PHYSICAL REVIEW E, VOLUME 65, 036704
Kinetic Monte Carlo simulations with minimal searching

T. P. Schulz&
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
(Received 25 June 2001; published 13 February 2002

Kinetic Monte Carlo(KMC) simulations are used to simulate epitaxial crystal growth. Presently, the fastest
reported methods use binary trees to search through a list of ra@ddg, M) time, whereM is the number
of rates. These methods are applicable to an arbitrary set of rates, but typical KMC bond-counting schemes
involve only a finite set of distinct rates. This allows one to construct a faster list-based algorithm with a
computation time that is essentially independenMoflt is found that this algorithm typically reduces com-
putation time by between 30% and 50% for typical simulations, with this factor increasing for larger simula-
tions.

DOI: 10.1103/PhysReVvE.65.036704 PACS nunier02.70.Rr, 02.50.Ga

The kinetic Monte CarldKMC) method is a stochastic this book keeping is essentially independentvbfin prac-
model that simulates epitaxial film growth on an atom-by-tice, increasing memory requirements slow it somewhat, but
atom basis using probabilistic rules to govern deposition, difthe method easily outperforms the binary search, reducing
fusion, and other growth processes. This technique was fir¢ypical computation times by 30% to 50% as memory-
adopted in the early 1970%,2] and has bifurcated in numer- induced limitations are reached.
ous directions. In a typical implementation, one assumes First, the algorithm is described in a general context; then
what is called a “solid-on-solid” or, more descriptively, illustrated with a specific bond-counting scheme. In KMC
“cube-on-cube” epitaxy, where the crystalline films grow simulations the rates,, are a function of the surface con-
with an orthorhombic structure. The bulk of the work focusesfiguration which consists of a set of integer height values
on single-species, monatomic crystals. See Levi and Kotrlgh;;}. The nearest-neighbor models can assume only a rela-
[3] for a review of KMC studies and algorithms. tively small number of local configurations that affect a

The principal KMC algorithm is based on the method of given rate. Let this number, which is a constant determined
Bortz, Kalos, and LebowitZBKL) [4], with the implemen- by the specific bond-counting scheme, Kerelabeling the
tation of an efficient binary search described by Blue, Beichlmuch smaller setN<M) of distinct rates aR,,. During the
and Sullivan(BBS) [5]. The BKL algorithm is built on the simulation we maintairN lists in an arrayL,, that contain
assumption that the model featul@sindependent Poisson the event indicesn of events which occur with ratR,,. We
processes with rates,, that sum to give an overall ratR also maintain an address li&}, which tells us where event
which can be used t@l) decide which event to execute, and mis currently listed in the arral,, and a counC,, of the
(2) randomly select the time it takes for that event to occumumber of events in each of thxlists.
from a Poisson distribution. After the initial construction of these arrays, the algorithm

After generating a random numbers[O,R), a linear proceeds as follows.
search require® (M) operations, whereas the binary search (1) Computer the overall ratR:EﬁlenCn; retain the
requiresO(log M). An intermediate scheme due to Maksym partial sumsS, .

[6] groups theM rates intoN subsets, performing a linear (2) Select a random numbers[0,R).

search on the smaller sets. The binary-search algorithm is a (3) Search through the list of partial sunf, until
generalization of Maksym’s method which repeatedly subdi+ <S,,.

vides the subsets. Both Levi and Kot{la] and Blueet al. (4) Select an event from the set of events that occur at this
[5] give the computation time for Maksym’s algorithm as rate by computing
O(MY¥?). As previously implemented, this is correct, but the

present paper shows that Maksym’s method can be further

adapted, reducing this to a fixed cost per simulated event. m= Int((Sh—r)

The basic algorithm must be combined with a bond-
counting scheme to complete the model. Typical schemes are
based on nearest-neighbor interactions and, as a result, fea- (5) Execute that event and update the configuranpy.
ture only a relatively small number of distinct rates. This () For the (local) events that have their rates changed
feature can be used to improve the basic algorithm by inifom R, to R, (a) move them to the end of list;; add 1 to

tially sorting the possible events according to their rates ang: . . ; ;
) .) . . ; updateA.,; (b) move the event listed ds, ¢ into the
then doing some efficient bookkeeping as the simulation pro-"t P m: (b) iCn,

ceeds. The important point is that the computation time fovacated position on list; ; reduceC,, by 1 updateA,.
Note that the search in step 3 is through a short list of
events that does not scale with One could perform a bi-
*Email address: schulze@math.utk.edu nary search on this list, but it is probably bettand simpley

+1.

n

1063-651X/2002/663)/0367043)/$20.00 65 036704-1 ©2002 The American Physical Society

T. P. SCHULZE PHYSICAL REVIEW E 65 036704

to presort the rates weighted by their typical multiplicities :
C,. This can be done to good approximation in an easy wa . . ! .
by making use of the bond-energy formula. The savings ir '!
this algorithm comes from the fact that the particular event |, | 4
among the chosen subgroup can be determined by calcul
tion (step 4 rather than searching. Alternatively, one can 10}
select the event at random from the appropriatellistas 1 . H/é_/
suggested by Levi and Kotr[8] (see their algorithm 3 but '

without the cross listing provided by the addressAist, one 6
cannot obtain the shorter computation time. The address li
is needed because the execution of an evermffects the
rates of neighboring events, which must be located withir ! ; . ! |
the set of listd_,, before they too can be updated. Without v
the address list, extensive searching is still necessary.

Next, we demonstrate the algorithm using a popular bond- FIG. 1. The computation time in seconds for®1évents of a
counting scheme due to Smilauer and VvdenBRy (SV). 2Px2P simulation using the binary-search algorithm and the
We refer the reader to this article for details and reproduceninimal-search algorithm presented in the text.
the essentials here. This model considers random deposition
with a uniform rater 4, and nearest-neighbor diffusion based
on the local height configuration. We will implement the

- . : _rates are in the arr , which is useful in any version of
deposition without the local search for favorable sites that ig B y

. RO Jwe BKL algorithm. A binary tree requires storing approxi-
sometimes performed; this is similar to the procedure used ~. v o (M) partial sums of rates. These can be efficient
by BBS [5] to test the binary-search version of the BKL Y 10G(M) p ' y

algorithm[5] using an earlier bond-counting scheme due topacked Into .:M_real storage Ioce}tlons Ifand.J are powers
Clarke and Vvedenskjg]. qf 2. 1_'he principal storage reqwrer_nent of thg_ present algo-
Since the deposition occurs with a uniform rate and theithm isNMfor the set of list{ L} with an additional set of
number of possible deposition events is fixed by the numbeM integers for the address lig,. In the case of the SV
of sites, sayl xJ, this group rate, call i§,=CyR,, never bond-counting scheme this is a total requirement of about
changes and can be handled separately from the diffusiop6M; well above the other methods. Several things can be
process—i.e., it requires no bookkeeping. This is essentiallgone to reduce this. First, note that omllyof the 35V stor-
a simple application of the algorithm presented above whiclage locations i, are being used at any one time. To avoid
one assumes is routinely implemented in any use of the BKlsearching, one cannot store the array efficiently, but one can
algorithm. We therefore take this approach in both theanticipate that many of the higher storage locations will
binary-tree and minimal-search versions of the BKL algo-never be used. One way to take advantage of this is to de-
rithm when we make the comparisons described below. clare some of thé\ lists to be shorter than others, although
The diffusion process provides us with a nontrivial ex-this might not be convenient in most programming lan-
ample of the algorithm at work. In the SV bond-count guages. Another way, which depends on the bond-counting
scheme, the rate, is a function of the in-plane, lateral, scheme, is to recognize that the vast majority of events in
nearest neighborg €{0,1,2,3,4 and the difference between most simulations will correspond to flgte., u=4, v=1)
the remaining lateral, nearest neighberé.e., in the planes sites. Since these events are rarely executed, one can avoid
above and below the site being considegreefore and after listing them by simply choosing a sitéi,j) and hop
an event where an atom moves one lateral site. This lattatirectione {1,2,3,4 at random, checking to see if it is of the
number is set to zero if it is not positive; hence desired type, and choosing again if necessary. Neither of
€{0,1,2,...,8, giving a total of 45 distinct rates for this par- these methods has been implemented here, however, as it
ticular bond-counting scheme. Of these, ten may be disappears that computation speed will be more limiting than
carded because there are no geometric configurations corrstorage for most applications.
sponding to those parametdi®., ve{0,1,...,4+ u}). Many The computation times graphed in Fig. 1 were the result
of the remaining rates are essentially zero and could probef simulations done on a Pentium 1ll PC with one gigabyte
ably be discarded,but we make no use of such approximasf RAM, the LINUX operating system, and tf&7 FORTRAN
tions here. These rates are precomputed and storigg,asr, compiler. The storage for the binary-tree BKL method was
if one likes, asR,, with a single rate indexa=1+ u+5v. slightly suboptimal in that arM log,(M) array was used
Similar array flattening can be used to minimize storage forather than an efficient array of sizev2 With this qualifi-
the names of eventmi=1+4(i—1)+41(j—1) in the list cation, it was found that the two methods exceeded the avail-
L.k, Wherel €{1,2,3,4 is an index indicating the direction able memory on subsequent powers of 2 fBx2P square-
of the hop. lattice simulations. Both methods reached a memory-swap
This brings us to a discussion of storage requirementdimitation at the same value qf. Figure 1 confirms the ex-
The principal storage requirement of basic BKL method ispected linear growth of computation time per simulation
the M=41J real numbers corresponding to the ratgs. event with the exponenp for the binary-search algorithm.
Alternatively, one can store integers indicating where thes&Vhile theoretically flat, the present algorithm is also found

(&)
o
=
w
—
<o
9

036704-2

KINETIC MONTE CARLO SIMULATIONS WITH . .. PHYSICAL REVIEW EG65 036704

to increase linearly withp—but with a much smaller slo- simulation sizeM, it starts to take its toll even with the
pe.This is attributable to the increasing cost of memory ac512x512 simulations that are typical in the current litera-
cess associated with both methods as the size of the systemre. Extrapolating this growth, one anticipates that the
increases. Although the difference in computation time formethod described here will be of increasing value as hard-
the two methods grows only logarithmically with the overall ware capabilities improve.

[1] F. F. Abraham and G. W. White, J. Appl. Phyl, 1841 [5] J. L. Blue, I. Beichl, and F. Sullivan, Phys. Rev.H, 867
(1970. (1995.

[2] G. H. Gilmer and P. Bennema, J. Appl. Phy¢8, 1347(1972. [6] P. A. Maksym, Semicond. Sci. Techn@l. 594 (1988.

[3] A. C. Levi and M. Kotrla, J. Phys.: Condens. Mat&r299 [7] P. Smilauer and D. D. Vvedensky, Phys. Rev5BR 14 263

(1997). (1995.
[4] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. [8] S. Clarke and D. D. Vvedensky, J. Appl. Phy&3, 2272
17, 10(1975. (1988.

036704-3

