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Simulation of Impurity Diffusion in a Strained
Nanowire Using Off-lattice KMC
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Abstract. Kinetic Monte Carlo (KMC) is a stochastic model used to simulate crystal
growth. However, most KMC models rely on a pre-defined lattice that neglects dislo-
cations, lattice mismatch and strain effects. In this paper, we investigate the use of a
3D off-lattice KMC algorithm. We test this method by investigating impurity diffusion
in a strained FCC nanowire. While faster than a molecular dynamics simulation, the
most general implementation of off-lattice KMC is much slower than a lattice-based
algorithm. An improved procedure is achieved for weakly strained systems by pre-
computing approximate saddle point locations based on unstrained lattice structures.
In this way, one gives up some of the flexibility of the general method to restore some of
the computational speed of lattice-based KMC. In addition to providing an alternative
approach to nano-materials simulation, this type of simulation will be useful for testing
and calibrating methods that seek to parameterize the variation in the transition rates
for lattice-based KMC using continuum modeling.
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1 INTRODUCTION

Kinetic Monte Carlo (KMC) is a stochastic model that simulates the atomic details of
crystal growth and evolution using probabilistic rules to govern deposition, diffusion and
other transition processes. [1] This technique was first adopted in the early 1970’s [2,3] and
has found many uses in surface diffusion on adsorbed mono layers, [4] growth of polymer
crystals [5] and self-organized nanowires. [6] In contrast to the thermodynamic Monte
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Carlo methods, which are aimed at predicting the equilibrium state of molecular systems,
KMC seeks to provide information about a systems evolution. In KMC, transition rates
between states depend on both the energy of the configuration before hopping, as it would
in other Monte Carlo techniques, and on the energy barrier between the states. [7] The
aim of this method is to identify a significant set of possible events to describe the general
behavior of evolution processes and to find the energy barrier between the saddle point
and local minima, for each of these. The principal KMC algorithm is based on the method
of Bortz, Kalos and Lebowitz [8] (BKL), which will be introduced in section II.

In KMC, all lattice points, energy barriers and diffusion rates are normally defined
before computation begins. As a consequence, dislocations, lattice mismatch and strain
effects are neglected. A molecular dynamics (MD) simulation can be used for off-lattice
simulation, however, it is limited to a time scale on the order of 10~ seconds or less. An
off-lattice KMC (OLKMC) simulation can be used for longer simulations while taking into
account some elastic effects. Off-lattice KMC will also be useful for testing and calibrating
other macroscopic tools, such as schemes that aim to combine continuum modeling with
KMC.

Off-lattice simulations themselves can be implemented in a number of ways, with the
usual tradeoff between faithful representation of the physical processes and computational
speed. At one extreme, Jonsson et. al. [9] have implemented a method that uses harmonic
transition state theory (TST), described below, to estimate transition rates between local
minima for the energy landscape in the full n-particle configuration space. Further, they
make no assumptions about the approximate location of the saddle points separating two
energy minima. This represents the most computationally intensive version of OLKMC,
where random initial guesses must be used to locate transition points. In this method,
locating the set of transition points is the most costly part of the algorithm. Even with
parallel implementation this type of calculation is presently limited to a few hundred atoms
or less.

An approach which is less computationally intensive, but less accurate, is found in
the work of Much et al. [10,11] in which an OLKMC algorithm has been developed to
simulate the early stage of heteroepitaxial growth for adsorbate layers. A simple Lennard-
Jones potential is employed in their simulation. The transition points are sought in a
“frozen crystal” approximation where only a single atom is moved within the configuration
space in order to locate approximate saddle points. This method is used to simulate
surface diffusion during “1+1”-dimensional epitaxial growth and submonolayer “2417-
dimensional growth growth. The resulting simulation is considerably faster, but still does
not approach the computational speed of latticed based simulation and the saddle point
problem is again the most intensive part of the algorithm.

Still another approach to incorporating ellastic effects into KMC found in the work
of [12]. These authors use a model where the transition rate is approximated using only
the binding site energy, the atoms interact through a nearest neighbor network of linear
springs and the energy is caluclated using a displacment field relative to a fixed lattice.

In this paper, we investigate an OLKMC method that relies on having approximate
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saddle point locations, allowing the method to function in three dimensions for a few thou-
sand particles. We consider saddle-point computation using both a relaxation of the full
configuration as well as the frozen-crystal approximation in order to assess the reliability
of the latter. An important improvement over the previous work is the implementation of
an a priori (over-)estimate for the transition rate and subsequent rejection of some moves
upon calculation of the actual rate. Another method combining rejection and rejection-free
KMC can be found in the recent work of Devita, Smereka and Sander [13-15].

Our method is motivated by the need to simulate off-lattice phenomena in various
nanoscale devices. As a benchmark problem, we examine interstitial diffusion in crys-
talline nanomaterials. While this is a topic of interest in technological applications, [16,17]
our interest here is principally in evaluating a particular approach to molecular simula-
tion. Specifically, our prototype problem considers impurity diffusion in a strained FCC
nanowire. The rest of this paper is divided into four parts: an explanation of the OLKMC
method, the application of the method to our prototype problem, our results and some
concluding remarks.

2 Description of Method

The total potential energy is modeled using classical, empirical formulas like the Lennard-
Jones potential, [18] which is a sum of pair-wise interactions, or the embedded atom
potential . [19,20] As it is sufficient to illustrate the method, we primarily focus on the
Lennard-Jones potential:

@:;@j:wa; l(%j)u— (di)ﬁl (2.1)

where U, represents the depth of the energy well that an atom in equilibrium resides in,
o represents a length scale for the mean particle separation in equilibrium and d;; is the
distance between particle ¢ and j. In our simulations, we will use non-dimensional units
for length, where we scale the lengths with ¢. For the primary crystal, we use the non-
dimensional length o, = 1 and U, = 0.15 ev for the depth of the energy well. For simplicity,
we will omit the asterisk below. Such potential functions contain an enormous number of
local minima in the 3N-dimensional configuration space consisting of the particle position
vectors x; € R3. These local minima serve as the temporary resting places of particles in
the zero-temperature approximation and, more generally, as approximate locations of the
basins of attraction for particle positions in low-temperature, solid-phase materials. In a
corresponding molecular dynamics simulation, all of the particles will undergo Brownian-
like motions that are largely localized within these basins, but also feature infrequent
transitions where the system moves from one basin (local minimum) to a neighboring
minimum in the configuration space. According to transition state theory, [21] the rate at
which these transitions are made is related to the energy barrier that must be overcome
in crossing the saddle-points that separate neighboring local minima.
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In a general solid-phase material with grain boundaries, dislocations and irregular
surface structure, there will be an undetermined number of these near-by saddle points
associated with a given local minimum. We limit our model to transitions involving a
single impurity atom diffusing in the interstices of a strained lattice. While not all likely
transition pathways will be detected by this procedure—concerted moves of impurity clus-
ters, for example—intuition suggests that most will and that it is one of the simplest ways
to efficiently address large configurations. To further enhance computational performance,
we employ a cut-off length o, so that if d;; > 0. we ignore the contribution of the term ®;;
to the total potential (2.1). In addition to greatly reducing the number of pair potential
calulations, the matrix of interactions becomes sparse when the cutoff is employed. In this
paper, the cutoff is normally chosen to be three times the mean particle separation.

With these two approximations in place, the OLKMC method reduces to a combination
of optimization and the standard algorithms for KMC. From an optimization perspective,
there are two types of problems involved. First, the material must be relaxed within the
configuration space to its local minimum. For each attempted event a second calculaton
must then be made to determine the saddle-point energy. In this paper, all optimization
is performed using a nonlinear conjugate gradient algorthim along with accurate initial
guesses derived from a perfect lattice that improve convergence and avoid numerical in-
stabilities. For the local minima we minimize the energy directly; for the saddle-points we
minimize |V®|2. Both absolute and relative convergence criteria are employed. We use the
maximum norm of the potential (or |V®|? for saddle points) for the absolute convergence
criteria and the maximum norm of the displacement vector for relative convergence:

max |V3®(x;)| < es, (2.2a)
1

max X — x| < e (2.2b)
Computationally, this is still an enormously expensive task with limited feasibility unless
further approximations are made. To this end, we also explore focusing the relaxation
algorithm on a subset of the particles surrounding the particle making a transition.
Intially the rates for all events are estimated using rates r, for the nth event that
are greater than any actual rates. To select one event among the many possibilities, a
standard BKL algorithm [8] is used, in which the overall transition rate Sy = 2521 Ty I8
computed, retaining the partial sums S,. A random number 7 € [0, Sy) is then selected
and one searches through a list of events until » < S,. For lattice-based KMC, it is
important to make this search efficient, but the search represents a very small part of the
computation for OLKMC. Following standard KMC practice, the time interval between
two events can be selected randomly from a Poisson distribution At = —%, where  is
a uniformly distributed random number [0, 1). The actual energy barrier for the selected

transition is then calculated using harmonic transition state theory [21] by

—Ad
T(A@,T) = ko eXp(kB—T), (23)
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where A® represents the energy barrier between the transition state and binding state.
Here, T' denotes the temperature, kp is the Boltzmann constant and kg is the attempt
frequency. An event is accepted or rejected using a comparson of where the random
number r and the true rate fall within the interval between two successive partial sums
Srn- An accepted event is realized by moving this atom to the approximate location of its
new position where it will be re-relaxed at the begging of the next iteration.

3 Impurity Diffusion in a Strained FCC nanowire

As a prototype problem, we test the algorithm in the context of impurity diffusion in a
strained FCC nanowire. Figure 1(a) shows an FCC unit cell which can be decomposed
into one octahedral section and eight tetrahedral sections, as shown in Fig. 1(b). If the
repulsive interaction between the impurity and the lattice particles is tuned appropriately,
the impurity particles will occupy local minima at the centers of these polyhedral regions,
as shown in Fig. 1(b). We use the perfect FCC lattice to generate initial guesses for the
local minima and saddle points of a strained lattice. This allows us to efficiently simulate

the interstitial diffusion of impurities in weakly strained crystals.
The ideal FCC lattice can be defined using integer combinations of three basis vectors
a=tl, b=1TE,, o=kt

where a, = ¥/20 is the equilibrium distance between two atoms in an isolated environment.
An arbitrary lattice point can be defined by v = n1a+ nob + ngc. As shown in Fig. 2, we
define the nanowire geometry by orientating the axis parallel to a unit vector n, chosen
orthogonal to a faceting direction, and include in the initial wire all lattice points v
satisfying

X Qe, (3.1)

lv-h| < L, (3.2a)
<

|v — (v-n)n| <R, (3.2b)

where L and R are the length and radius of the nanowire respectively. Each local energy
minimum has a number of saddle points associated with it. Figure 3(a) and Figure 3(b)
show octahedral (O) and tetrahedral (T) sites, respectively, with an impurity at their
centers. The small spheres at the center of each face represent near-by saddle points while
the large spheres represent the local minima. For an octahedron, there are eight saddle
points while there are four for a tetrahedron. In the search for the location of saddle points
in a strained system, initial guesses can be based on these ideal structures. For example,
when an impurity rests in an O-site, the initial guesses are

X =Xeq+do x &, i€{l,2,...,8}, (3.3)

where x4 € R3 is a local minimum. The distance between the local minimum and saddle
point is dp and {e;} is a set of eight unit vectors pointing in the direction of the initial
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(2) (b)

Figure 1: FCC unit cell composed of one octahedral section and eight tetrahedral sections. (a) FCC unit cell
and (b) Decomposition of FCC unit cell.

Figure 2: FCC nanowire with its axis parallel to a unit vector n, chosen orthogonal to a faceting direction. Here,
L and R are the length and radius of the nanowire, respectively.
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(a) (b)

Figure 3: lllustration of local minima and corresponding saddle points. The small spheres at the center of each
face represent near-by saddle points while the larger spheres represent the local minima. (a) Octahedron and
(b) Tetrahedron.

guesses
(el 1 1 1
e2 -1 -1 1
es 1 1 -1
e4 1| -1 -1 -1
es | /3 1 -1 1 (3-4)
€6 -1 1 1
er 1 -1 -1
es -1 1 -1

The distance dp can be expressed in terms of a, based on the geometry of an octahedron

do = ‘/gae. (3.5)

For a T-site, the initial guesses are
X= xeq+dT X eijTa S {152,"' 78} J€ {1,273,4}7 (36)
where dr is the distance between the local minima and saddle point

(5v/6 — 3v/10)a.

dr = 15

(3.7)

As shown in Fig. 1(b), an O-site is adjacent to eight T-sites, each having a distinct
orientation. The set of initial guesses can be formed from the same guesses {e;} used in the
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octahedral case, but must be indexed by both the eight possible tetrahedral orientations
and the four faces of each tetrahedron. Thus, e;; € R3 represents an initial guess for the
1th orientation and the j face:

€11 €12 €13 €14 €3 €4 €5 €4
€21 €22 €23 €24 €3 €4 €5 €g
€31 €32 €33 €34 €1 €2 er €g
€41 €42 €43 €44 _ €1 €2 €7 eg ) (3.8)
€51 €52 €53 €54 €1 €2 er e€g
€61 €62 €63 €64 €1 €2 er eg
€r1 €72 €73 €74 €3 €4 €5 €4
€g1 €82 €83 €34 €3 €4 €5 €g

Here the faces of the tetrahedron have been labeled so that each row in the matrix on the
right-hand side is repeated four times.

For these initial guesses to be valid, the impurity must interact relatively weakly with
the primary crystal, so that the FCC structure remains intact. Also, the equilibrium
separation between an impurity and a lattice particle must be larger than the distance
separating the central point in the O- or T-sites from the centers of their respective faces.
If the latter condition is not met, there will be a different local minima structure for
impurity locations where local minima are associated with each undeformed lattice site in
a sattlelight configuration. With these considerations in mind, we model the interaction of
the impurity with the primary material forming the lattice using a Lennard Jones potential
(2.1) with different material parameters. For interactions between impurities, we use the
values Uy = 0.1 ev and o, = 0.40,. The interaction between a nanowire particle and an
impurity is defined by U,y = VU, Uy and o4, = (0, + 03) /2.

To simulate impurity diffusion in strained nanowires, we first uniformly stretch or
compress the wire by transforming the axial coordinate z — (1 + €)z and then relax the
transformed configuration to the local minimum that this approximates while constraining
the layers of atoms at the ends of the nanowire. We assume all impurities evaporate once
they reach the nanowire wall.

4 RESULTS

We begin by illustrating diffusion of a single impurity in a statically strained nanowire.
Figures 4(a) and 4(b) show a sample path that demonstrates the detailed trajectory of one
impurity diffusing from the central point to the boundary of a nanowire. The impurity
alternately diffuses through the adjacent O- and T-sites. The binding energy in T-sites is
higher than that in O-sites, so that the impurity binds preferentially in the O-sites and,
on average, the time intervals spent in these sites is much longer than in the T-sites. This
is consistent with one’s intuition and in agreement with existing theory. [16]

Figure 5 illustrates a simulation with multiple impurties diffusing simulataneously.
Several O-sites are randomly selected as initial impurity locations. In the case when
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Figure 4: Sample path of impurity diffusion. (a) Sample path and (b) Side view of sample path.

adjacent O and T-sites are occupied, the number of saddle points is less than eight in an
O-site and less than four in a T-site. Figures 5(a)-5(b) show both the side and top view
of the final position distribution for a simulation with multiple impurities.

To test our code and as a step toward building a faster lattice-based KMC that accounts
for elastic effects using tabulated rates and interpolation, we have collected a number of
energy barriers in table I using a 3N relaxation scheme. The table shows the energy
barriers for a single adatom in a central O or T site diffusing in each of the eight possible
directions defined in Eq. (3.4 ) with 1% and 2% strain along the three principal faceting
directions 100,110 and 111. The unstrained numbers are 0.833 ev for an O-site and 0.125
ev for a T-site. Note that the rates for a given axis orientation come in groups that are
consistent with the symmetry of the given axis.

For reasons of comparison, we also have collected the same number of energy barriers
for a single adatom using a frozen approximation method, where the potential energy
landscape is probed for saddle points by moving only a single atom at a time. Now, it is
clear from the comparision that neglecting the distortion of the crystal around the hopping
atom will give much higher energy barrier in the case of interstitial diffusion.

Next we explore the possiblity of using some type of frozen crystal approximation, by
constraining all but a limited set of atoms in the vicinity of the hopping atom. These
results are shown in Figures 6(a)-6(b) where we plot the energy barrier value obtained
as a function of the number of unconstrained neighbors in the calculation. Figures 6(a)
-6(b) show that one can obtain about 95% ’s accuracy of energy barrier for an O-site
by relaxing 50 unconstrained neighbors while a 92%’s accuracy can be obtained using
100 unconstrained neighbors for a T-site. As a result, we have used this frozen crystal
method, where a cut-off distance r = 3a is selected for unconstrained neighors of an
adatom at an O-site center of a nanowire, to simulate the energy barriers under various
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Figure 5: Diffusion of multiple impurities. (a) Final positions of multiple impurities and (b) Top view of multiple

impurities.

1% 2%

100 110 111 100 110 111

oT oT OoT oT oT OoT
e; | 0.810 0.124| 0.820 0.140| 0.860 0.197 | 0.790 0.119 | 0.820 0.161| 0.880 0.249
ez | 0.810 0.124 | 0.820 0.140| 0.770 0.103 | 0.790 0.119 | 0.820 0.161 | 0.730 0.089
ez | 0.810 0.124| 0.820 0.140| 0.770 0.103 | 0.790 0.119 | 0.820 0.161| 0.770 0.103
es | 0.810 0.124 | 0.820 0.140| 0.860 0.197 | 0.790 0.119| 0.820 0.161 | 0.880 0.249
es | 0.810 0.124| 0.790 0.110| 0.770 0.103 | 0.790 0.119 | 0.740 0.086| 0.730 0.089
e | 0.810 0.124| 0.790 0.110| 0.770 0.103 | 0.790 0.119| 0.740 0.086 | 0.730 0.089
er | 0.810 0.124| 0.790 0.110| 0.770 0.103 | 0.790 0.119 | 0.740 0.086| 0.730 0.089
eg | 0.810 0.124| 0.790 0.110| 0.770 0.103 | 0.790 0.119 | 0.740 0.086 | 0.730 0.089

Table 1: This table shows the energy barriers for a single adatom in a central O and T site diffusing in each

of the eight possible directions defined in Eq.

(3.4) with 1% and 2% strain along the three principal faceting

directions 100,110 and 111. The total number of atoms in the nanowire for the 100, 110 and 111 cases is 946,
990 and 1012, respectively. The data for Table | was calculated by relaxing the full system.
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1% 2%
100 110 111 100 110 111
oT OoT OoT OoT OoT OoT
e | 2.780 0.520| 2.813 0.592| 2.983 0.848 | 2.720 0.510 ‘ 2.832 0.698 | 3.069 1.092
ez | 2.780 0.520 | 2.813 0.592| 2.641 0.425 | 2.720 0.510 | 2.832 0.698 | 2.505 0.363
es | 2.780 0.520 | 2.813 0.592| 2.641 0.425 | 2.720 0.510 | 2.832 0.698 | 2.505 0.363
eq | 2.780 0.520| 2.813 0.592| 2.983 0.848 | 2.720 0.510 | 2.832 0.698 | 3.069 1.092
es | 2.780 0.520| 2.695 0.451| 2.641 0.425 | 2.720 0.510 2.566 0.356 | 2.505 0.363
eg | 2.780 0.520| 2.695 0.451| 2.641 0.425 | 2.720 0.510 2.566 0.356 | 2.505 0.363
er | 2.780 0.520| 2.695 0.451| 2.641 0.425 | 2.720 0.510 2.566 0.356 | 2.505 0.363
eg | 2.780 0.520| 2.695 0.451| 2.641 0.425 | 2.720 0.510 2.566 0.356 | 2.505 0.363

Table 2: This table shows the energy barriers, calculated using the frozen crystal approximation, for a single
adatom in a central O and T site diffusing in each of the eight possible directions defined in Eq. (3.4) with
1% and 2% strain along the three principal faceting directions 100,110 and 111. The total number of atoms in
the nanowire for the 100, 110 and 111 cases is 946, 990 and 1012, respectively.

strains perpendicular to different crystal orientations. Figures 7(a)-7(c) show us that the
jump rate for a single atom is not uniformly altered by a macroscopic strain. For instance,
stretching a nanowire along the faceting direction of 100 will uniformly decrease the energy
barrier for each of the eight possible directions defined in Eq. (3.4). Stretching along
the faceting direction of 111, however, gives rise to an increase in energy barrier for e;
direction and a decrease in energy barrier for es direction. In the case when stretched
along 110 direction, the energy barriers are increased for the es direction while there are
almost no changes for the e; direction. Since both T sites and O sites show the same
trendency in terms of energy barrier variation versus strain, only energy barriers for an O
site are plotted.

As showin in Figure 8, the energy barriers are relatively uniform in the interior of the
uniformly streched wire. Hence, one can correct the energy barrier by adding a constant to
it in order to employ the frozen crystal method. There are, however, significant variations
as one approaches the surface of the wire. This type of surface effect is especially important
in heteroepitaxy. Our results suggest the possibility of a hybrid simulation that combines
lattice-based KMC in the interior and off-lattice KMC near the surface. Unlike the present
implementation, however, it is extremely difficult to anticipate the approximate location
of transition points near surfaces due to reconstruction, especially for strained surfaces.

5 CONCLUSION

We have implemented a 3D OLKMC algorithm capable of simulating off-lattice phenomena
in various nanodevices. This method differs from previous off-lattice work in that it
is aimed at weakly strained systems where the lattice geometry can provide good initial
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Figure 6: A plot of the energy barrier obtained as a function of the number of unconstrained neighbors for an
O-site and T-site at the center of a wire under 2% strain and oriented perpendicular to the {100 } facet.
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guesses for transition points. In order to demonstrate the method, we examined a strained
FCC nanowire using a Lennard-Jones potential. We explored the possiblity of some type
of frozen crystal approximation and found that although negelecting the distortion of
neighbor crystal gives rise to a much higher energy barrier, one can still employ the frozen
crystal approximation by adding a constant to the energy barrier. Our simulation shows
us that the jump rate for an adatom is not uniformly altered by a macroscopic strain,
depending on the stretching direction as well as the hopping direction of an adatom. We
provided evidence that suggests rates in regions of the crystals with a slowly varying
elastic field could be computed on a coarsenned length-scale and tablulated for use in a
lattice-based approach in these regions.
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