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Abstract

This article continues the development of a hybrid scheme for simulating epitaxial growth that combines the Burton—
Cabrera—Frank (BCF) model with kinetic Monte-Carlo (KMC) simulation. This is the first implementation of the
scheme for “2+1" dimensional growth. Other improvements over an earlier version include the use of a more
conventional KMC model and some refinement in the handling of the boundary condition between the KMC and
continuum regions. The method is used to examine unstable step-flow with direct comparison to KMC simulations. The
results are extremely good with respect to computational speed and reveal effects due to fluctuations to a much greater
extent than the BCF model alone. This method will be especially useful in scenarios with widely separated steps and
high adatom densities, as these are situations that cannot be easily simulated with KMC due to increased computational
cost. The hybrid method is extremely flexible and can be coupled interchangeably to any KMC scheme.
© 2003 Published by Elsevier B.V.
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1. Introduction terrace—step, model [2] has gained some popularity
for larger scale simulations when combined with

The simulation of epitaxial growth by the level-set techniques [3-5]. Without the latter

kinetic Monte-Carlo (KMC) method is a popular
and well-established way of studying the evolution
of surface morphology [1]. Even with rapidly
increasing computational resources, however, this
tool is limited to small length scale simulations, on
the order of a micron, and scenarios, like narrow
step-spacing, that favor low adatom densities. As a
result, the Burton—Cabrera—Frank (BCF), or
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enhancement, the difficultly of the BCF free-
boundary problem has limited this model to
theoretical studies featuring uniform step trains,
island stability or other idealized geometries. In
principle, these three- (or “2+1”)- dimensional
simulations should use a terrace—step—kink version
of the BCF model and some recent progress in this
direction has been made by accounting for kink
density [6]. This paper continues the development
of another alternative—using a hybrid KM C-BCF
technique that was recently introduced by Schulze
et al. (SSE) [7]. In a similar approach, described
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further in Section 2, Russo et al. [8] have also
combined the BCF and KMC models, applying
their scheme in the study of diffusion limited
aggregation. For a discussion of a broad frame-
work for developing hybrid schemes in the context
of multi-scale simulation, see Ref. [9].

In this paper we extend the hybrid scheme of
SSE from (1 + 1)- to 2 + 1-dimensional epitaxial
growth and compare the performance of the new
method to that of a typical KMC scheme. Making
use of a simplified MC scheme, the earlier study
SSE suggested that a hybrid scheme would be
computationally efficient while retaining more of
the stochastic details that dominate KMC simula-
tions (and presumably real growth) than determi-
nistic BCF simulations. The present paper will
show that the computational advantages of the
hybrid scheme are readily achieved, and even
somewhat enhanced, for the more realistic growth
model studied here. As in the previous study, we
find that the greater challenge comes in accurately
reproducing the results of KMC simulations.

To make detailed comparisons, we focus on a
step-flow regime with widely separated steps and
negligible nucleation. This regime is desirable from
a theoretical viewpoint as it allows one to explore
step-flow instabilities induced by large Schwoebel
barriers [10]. This regime may also be desirable
from a manufacturing viewpoint, as it allows one
to select a unique, self-organized surface morphol-
ogy. Previously, KMC-based studies of this
phenomenon [11] have been limited to narrowly
spaced steps for two reasons: (1) to avoid
nucleation when terraces are wide requires rela-
tively high rates of diffusion, producing a large
number of hopping events on the terraces and (2)
the width of the terrace itself further aggravates
this situation, as more hops are needed for an
adatom to reach a step. In contrast, these
conditions are ideal for the hybrid scheme, which
combines KMC near steps with the coarse-grained
solution of an adatom diffusion equation on the
terraces.

The hybrid scheme, as implemented here,
contains some features that were not present in
SSE. In particular, the earlier paper used a
simplified KMC model, featuring only two distinct
rates—a homogeneous hopping rate and a detach-

ment rate. Thus, the model did not have a
Schwoebel barrier and the only interaction be-
tween adatoms was mediated by the steps. The
number of steps was fixed at the beginning of the
simulation and remained constant—there was no
possibility of nucleation, step bunching nor steps
annihilating one another. In contrast, the KMC
we use here, based on a model put forward by
Smilauer and Vvdensky [12], is more typical of
that found in the KMC literature. In addition to
these essential changes, there are some modifica-
tions of the technique aimed at enhancing accu-
racy.

Ultimately, we find that the hybrid scheme can
exhibit the step-flow instability under the same
growth conditions that trigger the instability in
pure KMC simulations, but that there are a
number of potential pitfalls and a tendency to
suppress the effects of stochastic fluctuations. In
Section 2, we describe the hybrid scheme and
discuss its implementation. In Section 3, we
compare and discuss simulations produced via
pure KMC and hybrid simulation. In the final
section, we summarize and draw some conclusions
about the likely benefits of using a hybrid scheme
of the type discussed here.

2. The hybrid scheme

The BCF model [2] is based on the idea of using
a number density of adatoms p, rather than precise
adatom locations, to describe the surface config-
uration. One then models the evolution of the
number density using a diffusion equation:

p,=DV’p +F,

where V2 is the surface Laplacian, F is the
deposition flux and the diffusion constant D is
related to the hopping rate for an isolated adatom
performing a random walk on a flat surface.
Additional terms, corresponding to evaporation
for example, are often added to the model. Finally,
boundary conditions are posed at the steps,
typically modeled as continuous curves, that
conserve mass and relate the flux of adatoms into
the edge from either side to the local adatom
density.
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It is natural to make contact with the atomis-
tic KMC models by discretizing the PDE on
the crystal lattice. Scaling the horizontal and
vertical coordinates by the lattice spacing(s) then
gives:

0
= Pij = DWiy1j+ piry+ Pijr1 +Pij1 —4piy) + Fij-

ot
(1

The difference equation allows for a great deal of
flexibility in modeling atomic scale processes,
providing, for example, a simple way of solving
the terrace-step—kink version of the BCF free-
boundary problem [13]. In this deterministic
model, which Schulze and E refer to as an
atomisitic difference scheme (ADS), the discrete
topography can be modeled by introducing time-
dependent coefficients into (1) that are slaved to
the surface height £;. These coefficients then
evolve slowly with the topography by discrete
shifts whenever the accumlated flux into “edge”
sites passes through a multiple of the unit cell
volume. A similar approach to triggering attach-
ment events is used by Russo et al. [§], who also
add a stochastic element to the model by attaching
the atom at a random position on the boundary of
an evolving island. This latter approach is
principally aimed at the simulation of diffusion
limited aggregation [14].

Ultimately, discretizing the BCF model on the
crystal lattice is far too slow for terrace-scale
simulation, and leads to the complicated question
of how to properly introduce fluctuations into the
model. In general, simulations based upon the
BCF model can be made faster by discretizing on a
larger length scale. Away from the steps, this can
be done with a controlled loss of accuracy since the
terraces are characterized by a homogeneous
diffusion environment with very little interaction
between adatoms. Unlike other implementations
of the BCF model, the hybrid scheme described
here retains a fully atomistic simulation in the
vicinity of the steps, where the details of the film
assembly are characterized by a number of widely
varying rates and subject to complicated mechan-
isms like the step-flow instability that we examine
in Section 3. In this way, we aim to produce

simulations that are faster than KMC while
retaining much of the atomic level detail.

2.1. The domain decomposition

To this end, we use the step locations as a guide
for partitioning the computational domain into
two subdomains—one where we perform a con-
ventional KMC simulation and a second where we
solve the diffusion equation on the coarsened mesh
(Fig. 1). We refer to each collection of sites in the
coarse grid as a cell. Thus we reinterpret Eq. (1)
with p;(7) representing the average adatom
density per site in the cell with horizontal and
vertical indices i and j, respectively

Pl = Pl (P = 20 P
At Ax
Piiv1 — 205+ piio
+ AyJ ! + Fj, 2

where Ax and Ay are integers representing the
cell-width and -height in lattice spacings. The
time-step, At, is arbitrary provided the scheme
remains stable. As explained in SSE [7], the explicit
scheme is a natural choice for coupling with the

Fig. 1. A sketch of the film surface showing the coarse grid, a
step and shading cells assigned to the KMC region.
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nearest-neighbor KMC simulations, as one finds
the CFL condition

. [AX? Ay?
At<mm<4D,4D>, (3)
is important not only for maintaining numerical
stability in stepping the difference equation (2),
but in maintaining the integrity of the overall
simulation as the shape of the KMC region slowly
evolves with the moving steps.

The partitioning scheme for the (2 4 1)-dimen-
sional simulations has to be more flexible than in
lower dimension, as steps can become curved,
resulting in additional cells being added to the
KMC domain. We are also allowing for the
possibility of steps merging, nucleation within the
KMC region and islands forming by portions of a
step becoming detached by a necking mechanism.
With these considerations in mind, it is convenient
to keep track of cells containing steps rather than
tracking the steps themselves. A cell is considered
to be an “‘edge-cell” unless all of its sites are
viscinal—have four lateral nearest neighbors shar-
ing their height—or are adatoms—have a height
one greater than their four lateral nearest neigh-
bors. We also want to maintain a buffer of KMC
cells around the steps, so that they can move
seamlessly from one cell to another. For this
reason, we include cells in the KMC region if they
are edge-cells or they neighbor edge-cells. While
this may seem complicated and does require some
care in implementation, the machinery that is
inherently part of any KMC simulation makes it
computationally inexpensive to maintain this
information. During the course of the simulation,
it is both convenient and efficient to maintain two
cross-indexed arrays for this purpose—a cell-list
that is sorted by region (KMC or BCF) and an
inverse cell-list that can, given the cell-coordinates,
tell you which region (KMC or BCF) the cell is in
and its location on the cell-list. This type of dual
data structure is used for the KMC algorithm as
well.

2.2. The KMC model

In the present implementation, the underlying
KMC model assumes a cube-on-cube epitaxy

described by an integer height variable h;. The
adatom concept that is central to the BCF model is
not explicit in this description, but we imagine that
a site with height exactly one more than its lateral
nearest neighbors plays this role. The basic idea
behind any KMC simulation is to enumerate a
finite number of possible changes in the current
configuration and prescribe a rate for each of those
to occur. By modeling these events as being
independent Poisson processes, one then uses the
Bortz—Kalos—Leibowitz (BKL) [15] algorithm:

1. Decide which event to execute, based on the
relative rates.

2. Randomly select the time it takes for that event
to occur from a Poisson distribution.

We indicate the total number of events as M, the
sum of the individual rates r, being R. After
generating a random number r€[0, R), one must
locate the corresponding event by identifying the
interval where

m—1

m
g resr< E T'k.
k=1 k=1

Many of the details in this subsection concern
making the KMC algorithm more efficient irre-
spective of whether or not one implements the
hybrid scheme. This is important for two rea-
sons—first, the hybrid scheme will seamlessly
reduce to a KMC simulation if the surface
becomes extremely irregular, and second, we want
to benchmark the performance of the hybrid
scheme against the most efficient KMC simulation
we can achieve.

In a typical KMC model there is one deposition
and four hopping events possible for each site on
the lattice. Thus, a 1000 x 1000 site lattice
produces five million events. Normally, there are
far fewer distinct rates, less than 100, and by
organizing the lists of events by rate, one need only
locate the appropriate list after which one can
randomly select an event from it rather than search
for the correct interval. This is only possible,
however, if one maintains a second list, indexed by
surface location, that tells you where each event’s
rate is located in the rate lists [16]. Without this
second list, a search will be required when you
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update the rate lists after executing the local
change in configuration. Alternately, one can use a
single list and a binary search [17], but it is faster
to maintain the cross-indexed lists.

For large simulations, memory can become
limiting if one declares the event list for each rate
to be long enough to hold all of the events, which
is the easiest thing to do if memory is not an issue.
If necessary, all of the events can be efficiently
packed into a linear array of length M, however,
provided one does a little extra shuffling after
executing each change in configuration. To do this,
partition the list as {ejj, e, ..., €20, ..., €n1, ... }
into the appropriate n, sublists which contain
events that share common rates, keeping track of
how many events correspond to each distinct rate.
When a particular event—defined by a location
and direction to hop in—must be moved from one
rate category to another, move it to the end of its
new category, fill the resulting gap by replacing it
with the last event in the original category and
repack the list by moving only the last event on all
of the sublists that lie between the two affected
categories from one end to the other. Though
somewhat complicated, the cost of this procedure
again scales with the number of distinct rates
rather than with the (much larger) number of
events in the simulation.

For some KMC schemes, including the hybrid
scheme described here, some or all of the rates may
not fall into discrete categories. In this case, it is
possible to use a combination of the acceptance—
rejection technique [18] and the cross-indexing
described above. For the present application, the
percentage of events falling outside the finite set of
distinct rates is too small to bother with this, but
for the sake of generality we describe the
procedure. Acceptance—rejection works by finding
an upper bound r*, preferably sharp, on the set of
rates. One then chooses a random number
re[0, M=r*), with an interval of width +* corre-
sponding to each event. This allows one to identify
the interval corresponding to a particular event
without searching and either accept or reject the
change in configuration, depending upon whether
r falls within the correct portion of this interval.
On average, the fraction of accepted events is
R/Mr*. For most KMC simulations this is highly

inefficient due to the wide range of rates—which is
why the BKL algorithm is normally preferred for
this type of simulation. The cross-indexed algo-
rithm essentially uses the acceptance-rejection
technique on sublists that contain only a single
rate so that the efficiency becomes 100%. If the
rates do not naturally fall into a small number of
distinct categories, one can artificially sort them
into categories based on order of magnitude and
use acceptance—rejection on these sublists.

The hybrid scheme can be implemented using
any of the numerous KMC models in the
literature. In all of these schemes, the rates for
the various nearest-neighbor processes are calcu-
lated from the Boltzmann factors

A
rm = Kexp (—%),
B

where K is a temperature-dependent attempt
frequency, kg is Boltzmann’s constant, 7" is the
substrate temperature and A¢,, is the energy
barrier that the mth event must overcome. It is
the modeling of this energy landscape that
accounts for the differences in various KMC
models. The simulations presented here use a
model due to Smilauer and Vvdensky [12] where
the rate for each hopping event is determined by a
bond-counting formula which is a function of the
in-plane, lateral, nearest neighbors ue {0, 1,2, 3,4}
and the difference between the remaining lateral,
nearest neighbors (i.e. in the planes above and
below the site being considered) before and after
an event where an atom moves one lateral site
ve{0,1,2,...,8}. As explained in Ref. [12], this
latter number v is set to zero if it is not positive in
order to model the influence of the Schwoebel
effect—the tendency for atoms to avoid sites near
the top of steps:

A(/)m = Ey + pE. + vE;,

where Ey, E. and E; are the substrate, edge-barrier
and Schwoebel barrier contributions to the energy,
respectively. Of the 45 possible rates described by
this formula, 10 may be discarded because there
are no geometric configurations corresponding to
those parameters (i.e. ve {0, 1, ...,4 + u}). It is best
to pre-compute and store these rates.
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At

Fig. 2. Schematic diagram indicating the numerous KMC
events (small hash-marks) that produce small random time
intervals that accumulate to give the macro-time step A used in
Eq. (2).

Note that each time a KMC event occurs, a
small random time-step is taken. It is inefficient to
step the discretized diffusion equation (2) by these
small amounts. Instead, time is accumulated until
a threshold is met, at which point the coarse-
grained adatom density is stepped by the accumu-
lated time Ar. Thus there are a large number
of KMC events which occur over random sub-
intervals of each macro-timestep, as illustrated in
Fig. 2. At the beginning of a simulation that starts
from a step-train devoid of adatoms, the global
sum of rates R will be much less than normal. This
can result in the individual KMC time steps
exceeding the CFL limit during the early portion
of the simulation and should be guarded against
by checking for this and subdividing the the
macro-timestep if necessary. After a brief transient
period, this situation should occur rarely, if at all.

2.3. The interface between KMC and continuum
regions

The interface between the KMC and BCF
domains presents a number of issues concerning
how to transfer mass between the regions and how
to update the partitioning of the cells.

The transfer of mass from the KMC into the
continuum region is relatively straightforward. If
an event results in an atom hopping into the
continuum region, the storage location of the
correct cell can be identified by using the inverse
cell-list described above. The atom is then removed
from the site it is hopping from, as usual, while its
mass is added to the density of the cell it hops into
rather than adding one to the height of the site

onto which it would otherwise hop. Note that the
adatom density is updated immediately, rather
than waiting until the end of the macro-timestep.

To allow mass to flow in the other direction,
events are added to the KMC event list that
correspond to atoms hopping from continuum
cells into KMC cells. These are examples of events,
discussed above, with rates that do not fall into the
discrete set of rate categories. To handle these
events, particularly for (2 + 1)-dimensional simu-
lations, it is necessary to maintain a list of
boundary segments that divide the KMC and
BCF regions. This list is in addition to the cell-lists
described above. Each segment on this list
represents an additional event in the KMC
process. The rates for these extra events are
proportional to the diffusion constant and the
adatom density in the cell from which the adatom
is hopping.

Fhop = 0Dp. 4)

In Ref. [7], the constant o was set to one. Here, we
have found that it is much better to adjust this
constant to approximate the correct equilibrium
adatom density at the boundary of the continuum
region. In the calculations below, o was adjusted
so that the average adatom density was close to
zero, mimicking the homogeneous Dirichlet con-
dition supplied at the steps in some implementa-
tions of the BCF model. One could do somewhat
better by estimating the density 1% cell-spacings
away from the step by using the BCF model for a
uniform step-train. The value of o needed to
achieve this density can then be determined
iteratively as the simulation proceeds or via a few
trial runs that are terminated as soon as the
density at the boundary has settled into a mean-
ingful average. We refer to the constant o as the
sampling rate and discuss the undesirable con-
sequences of it being too high or too low in the
next section.

When one of the boundary events is selected,
one atom’s mass is removed from the appropriate
continuum cell and deposited at a randomly
chosen site along the adjoining KMC boundary.
Here, one must address the issue that the KMC
simulation is discrete while the continuum is not.
Thus, it may be the case that these events are
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selected when the adatom density is less than one.
In fact, this is nearly always the case unless one
artificially prevents atoms from leaving a cell until
a threshold density is reached. In the earlier paper
[7], the preferred approach to solving this problem
was to make up the mass deficit by searching
neighboring cells. This slows the simulation down,
however, and is much more complicated for
(2 + 1)-dimensional simulations. A second ap-
proach was to only allow this type of event to
occur if the adatom density was at least one. For
most operating conditions, this has the undesirable
effect of retaining more atoms in the terrace region
than would be the case in a normal KMC
simulation. In the present implementation, we
adopt a third approach that seems to improve
upon these earlier ideas. Here, we remove the mass
locally with no search of neighboring cells, but
allow the adatom density to become negative
rather than establishing a threshold that avoids
this possibility. When this happens, the hopping
rate for that cell is set to zero until the cell is
naturally replenished by the deposition and diffu-
sion process. In effect, the threshold for an active
cell is now zero, rather than one adatom.

When the accumulated time steps for the
various KMC events approach the CFL constraint
(3), adatom densities are updated using (2) along
with a homogeneous Neumann boundary condi-
tion,

n-Vp=0,

that prevents further mass transfer between KMC
and BCEF regions. This is followed by a reevalua-
tion of which region each of the cells should be in.
As KMC events occur, a variable that counts the
number of “interesting” sites in each cell is
maintained so that one can easily identify edge-
cells and determine which cells need to change
their affiliation. This is done on the slower time
scale of the diffusion process, which dictates the
maximum rate at which steps can flow from one
cell into the next. If a cell is to be moved into the
diffusion region, the process is straightforward:
remove the nonuniformities in height (i.e. the
adatoms) and all of the events corresponding to
that cell from the KMC event lists, add the
appropriate amount of mass to the adatom density

for that cell and update the cell- and boundary-list
variables.

The opposite conversion, from a continuum to a
KMC cell, is again complicated by the fact that the
KMC simulation is discrete. If there should be
enough mass for one or more adatoms, these are
deposited randomly in the new KMC cell. Next,
events are added to the KMC event-lists corre-
sponding to all of the sites in the cell. Usually there
will not be enough mass to generate adatoms, but
there will be a fractional amount of mass left over.
Here, we follow the practice of the earlier paper,
which was to leave this residual mass in the cell for
the next time the cell comes into a continuum
region. While this conserves mass, it can lead to
anomalous transfer of mass across KMC regions
and, hence, over steps. In the present implementa-
tion, this problem is avoided by a secondary
benefit of choosing the rate constant o so that the
adatom density near the cell boundaries is zero on
average.

3. Step flow instability

It is a well-known fact that the attachment of
adatoms to the steps occurs asymmetrically and
that normally attachment from the lower terrace is
preferred. When the effect is pronounced, there are
at least two instabilities of the evolving film surface
that can occur. One of these, not examined here,
features the nucleation of new islands, one on top
of the other, due too the increased adatom density
that is the result of adatoms being trapped on the
highest exposed layers of growth. This is often
referred to as the “wedding cake” instability. The
second instability that can be caused by a large
Schwoebel barrier leads to the formation of
Taylor—Saffman-like ripples along a step that can
subsequently evolve into crevices, pinch off to
form islands or even lead to what has been called a
“surface dendrite”. The mechanism behind this
instability is easily explained in the context of the
BCF model, with perturbations of the steps
resulting in an enhanced flux of atoms to portions
that protrude into the lower terrace as a result of
the locally enhanced surface-to-step-length ratio
on the preferred side of the step. If attachment
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from the top, rather than the bottom, of a step is
preferred, there can be a step-bunching instability.
In this case, a perturbation that leaves one terrace
narrower than its neighbors will tend to narrow
further as the step in front of it suffers from a
decreased supply of adatoms. The study of such
step-flow phenomena is an ideal task for the
hybrid scheme, as the topic is technologically
relevant but often difficult to simulate using other
techniques.

To illustrate the hybrid scheme, we focus on the
step-flow instability that is the result of preferred
attachment from the lower terrace. This instability
has been observed experimentally and analyzed
extensively using the BCF model beginning with
the work of Bales and Zangwill [19]. In contrast,
the simulation of this instability by KMC has been
limited by the extreme computational cost asso-
ciated with widely separated steps. In one example
of work in this area, Rost et al. [11] present the
results of KMC simulations that reveal some of
the rich nonlinear phenomena seen in experiments,
with the necking of ripples and subsequent
formation of islands. To complete the simulations
in a reasonable amount of time, the authors
limited themselves to an average step spacing
around five sites, greatly reducing the equilibrium
adatom density and the number of hops that each
atom must take to reach a step. This study
illustrates the potential benefits of using a faster
method, like the hybrid scheme presented here, to
explore the strongly nonlinear behavior that can
occur during growth by step-flow. In particular,
this is a situation where the nano-scale surface
structures one would like to study are probably
too small for continuum models of the BCF type.

The rest of this section uses the step-flow
scenario to demonstrate the hybrid scheme. The
aim is to make direct comparison with a corre-
sponding KMC simulation rather than present a
detailed exploration of step-flow using the hybrid
scheme. The calculations focus on 300 x 300 site
sections of film with periodic boundary conditions
for the adatom density. The steps themselves
adhere to periodic boundary conditions in one
direction and form an ““Escher-"staircase in the
other direction. In contrast to the earlier study of
Rost, et al. [11] we focus on widely spaced steps.

In Figs. 3-5, we show a surface where three
steps separated on average by 100 sites have
evolved through 20 layers of growth. Fig. 3 was
generated by a KMC simulation and required
about 300h (over 12 days) of CPU time on a
2 GHz Pentium IV processor. Fig. 4 was generated
using the hybrid scheme in 56h using the same
computer hardware. This simulation used cells
which were 10 sites on each side. The result shown
in Fig. 5 used a cell width of 15 and took about
70h. Thus, the first hybrid simulation was just
over five times faster than KMC and the second
was a little over four times faster. As explained in
Ref. [7] the computational cost of the hybrid
scheme is dominated by the KMC portion of the
domain, so that the improvement in performance
scales with the reduction in the KMC portion of

23
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250

3000

Fig. 3. A KMC-generated surface showing a 300 x 300 site
region with three steps and the cyclic boundary conditions
described in the text. After about twenty layers of growth this
simulation reveals a fingering instability with highly irregular
steps that appear to be forming a deep crevice.
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Fig. 4. This image was generated by the hybrid scheme using
parameters identical to those of the simulation shown in Fig. 3
along with 10 x 10 cells in the continuum region. While this
simulation took far less time than the KMC simulation and
clearly exhibits a step-flow instability, the step has a smoother
appearance and has not formed the crevices that appear along
the steps in Fig. 3.

the domain. As a result, the computational speed
would see further improvements with smaller cell
widths or with wider terraces.

To be useful for exploring surface phenomena,
the hybrid scheme must not only be faster than
KMC, but it must retain a significant amount of
the atomistic detail that KMC enjoys over
simulations based on the BCF model. The verdict
here is somewhat mixed and further improvements
of the scheme may be necessary for some applica-
tions. While it is significant that a simulation that
uses only parameters that are drawn directly from
the corresponding KMC model is able to repro-
duce the step-flow instability, it is also clear that
the instability develops somewhat slower in the
hybrid scheme and that the level of noise is
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300
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3000

Fig. 5. This figure shows the result of a hybrid simulation using
continuum cells containing 15 sites on each side. While
somewhat slower than the simulation shown in Fig. 4, it does
a better job at capturing the level of noise in the corresponding
KMC simulation.

reduced. In particular, notice that the faster of
the two hybrid simulations (shown in Fig. 4) has
significantly smoother steps than the KMC simu-
lation. While better, Fig. 5 also suffers from this
defect to some extent. It is important to keep in
mind that the BCF model alone produces deter-
ministic variations in the interface shape that are
perfectly smooth and uniformly spaced, requiring
the addition of noise terms with further modeling
and parameter estimation to do better. These
enhancements are available within the context of
the hybrid scheme as well, where it would
presumably be easier to insert a single parameter
correction within the continuum region to enhance
the fluctuations in the rate at which adatoms are
delivered to the KMC-regions.
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It is worth noting that it is not especially easy to
locate parameter values—choices for the the step-
and Schwoebel-barriers along with the step-spa-
cing—that exhibit the step-flow instability while
avoiding the island mode of growth. Indeed, from
the simulations that were performed, it would
seem likely that islands might form with the values
used here—Ey=1.6, E.,=0.3, E;=0.2 and
L = 100—if the simulation were continued long
enough. The long-time behavior is not necessarily
relevant, however, since manufacturing processes
ultimately aim for films of a certain prescribed
thickness. Fortunately, the hybrid scheme could be
used to search for these windows of parameter
space without performing the corresponding KMC
simulations.

We conclude this section with a discussion of the
role of the sampling rate o in Eq. (4). If one
arbitrarily sets o = 1 as was done in Ref. [7], one
finds that the adatom density at the boundary
becomes overly depleted. If one considers p to be
an estimate of the probability that an atom is
present in the cell, then this can be understood by
realizing that when the estimate is used repeatedly
on successive KMC time-steps, the correlations
between these successive samplings are neglected.
This is very significant, because if an atom was not
found in the cell at a given time, it is most likely
that it would not be there a short time later. Thus
the sampling rate must be reduced to compensate
for this tendency. Failure to do so will result in too
low of an adatom density in the continuum region
and an artificial barrier to atoms entering the
region from adjacent KMC cells. In the presence
of a strong Schwoebel barrier, one way this error
manifests itself is nucleation of islands near the top
side of a step as atoms are trapped between the
Schwoebel barrier and this artificial barrier intro-
duced by too large a sampling rate. Conversely, if
the sampling rate is too low, the adatom density
will be artificially high. Recall that the fractional
portion of the adatom density is being retained in
the cell upon its conversion to a KMC-cell. This
can combine with a low a value to shift the
dominant source of adatoms supplying a step from
the lower to the upper side—a shift that tends to
favor step-bunching. In diagnosing whether o is
too large or too small, it is important to realize

that the nucleation of islands near the top of the
step also leads to bunched steps. The two
situations can be hard to distinguish after these
occasional backward-moving steps—the result of
nucleation—merge with a forward-facing step.
Fortunately, both of these problems are easily
avoided by adopting the condition, described
above, of adjusting the sampling rate so that the
adatom density is zero or near-zero at the
boundary between the domains.

4. Conclusion

This paper has continued the development of a
hybrid scheme for simulating epitaxial growth by
combining features of the BCF model and KMC
simulations. This is the first implementation of the
hybrid scheme for (2+1)-dimensional growth.
Other improvements over an earlier version [7]
include the use of a more conventional KMC
model and some refinement in the handling of the
boundary condition between the KMC and con-
tinuum regions. The code was applied to an
unstable step-flow scenario with negligible nuclea-
tion effects and the results were compared to
simulations that used only KMC. The results were
extremely encouraging with respect to computa-
tional speed and revealed effects due to fluctua-
tions along the steps to a much greater extent than
the BCF model. Further improvements aimed at at
enhancing the accuracy of the technique with
respect to pure KMC simulations may require
modeling the various sources of noise in the spirit
of work that has done in the BCF context. This
should be easier in the case of the hybrid scheme
because different sources of noise—from deposi-
tion, nucleation, detachment, inhomogeneities in
the hopping rates, etc.—are easily isolated and
treated separately.

The present method, with or without further
enhancement, should be especially useful in
scenarios with widely separated steps and high
adatom densities—situations that can not be easily
simulated with KMC due to increased computa-
tional cost. The method is extremely flexible and
can be coupled interchangeably to any underlying
KMC scheme so that complicated multi-species



T. P. Schulze | Journal of Crystal Growth 263 (2004) 605-615 615

interactions can be included. A nice feature of the
method is that it will seamlessly revert to a KMC
simulation if the surface becomes extremely
complicated. In addition to the step-flow problem
considered here, other ideal applications for this
method include the late-stage coarsening of island
mode growth, the deposition of film onto a
continuously supplied substrate and diffusion
limited aggregation.
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