
PHYSICAL REVIEW E, VOLUME 65, 036704
Kinetic Monte Carlo simulations with minimal searching

T. P. Schulze*
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300

~Received 25 June 2001; published 13 February 2002!

Kinetic Monte Carlo~KMC! simulations are used to simulate epitaxial crystal growth. Presently, the fastest
reported methods use binary trees to search through a list of rates inO(log2 M) time, whereM is the number
of rates. These methods are applicable to an arbitrary set of rates, but typical KMC bond-counting schemes
involve only a finite set of distinct rates. This allows one to construct a faster list-based algorithm with a
computation time that is essentially independent ofM. It is found that this algorithm typically reduces com-
putation time by between 30% and 50% for typical simulations, with this factor increasing for larger simula-
tions.

DOI: 10.1103/PhysRevE.65.036704 PACS number~s!: 02.70.Rr, 02.50.Ga
c
y

di
fir
-
e

,
w
e
tr

o

h

n

d
cu

ch
m
r
is
d

s
he
th
t.
d
a
f
is
in
an
ro
fo

but
ing

ry-

en
C
-
es
ela-
a
ed

t

m

this

ed

of
The kinetic Monte Carlo~KMC! method is a stochasti
model that simulates epitaxial film growth on an atom-b
atom basis using probabilistic rules to govern deposition,
fusion, and other growth processes. This technique was
adopted in the early 1970s@1,2# and has bifurcated in numer
ous directions. In a typical implementation, one assum
what is called a ‘‘solid-on-solid’’ or, more descriptively
‘‘cube-on-cube’’ epitaxy, where the crystalline films gro
with an orthorhombic structure. The bulk of the work focus
on single-species, monatomic crystals. See Levi and Ko
@3# for a review of KMC studies and algorithms.

The principal KMC algorithm is based on the method
Bortz, Kalos, and Lebowitz~BKL ! @4#, with the implemen-
tation of an efficient binary search described by Blue, Beic
and Sullivan~BBS! @5#. The BKL algorithm is built on the
assumption that the model featuresM independent Poisso
processes with ratesr m that sum to give an overall rateR
which can be used to~1! decide which event to execute, an
~2! randomly select the time it takes for that event to oc
from a Poisson distribution.

After generating a random numberr P@0,R), a linear
search requiresO(M) operations, whereas the binary sear
requiresO„logM…. An intermediate scheme due to Maksy
@6# groups theM rates intoN subsets, performing a linea
search on the smaller sets. The binary-search algorithm
generalization of Maksym’s method which repeatedly sub
vides the subsets. Both Levi and Kotrla@3# and Blueet al.
@5# give the computation time for Maksym’s algorithm a
O(M1/2). As previously implemented, this is correct, but t
present paper shows that Maksym’s method can be fur
adapted, reducing this to a fixed cost per simulated even

The basic algorithm must be combined with a bon
counting scheme to complete the model. Typical schemes
based on nearest-neighbor interactions and, as a result,
ture only a relatively small number of distinct rates. Th
feature can be used to improve the basic algorithm by
tially sorting the possible events according to their rates
then doing some efficient bookkeeping as the simulation p
ceeds. The important point is that the computation time

*Email address: schulze@math.utk.edu
1063-651X/2002/65~3!/036704~3!/$20.00 65 0367
-
f-
st

s

s
la

f

l,

r

a
i-

er

-
re

ea-

i-
d
-
r

this book keeping is essentially independent ofM. In prac-
tice, increasing memory requirements slow it somewhat,
the method easily outperforms the binary search, reduc
typical computation times by 30% to 50% as memo
induced limitations are reached.

First, the algorithm is described in a general context; th
illustrated with a specific bond-counting scheme. In KM
simulations the ratesr m are a function of the surface con
figuration which consists of a set of integer height valu
$hi j %. The nearest-neighbor models can assume only a r
tively small number of local configurations that affect
given rate. Let this number, which is a constant determin
by the specific bond-counting scheme, beN, relabeling the
much smaller set (N!M) of distinct rates asRn . During the
simulation we maintainN lists in an arrayLnk that contain
the event indicesm of events which occur with rateRn . We
also maintain an address listAm which tells us where even
m is currently listed in the arrayLnk and a countCn of the
number of events in each of theN lists.

After the initial construction of these arrays, the algorith
proceeds as follows.

~1! Computer the overall rateR5(n51
N RnCn ; retain the

partial sumsSn .
~2! Select a random numberr P@0,R).
~3! Search through the list of partial sumsSn until

r ,Sn .
~4! Select an event from the set of events that occur at

rate by computing

m5IntS ~Sn2r !

Rn
D11.

~5! Execute that event and update the configuration$hi j %.
~6! For the ~local! events that have their rates chang

from Rni
to Rnf

~a! move them to the end of listnf ; add 1 to

Cnf
; updateAm ; ~b! move the event listed asLniCni

into the

vacated position on listni ; reduceCni
by 1 updateAm .

Note that the search in step 3 is through a short list
events that does not scale withM. One could perform a bi-
nary search on this list, but it is probably better~and simpler!
©2002 The American Physical Society04-1

es
a
i

en
u

an

l

hi
ut

nd

uc
it

ed
e
t
se
L
t

th
b

si
ial
ic
K

th
o

x-
nt
l,
n

tt

r-
di
or

ro
m

fo

nt
i

es

y

o-

ut
e

an
ll
e-

-
ng
in

oid

of
s it
n

lt
e

s

il-

ap

n

d

e

T. P. SCHULZE PHYSICAL REVIEW E 65 036704
to presort the rates weighted by their typical multipliciti
Cn . This can be done to good approximation in an easy w
by making use of the bond-energy formula. The savings
this algorithm comes from the fact that the particular ev
among the chosen subgroup can be determined by calc
tion ~step 4! rather than searching. Alternatively, one c
select the event at random from the appropriate listLnk as
suggested by Levi and Kotrla@3# ~see their algorithm 3!, but
without the cross listing provided by the address listAm , one
cannot obtain the shorter computation time. The address
is needed because the execution of an eventm affects the
rates of neighboring events, which must be located wit
the set of listsLnk before they too can be updated. Witho
the address list, extensive searching is still necessary.

Next, we demonstrate the algorithm using a popular bo
counting scheme due to Smilauer and Vvdensky@7# ~SV!.
We refer the reader to this article for details and reprod
the essentials here. This model considers random depos
with a uniform rater depand nearest-neighbor diffusion bas
on the local height configuration. We will implement th
deposition without the local search for favorable sites tha
sometimes performed; this is similar to the procedure u
by BBS @5# to test the binary-search version of the BK
algorithm @5# using an earlier bond-counting scheme due
Clarke and Vvedensky@8#.

Since the deposition occurs with a uniform rate and
number of possible deposition events is fixed by the num
of sites, sayI 3J, this group rate, call itS05C0R0 , never
changes and can be handled separately from the diffu
process—i.e., it requires no bookkeeping. This is essent
a simple application of the algorithm presented above wh
one assumes is routinely implemented in any use of the B
algorithm. We therefore take this approach in both
binary-tree and minimal-search versions of the BKL alg
rithm when we make the comparisons described below.

The diffusion process provides us with a nontrivial e
ample of the algorithm at work. In the SV bond-cou
scheme, the rater m is a function of the in-plane, latera
nearest neighborsmP$0,1,2,3,4% and the difference betwee
the remaining lateral, nearest neighborsn ~i.e., in the planes
above and below the site being considered! before and after
an event where an atom moves one lateral site. This la
number is set to zero if it is not positive; hencen
P$0,1,2,...,8%, giving a total of 45 distinct rates for this pa
ticular bond-counting scheme. Of these, ten may be
carded because there are no geometric configurations c
sponding to those parameters~i.e., nP$0,1,...,41m%!. Many
of the remaining rates are essentially zero and could p
ably be discarded,but we make no use of such approxi
tions here. These rates are precomputed and stored asRmn or,
if one likes, asRn with a single rate indexn511m15n.
Similar array flattening can be used to minimize storage
the names of eventsm5 l 14(i 21)14I (j 21) in the list
Lnk , wherel P$1,2,3,4% is an index indicating the direction
of the hop.

This brings us to a discussion of storage requireme
The principal storage requirement of basic BKL method
the M54IJ real numbers corresponding to the ratesr m .
Alternatively, one can store integers indicating where th
03670
y
n
t
la-

ist

n

-

e
ion

is
d

o

e
er

on
ly
h
L
e
-

er

s-
re-

b-
a-

r

s.
s

e

rates are in the arrayRmn , which is useful in any version of
the BKL algorithm. A binary tree requires storing approxi-
mately log2(M) partial sums of rates. These can be efficientl
packed into 2M real storage locations ifI andJ are powers
of 2. The principal storage requirement of the present alg
rithm is NM for the set of lists$Lnk% with an additional set of
M integers for the address listAm . In the case of the SV
bond-counting scheme this is a total requirement of abo
36M ; well above the other methods. Several things can b
done to reduce this. First, note that onlyM of the 35M stor-
age locations inLnk are being used at any one time. To avoid
searching, one cannot store the array efficiently, but one c
anticipate that many of the higher storage locations wi
never be used. One way to take advantage of this is to d
clare some of theN lists to be shorter than others, although
this might not be convenient in most programming lan
guages. Another way, which depends on the bond-counti
scheme, is to recognize that the vast majority of events
most simulations will correspond to flat~i.e., m54, n51!
sites. Since these events are rarely executed, one can av
listing them by simply choosing a site~i,j! and hop
directionP$1,2,3,4% at random, checking to see if it is of the
desired type, and choosing again if necessary. Neither
these methods has been implemented here, however, a
appears that computation speed will be more limiting tha
storage for most applications.

The computation times graphed in Fig. 1 were the resu
of simulations done on a Pentium III PC with one gigabyt
of RAM, the LINUX operating system, and theG77 FORTRAN

compiler. The storage for the binary-tree BKL method wa
slightly suboptimal in that anM log2(M) array was used
rather than an efficient array of size 2M . With this qualifi-
cation, it was found that the two methods exceeded the ava
able memory on subsequent powers of 2 for 2p32p square-
lattice simulations. Both methods reached a memory-sw
limitation at the same value ofp. Figure 1 confirms the ex-
pected linear growth of computation time per simulatio
event with the exponentp for the binary-search algorithm.
While theoretically flat, the present algorithm is also foun

FIG. 1. The computation time in seconds for 105 events of a
2p32p simulation using the binary-search algorithm and th
minimal-search algorithm presented in the text.
4-2

-
ac
st
fo
all

a-
the
rd-

KINETIC MONTE CARLO SIMULATIONS WITH . . . PHYSICAL REVIEW E65 036704
to increase linearly withp—but with a much smaller slo
pe.This is attributable to the increasing cost of memory
cess associated with both methods as the size of the sy
increases. Although the difference in computation time
the two methods grows only logarithmically with the over
s.

03670
-
em
r

simulation sizeM, it starts to take its toll even with the
5123512 simulations that are typical in the current liter
ture. Extrapolating this growth, one anticipates that
method described here will be of increasing value as ha
ware capabilities improve.
@1# F. F. Abraham and G. W. White, J. Appl. Phys.41, 1841
~1970!.

@2# G. H. Gilmer and P. Bennema, J. Appl. Phys.43, 1347~1972!.
@3# A. C. Levi and M. Kotrla, J. Phys.: Condens. Matter9, 299

~1997!.
@4# A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phy

17, 10 ~1975!.
@5# J. L. Blue, I. Beichl, and F. Sullivan, Phys. Rev. E51, 867
~1995!.

@6# P. A. Maksym, Semicond. Sci. Technol.3, 594 ~1988!.
@7# P. Smilauer and D. D. Vvedensky, Phys. Rev. B52, 14 263

~1995!.
@8# S. Clarke and D. D. Vvedensky, J. Appl. Phys.63, 2272

~1988!.
4-3

