundercooling.

For a practical application of these ideas it
speed,~ As a result,cells shouldtilt when the would be necessaryto understandthe effect of a
interfacebecomeunstable.

stronglyforced flow; for the changeproducedby
what we assumedwas a small forcing, will, of
course, be small. This can be approachedby

8. Conclusions consideringthe problem in the limit of large

Schmidt number, or by attacking the problem
The linear stability analysishasshownthat by numerically. As we noted earlier, Forth and

fixing the frequency of horizontal oscillations of a Wheeler [81have done this for the ASP. Their
crystalduring its formationonecandecreasethe results are similar to the resultspresentedhere
range of pulling speedsfor which the interface and in Hobbs and Metzener[101 for the small
becomes unstable to two-dimensional distur- velocity-ratiolimit. The numericalresultsof Forth
bances. This stabilization is achieved for a finite and Wheeler also indicate that the trends shown
range of frequencies which we refer to as a win- for the small velocity-ratio limit continue for
dow of stabilization.This result is in contrastto largervelocity ratios. It remains to be seen if this
the result of Merchant and Davis [131 in their is true for the Stokes-layerproblem.
study of an imposed time-periodic stagnation- A more serious impediment to the practical
point flow, where they find that stabilizationoc- use of theseflows is that they affect only distur-
curs for a range of low frequencies, including bances with wave vectors parallel to them. So
zero. We find that this window of stabilization even if we dramatically stabilize the two-dimen-
closesas we increasethe segregationcoefficient, sional system, we do nothing to stabilize the
andrisesas we increasethe Schmidtnumber. three-dimensionalsystem.Kelly andHu [11] have

When the interface remains unstable in the shownthat the onsetof Rayleigh—Bénardconvec-
presenceof a CSL, microstructureis significantly tion can be delayed by imposing a nonplanar
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oscillation onto the system, which extends the The coefficientsin Eqs. (4.2a)through (4.2c) are
stabilization to three-dimensionaldisturbances. a11 = —ira/3/2(si — a), (A.4a)
Such a schemeto stabilize the presentsystem

ai=(jia-j2)/(a-ss), (A.4b)
seemspromising.

a2

(ia11a/2)(a
2— s~+

Acknowledgements = [(ci + ~)2 — a21 [S(si + ?)2 — Set2— s~—

(A.4c)
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Appendix A

+b3(l + iflf3 + S~— s~)+ b~(if2f3+ r)j

The constantsin Eq. (3.1) are X(s11_ I — ifl/3)_i, (A.4k)
where

~ 1 + ~1+ 16S
2fl2 1 = ‘T(a

2+a3+a5+c.c.), (A.5a)
= (A.la)

8S
2 ‘ 12 = — ~{(s~ + ?)a

2 + (a + ~)a3 +51a5 + cc.

+ + ~(—~+ + 16S
2fl2) — ~ia~[~(bi + b

2 + b3 + b4 + b5) + c.c.])
B = , (A.lb) (A.5b)2S

The correction to the neutral stability curve, M3,
andwe define is

+ +
r=B+iA, (A.2a) 1 [ a1 a2 a3
F=B—iA. (A.2b) M2=~ S0+s3 r+S0+S~ a+r+S11

a4 a5 I b~
The exponents in Eq. (3.10) and Eqs. (4.2a) + + — ~-ial
through(4.2c) are a + S0 s0 + - 2s11+ r — 1

b2 b3 b4 b5
+

= (1 + ~1 + 4a
2)/2, (A.3a) + + + — I s

11 + s2 —
a+S0 s0+s~ 2s11

= (1 + ~/1+ 4S
2a2+ 4iSf2 )/2S, (A.3b) — b

1 — b2 — b3
2B+2s0—1 a+/+s() r+s0+s1

= (1 + Vi + 4a
2+4ifl)/2, (A.3c) b

4 b5 1
+c.c I. (A.6)

S3 = (1 + ~1 +4S
2a2)/2S. (A.3d) — ?+2s

0—1 — ~+s~)
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Appendix B I b1 b2
+(cri+ia)I +

\2S0_1+Si a+s0
The exponents in Eqs. (5.2a) through (5.2c) are

so= (1 + ~1 + 4a
2 )/2, (B.la) + b

3 b4
+ 2S0_12)

s~= (1 + + 4S
2a2 )/2S. (B.lb) b~ b

2

The coefficientsin Eqs. (5.2a)through(5.2c) are — ia( 2S~— 1 + 2S~+ a + s~+ s_i
a0= iaP/S(si —a), (B.2a) b3 b4
a5=ia0/(1+2Sa), (B.2b) + -1 + 2s0_1+S_i)

SO + Si + S
a2= —ia0a(1 —s1S)/2s1(1 +3siS), (B.2c)

— ia0(a
2 — s~)(iff

1— a) ~P~i( b1 + b2 + b3)
1. (B.4)

a
3 —4s~S+ 3s~+ 4a

2s
1S— a

2’ (B.2d)

a
4 = [(ai + a2)(s1S— 1) — iaf3(bi + b2 + b3)
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