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Abstract 

A linear stability analysis is performed on the interface formed during the directional solidification of a dilute 
binary alloy in the presence of a time-periodic flow. In general, the flow is generated by translating the crystal 
relative to the far-field flow in elliptical orbits parallel to the interface. The presence of this complex, unsteady flow 
can either stabilize or destabilize the system relative to the case without flow, with the result depending on the 
frequency and amplitude of the oscillations as well as the properties of the material. We find, however, that proper 
selection of the frequency and amplitude of the modulation, both physically realizable, can eliminate the possibility 
of morphological instability for a significant range of solute concentrations. 

1. Introduction 

The manufacturing of single crystals with uni- 
form material  propert ies is frequently hampered  
by the presence of morphological instabilities 
during the solidification of mult i-component  ma- 
terials. These nonuniformities result from an in- 
teraction between surface morphology and the 
concentration gradients created by solute rejec- 
tion. In order to eliminate these nonuniformities, 
it is necessary to suppress the instability. In the 
context of directional solidification, this can be 
done by producing materials with sufficiently low 
solute concentrations, or by reducing the pulling 
speed of the solidification front [1]. 

When it is undesirable to operate  within this 
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restricted range of parameters ,  some other 
method of stabilization is necessary. In the 1960's, 
Hurle suggested that flow in the melt, either 
forced or resulting from natural convection, might 
be used to stabilize the interface. Since then, a 
number  of studies have investigated the effect of 
various flows on morphological stability. Delves 
[2], Coriell et al. [3], Forth and Wheeler  [4] and 
Hobbs and Metzener  [5] have all studied the 
influence of parallel flows on morphological in- 
stability. A general result for this type of flow is 
that disturbances with wavevectors parallel to the 
cross-stream direction will be unaffected by the 
flow; thus, when stabilizing, a parallel flow selects 
a cellular pat tern that is periodic in the cross- 
s tream direction. Brattkus and Davis [6,7], Mc- 
Fadden et al. [8] and Merchant  and Davis [9] 
have studied the influence of various nonparallel 
flows. For a brief review of studies involving the 
interaction of a solidifying interface and a forced 
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flow see Schulze and Davis [10], where a list of 
more extensive reviews covering the role of con- 
vection in solidification may also be found. 

This paper follows up on the work of Schulze 
and Davis [10], who studied the influence of 
steady and oscillatory shears on interfacial stabil- 
ity during directional solidification. They found 
that the purely oscillatory motion of the crystal 
parallel to the interface - resulting in solidifica- 
tion into a compressed Stokes layer (CSL) - 
provided stabilization for two-dimensional distur- 
bances of arbitrary wavelength in the limit of 
small oscillation amplitude, provided the fre- 
quency of the oscillations is within a calculated 
range. The amount of stabilization obtained is 
proportional to the square of the modulation 
amplitude. The CSL is generated by oscillating 
the crystal back and forth parallel to the interface 
during directional solidification. The compression 
of the Stokes layer is the result of flow normal to 
the boundary. Note that, like the parallel flows 
mentioned above, stabilization can only be 
achieved in two dimensions with the CSL. 

Motivated by the work of Kelly and Hu [11] on 
B6nard convection, we attempt to extend the 
stabilizing influence of the CSL to three dimen- 
sions by considering the influence of nonplanar 
oscillations. Specifically, we consider the effect of 
adding a second oscillation of the same frequency 
perpendicular to the first; the two forcings may 
differ in amplitude and phase. This corresponds 
to translating the crystal relative to the far-field 
flow in elliptical orbits parallel to the interface, 
generating a complex, unsteady flow. The essence 
of this idea was also suggested by Delves [2], who 
wrote in his paper on solidification into a Blasius 
boundary layer, "it  might be possible to ensure 
complete stability of the interface by rapid and 
continuous changes in the flow pattern". 

When Kelly and Hu applied this same type of 
forcing to one or both of the horizontal bound- 
aries in three-dimensional B6nard convection, 
they found that convection is delayed, provided 
the two oscillations are not perfectly in or out of 
phase. By taking the amplitude of the oscillations 
to be large, they found that the amount of stabi- 
lization could be substantial. In an effort to ob- 
tain more significant stabilization here, we inves- 

tigate the effect of large amplitude oscillations on 
morphological instability. 

We begin in the next section with the govern- 
ing equations and boundary conditions. In Sec- 
tion 3 we review the weakly-forced CSL results 
and extend them for the case of nonplanar oscil- 
lations. In Section 4 we consider the response to 
strongly forced oscillations, and in Section 5 we 
briefly discuss the absence of subharmonic insta- 
bility in this system. In Section 6 we discuss the 
stability of the related hydrodynamic system. In 
Section 7, we summarize and conclude. 

2. Governing equations 

We consider the directional solidification of a 
dilute binary mixture at constant speed V. We 
choose a coordinate system with x and y-axis 
located at the mean position of the crystal inter- 
face, moving with the front. The equations gov- 
erning the system in the fluid region are the 
Navier-Stokes, continuity, and solute diffusion 
equations. To simplify the analysis, we neglect 
latent heat and density changes, and we assume 
equal densities and thermal properties between 
the two phases. We also assume that heat diffuses 
much faster than solute, and, in this limit, the 
temperature field is fixed and depends linearly on 
the vertical coordinate (frozen temperature ap- 
proximation [12]). In nondimensional form, these 
equations are 

12u t + eu .  V u - u  z = - V p  + SV2u,  (2.1a) 

V.u  = 0, (2.1b) 

~ C  t -~- e l l "  V C  - C z = ~72C,  (2.1c) 

T = z .  (2.1d) 

We have nondimensionalized the equations us- 
ing the following scalings: 

x - - ( D / V ) x ,  u ~ U u ,  t - - t / o J ,  (2.2a) 

p ~ p U V p ,  T - - * ( G D / V ) T +  To, 

C ---, (Coo - Coo/k)C + C=/k,  (2.2b) 

where D is the solute diffusivity, V is the crystal 
pulling speed, U is the amplitude of the velocity 
oscillations, p is the material density, Coo is the 
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far field concentration, to is the angular fre- 
quency of the elliptical oscillations of the crystal, 
G is the thermal gradient, T O is the temperature 
of the interface in the basic state, and k is the 
segregation coefficient. 

The nondimensional parameters that appear 
in the equations and boundary conditions are the 
morphological number M, the surface energy pa- 
rameter  F, the Schmidt number S, the nondi- 
mensional angular frequency ~ ,  the segregation 
coefficient k, and a parameter  e measuring the 
amplitude of the lateral oscillations in units of 
pulling speed: 

M = mVC=(1 - 1 / k ) / G D ,  (2.3a) 

F =  T m y V / O L v m C = ( 1  - 1 / k ) ,  (2.3b) 

S = v / D ,  (2.3c) 

= o ) D / V  2, (2.3d) 

E = U / V .  (2.3e) 

The far-field boundary conditions are, as z ~ ~, 

u ~ 0, (2.4a) 

v --+ 0, (2.4b) 

w -0 0, (2.4c) 

C--* 1, (2.4d) 

and the interfacial conditions, evaluated at the 
interface z = h(x ,  y,  t), are 

u = cos t, (2.5a) 

v =/3 cos(t  - y ) ,  (2.5b) 

w = 0, (2.5c) 

C = M - l h  - 2 F H ,  (2.5d) 

[1 + O h t  + • c o s ( t ) h  x + •/3 cos(t  - r ) h y ]  

× [1 + ( k -  1)C] = C z -  C ~ h . -  Cyhr ,  

(2.5e) 

where/3  is the ratio of the amplitudes of the two 
perpendicular oscillations and y is the phase 
difference between them. The mean curvature of 
the interface, H, is given by 

2 , =  V . [ V h ( I + I V h I Z ) - ' / 2 ] .  (2.6) 

Notice that this problem may also be treated by 
switching to a frame of reference where the crys- 
tal is stationary, and the fluid oscillates. In this 
approach, the boundary condition (2.5e) reduces 
to the usual one for solidification without flow, 
and the Navier-Stokes equations have a time- 
periodic forcing term generated by the non- 
Galilean transformation. 

The basic state for this system takes the form 

= e -az cos(t  - A z ) ,  (2.7a) 

= fie -Bz cos(t  - A z  - y ) ,  (2.7b) 

= o, ( 2 .7c )  

C = 1 - e - z ,  ( 2 . 7 d )  

= 0, (2.7e) 

where A and B are constants given in the Ap- 
pendix. 

To analyse the response of this state to in- 
finitesimal perturbations, we disturb each of these 
quantities, and separate the disturbances into 
normal modes: 

u = ~ + [ a ( z ,  t)  e i"~lx+'2y) e~ t+  c.c.],  (2.8a) 

v = v + [ ~ ( z , t )  e i (~lx+~2y~e~t+c.c.] ,  (2.8b) 

w = i f ( z ,  t)  e i~'~lx+'~2r) e " t +  c.c., (2.8c) 

C = C +  C ( z ,  t)  e i(',x+'2y) e "t + c.c., (2.8d) 

h =/~( t )  e i("~x+'~2y) e '~  ̀+ c.c. (2.8e) 

Here  we are seeking time-periodic eigenfunctions 
with the same period as the basic state, and tr is 
the Floquet exponent. If the real part of tr is not 
zero, then the disturbances will experience a net 
growth or decay over one period. 

By taking the curl of the Navier-Stokes equa- 
tions twice, and using the continuity equation to 
simplify the result, we arrive at a fourth-order 
disturbance equation for the vertical component 
of the disturbance velocity. Combining this with 
the disturbance equation for the solute field we 
have a sixth-order boundary-value problem. Be- 
cause the shape of the interface is also undeter- 
mined, we require an additional interracial condi- 
tion, giving us a total of seven boundary condi- 
tions. 
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In the fluid we have 

(D 2 + D - a  2 - O 0 ` ) C  

= e ( i a l ~ e  + ia2P(~ + e - Z f f ) +  g2o-e, (2.9a) 

( D 2 - a 2 ) [ S ( D 2 - a  2) + D - a O t ] f f  

= e [ i a l ~ ( D  2 - a2)l~ - i a l ~ D 2 ~  

+ i a z ~ ( D  2 - a 2 ) ~  -- iaz~DZV] 

+ / 2 o ' ( D  2 - a 2 ) ~ ,  (2.9b) 

where D indicates O/Oz, 0 t indicates O/Ot and 
. 2  = + 

In the far field we have, as z ~ ~, 

C ( z ,  t )  ~ 0, (2.10a) 

i f ( z ,  t )  --* 0, (2.10b) 

D f f ( z ,  t )  ---, 0. (2.10c) 

The interracial conditions, transferred to z = 0, 
are 

1 
f~ = M -  1 + a 2 F  - 1 C - A C ,  (2.11a) 

D ( ~ = { k - l + A [ k + J ' 2 0  t + i e a  l c o s  t 

+ iea2[3 cos(t  - 3')] }C, (2.11b) 

= O, (2.11c) 

Dff~ = A [ i a , e D K  + i a 2 e D ~  ] . (2.11d) 

3. Small amplitude forcing 

In this section we shall seek conditions on the 
morphological number  M such that the system is 
neutrally stable in the limit of small forcing, e ~ 0. 
In this limit, we find that o-= 0 on the neutral 
curve, and expanding the reciprocal of the mor- 
phological number  as 

M -1 = M o + e 2 M 2  + . . . .  (3.1) 

we get 

M 2 = [ ( c o s  0 + / 3 c o s  y 0) 2 s in  

sin 2- ] M (2D~ (3.2) +/32 sin20 z I 2 , 

M -1 
0.30 - Mc_ l  
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Fig. 1. Directional solidification without flow. M l __- M0 ver- 
sus a for S = 81.0, k = 0.3 and F = 0.6. The region above the 
curve corresponds to a stable (S) interface, and the region 
below the curve corresponds to an unstable (U) interface. 

where M2 (2D) is the two-dimensional result for the 
CSL, /3 is the amplitude ratio, y is the phase 
difference between the oscillations, and 0 = 
t a n - l ( a z / a l )  is the angle that the disturbance 
wave vector makes with the x-axis. The coeffi- 
cient in Eq. (3.2) takes the same form as that 
found by Kelly and Hu [11] when they applied the 
same type of forcing to the B6nard problem. 

In Fig. 1 we present a typical neutral curve for 
the leading-order (no flow) result. Recall that M 0 
is the reciprocal of M when there is no flow. For 
a given wavenumber a,  if M0 is above (below) 
this curve, disturbances with that wavenumber 
will decay (grow). For the no-flow system to be 
linearly stable, M 0 must be above this curve for 
all wavenumbers. As one decreases M0, the insta- 
bility will set in at the a critical wavelength, %.  
This result is the same in two and three dimen- 
sions. In three dimensions, a refers to the magni- 
tude of the wavevector, (a l  z + a22) 1/2. 

In Fig. 2 we show a typical map of the regions 
in the a - O  plane where the CSL stabilizes 
(Mz(Zm < 0) and destabilizes (M2 (2D) > 0) the in- 
terface in two dimensions [10]. Notice that there 
is a range of forcing frequencies for which distur- 
bances of arbitrary wavenumber can be stabilized. 
We refer to this as the window o f  stabilization. It 
is important to be able to stabilize arbitrary wave- 
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Fig. 2. Directional solidification into CSL. Regions of the 
c~-g2 plane where the flow stabilizes (S) or destabilizes (D) 
the interface relative to the case without flow. S = 81.0 and 
k = 0.3; results are independent  of F. 

lengths because the critical wavelength depends 
on various parameters and varies widely. Also, 
unless M~ 2°) < 0 for all wavenumbers, forcing 
with a sufficiently large amplitude may cause 
wavenumbers other than a c to become unstable. 

In three dimensions, we see from (3.2) that for 
oscillations that are either perfectly in or out of 
phase (corresponding to a phase angle that is an 
integral multiple of 7r), there will be some 0c for 
which the correction to the no-flow result, M2, is 
zero. This means that the flow will be able to 
destabilize the interface if M(z 2°) > 0, but acts 
only as a pattern selection mechanism if M~z zD) < 
0, with disturbances oriented at the angle 0~ 
being the least stable. This is a degenerate case 
corresponding to a single oscillation along an axis 
lying in the x -y  plane. The result is therefore 
equivalent to that for the CSL in three dimen- 
sions. 

When the phase between the oscillations, y, is 
not a multiple of 7r, the factor appearing in front 
of Mz (2D) is positive, and it is possible to stabilize 
an arbitrary three-dimensional disturbance pro- 
vided Me (20) < 0. Thus the ability of the nonpla- 
nar oscillations to stabilize the interface is pre- 
dicted by the results for the CSL, and the window 
of stabilization is the same for both cases. 

It is easy to show that the maximum stabiliza- 
tion occurs when the phase angle is ~-/2, with the 

stabilization being greater along whichever axis 
has the largest amplitude oscillations. If the am- 
plitude ratio,/3, is one, there will be no preferred 
direction for cell orientation. 

4. Finite amplitude forcing 

In the previous section we showed that some 
degree of stabilization can be achieved by using 
small amplitude, nonplanar oscillations with a 
frequency lying within a given range. In this sec- 
tion we show that in many cases the Mullins and 
Sekerka interfacial mode can be entirely sup- 
pressed if these oscillations have sufficiently large 
amplitude. 

4.1. Method o f  solution 

These calculations were done using the same 
technique used by Hall [13] in studying the hydro- 
dynamic stability of a Stokes layer. We begin by 
assuming a Fourier expansion for each of the 
dependent  variables: 

C= E Crn(Z) eimt, ( 4 . 1 a )  
in= - ~  

I~ = E Wm(Z) eimt" ( 4 . 1 b )  

The position of the interface, h, has been elimi- 
nated from the analysis via substitution. 

The two partial differential equations that gov- 
ern the system are converted into an infinite 
system of coupled ordinary differential equations 
of the form 

[ D 2 -  a2][  S(D2 - a 2) + D - c r O  - img2]win 

= ½ie[x  e - r z ( D 2 - 0 1 2 - r 2 ) W m _ l  

+ 2  e - ~ Z ( D 2 -  ot z - ~2)win+l ] , (4.2a) 

[D 2 - a z + D - o~g2 - img2 ]Cm 

=li~.[xe-rZCm_l+~e-¢ZCm+l]  

+ ee-Zwm, (4.2b) 
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for each integer m. Here,  X = a~ + oe2/3 e -iv and 
r = B + iA. The bars over these quantities indi- 
cate their complex conjugates. 

Notice that the equations for the w m are not 
coupled to the equations for the C m. Thus, the 
flow-field solution is essentially the same as for 
the Stokes layer. If  we neglect the right-hand side 
of Eq. (4.2a), we find a solution 

Wm= am e - ' z  +bm e -~ '~ ,  (4.3) 

for each m, where 

v m = [ 1  + ~/1 + 4 S ( S a Z + o ' g 2 + i m O ) ] / 2 S .  

(4.4) 

The a,,  and b m are arbitrary coefficients that are 
determined, up to a multiplicative constant, by 
application of the inteffacial conditions. We have 
already used the far-field condition to eliminate 
the unbounded solutions. 

Now, if we add to this solution terms gener- 
ated by the right-hand side of the equation, we 
find that the solutions w~_ 1 and w,~+l each 
generate a term in the solution for w m. Similarly, 
each of the terms in the complete solutions for 
Wm + 1 and w m_ ~ will ultimately produce terms in 
the solution for w,,. This produces an infinite 
cascade of terms for each of the Fourier compo- 
nents that are related to one another in a Pascal- 
triangle-like structure where a given term is re- 
lated to two of its predecessors by a recursion 
relation. 

To find these recursion relations, we observe 
that each term in the solution for w m is of the 
form 

Wnm j = anPn,nj e -[c~+jB-i(n-m)A]z 

+ bnqnm j e -[~"+jB-i(n-m)Alz, (4.5)  

where n is an integer and j is a nonnegative 
integer. Substituting this anzatz into Eq. (4.2a) 
results in the recursion relations for the coeffi- 
cients Pn,~ and qnmj given in the Appendix. 

The general solution for each w m then takes 
the form 

Wm= E E anPnmj e--[a+jB-i(n-m)A]z 
n= --m j=0 

q- bnqnm j e -tv. +jB-i(n-m)Alz (4.6) 

Similarly, one can generate a solution for each 

Cm: 
c~ oo 

e -[a +jB- i(n -m)A + l]z 
Crn = E E anPnmj 

n=--~ j=O 

h- bnqnm j e -[vn +jB-i(n-m)A + 1]z 

+ dnrnm j e -[pn+yB-i(n-m)Alz, (4.7) 

where 

O n = [ l + ~ / l + a ( ~ 2 + c r O + i m l - 2 ) ] / 2 ,  (4.8) 

and the d n are more arbitrary coefficients to be 
determined by application of the interfacial con- 
ditions. Because the solute equation is coupled to 
the velocity equation, the coefficients /~n,,j and 
qnmj depend on Pn,,j and qnmj, respectively. 
These recursion relations, along with those for 
the rnmj, are given in the Appendix. 

With these solutions in hand, one can then 
apply the interracial conditions which take the 
form 

w m = 0, (4.9a) 

D w  m = - ½iA(xrCm_ 1 + ~ C m + l ) ,  (4.9b) 

D C m =  [ k -  l + A( k + i m O  + ~g2)]C m 

+ ½ieA(xCm_ 1 +,~Cm+I) .  (4.9c) 

This results in an infinite sequence of coupled 
homogeneous equations for the coefficients an, 
b n and dn. 

If  we truncate our solution so that m and n 
run from - N  to N, we generate a linear system 
with a 6N + 3 by 6N + 3 coefficient matrix. Each 
component  of this matrix is a sum over the index 
j, which runs from zero to, say, N. With all of the 
physical parameters  fixed, we then evaluate the 
determinant  iteratively in order to locate the 
eigenvalues, or Floquet exponents, ~r. 

In general, the number  of modes N required 
for this method to converge increases with both E 
and a. For a value of E = 20, N = 15 is sufficient 
for resolving the neutral curve, but for a value of 
e - - 6 0  a value of N = 30 is necessary. We were 
unable to perform calculations with N > 35 due 
to a lack of computer  memory. Finally, notice 
that no truncation of the vertical domain is neces- 
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sary with this method - the far field boundary 
conditions are satisfied exactly. 

~2. Resul~ 

Our primary objective in this section is to 
demonstrate  that the morphological instability in 
the absence of flow can be suppressed by using 
sufficiently strong oscillations of the crystal. For 
demonstrat ion purposes we use material  parame-  
ters characteristic of a l ead- t in  alloy, unless indi- 
cated otherwise. These paramete r  values are pre- 
sented in Table 1 along with those for sil icon-tin 
and succinonitr i le-acetone (SCN-Ace) .  

Guided by the results for weak oscillations, we 
choose the value I2 = 10 for the nondimensional 
forcing frequency. This lies within the window of 
stabilization found previously and is close to the 
optimal frequency for stabilization purposes. This 
can be seen by examining Fig. 3 where we plot 
M 2 versus O with a = a c, the critical value for 
the no-flow case. 

In Fig. 4 we plot M -1 versus a for speed 
ratios • = {0, 20, 40, 60}. Recall that when • = 0 
we recover the no-flow results of Mullins and 
Sekerka as shown in Fig. 1. Notice that for • = 60 
the neutral curve lies entirely beneath  the hori- 
zontal axis, indicating that the instability has been 
eliminated for all physically realizable morpho-  
logical numbers. Also notice that as the neutral 
curve drops below the horizontal axis there is an 
abrupt  shift in the critical wavenumber  from a 
finite value to zero. 

0.0001 

-0.0001 

-0.0003 ..~ . . . . . . .  • ..... ~ . . . . . .  ~ . . . . .  ~ . . . . . .  ~ . . . . .  
0.01 0.1 1 10 100 1000 10000 

Q 

Fig.  3. D i r e c t i o n a l  so l id i f ica t ion  in to  CSL.  M 2 as a f u n c t i o n  o f  

wi th  ct = a c ,  the  cr i t ica l  v a l u e  for  t he  no - f low case .  k = 0.3 

a n d  S = 81.0. N o t i c e  t h a t  t he  m a x i m u m  s tab i l i za t ion  o c c u r s  

f o r / 2  ~ 10. 

These calculations were done for the two-di- 
mensional case (CSL). We have verified that the 
instability may be entirely suppressed in three-di- 
mensions by using an amplitude rat io/3 = 1 and a 
phase difference of ~-/2. In this case the suppres- 
sion of disturbances is independent  of their ori- 
entation 0, and the dependence on wavenumber  
is identical to that of the two-dimensional case. 

If  we continue to increase e past the value 
necessary to stabilize the interface, we find, for 
these material  parameters  and operating condi- 
tions, that the stabilization trend is reversed. This 
is demonstrated in Fig. 5 where we plot M -~ 
versus • with a = a c ,  the critical value in the 

T a b l e  1 

P a r a m e t e r  va lues  u s e d  in t h e  c a l c u l a t i o n s  (un less  o t h e r w i s e  ind ica ted ) .  

P a r a m e t e r  Symbo l  P b - S n  S i - S n  S C N - A c e  U n i t s  

K i n e m a t i c  viscosi ty  v 2.43 x 1 0 -  3 0.3 2.6 x 1 0 -  2 c m 2 / s  
So lu te  diffusivi ty  D 3.0 x 10 - 5  2.5 x 10 - 4  1.3 x 10 - 5  c m 2 / s  

L i q u i d u s  s lope  m - 2.33 - 4.6 - 3.04 K / w t %  

M e l t i n g  p o i n t  T m 600.6  1687 331.2  K 

S u r f a c e  f r ee  e n e r g y  y 42,6 373 8.95 e r g / c m  2 
L a t e n t  h e a t / u n i t  v o l u m e  L v 2.56 x 109 4.19 x 101° 4.64 x 105 e r g / c m  3 

T e m p e r a t u r e  g r a d i e n t  G 200.0  200.0  10.0 K / c m  

S e g r e g a t i o n  coe f f i c i en t  k 0.3 0 .016 0.1 - 
S c h m i d t  n u m b e r  S 81.0 1200 2050 - 

S u r f a c e  e n e r g y  p a r a m e t e r  F 0.61 2.1 x 10 - 3  1.84 - 
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0~ 

Fig. 4. Di rec t iona l  sol idif icat ion into CSL. Plot  of M - 1  as a 

funct ion of  a for k = 0 . 3 ,  S = 8 1 . 0 ,  F = 0 . 6 ,  O = 1 0 . 0  and 

e = {0, 20, 40, 60}. The  region above each curve cor responds  to 

a l inear ly  s table  (S) interface,  and  the region be low each curve 
cor responds  to a l inear ly  uns tab le  (U) interface.  As E in- 
c reases  the cri t ical  va lue  of M - 1  decreases .  Not ice  tha t  for 

= 60 the in te r face  is absolu te ly  stable.  

absence of  flow. This may indicate that  there is 
an ampli tude window as well as a f requency win- 
dow for stabilization. Calculations for larger val- 
ues of  E were not made  due to the increasing 
difficulty of  performing these computa t ions  which 

M - 1  

0.30 

O,.20 

0.10 

-0.00 . . . .  

-0.10 
o.o ...... iG'.6 ...... ;b'.6 ...... 6b'.6 ...... &b'.6 ...... 1'66.0 

£ 

Fig. 5. Di rec t iona l  sol idif icat ion into CSL. Plot  of  M 1 versus  
• with ot = a c, the cri t ical  va lue  for the no-flow case. k = 0.3, 
S = 81.0 and /~ = 10.0. This  plot  shows tha t  the s tabi l iz ing 
t r end  eventua l ly  reverses  as • is increased.  

M-I 
1.00 

0.80 

0.60 

0.40 

0.20 

0.00 
0.00 1.00 2.00 3.00 

F 

Fig. 6. Di rec t iona l  sol idif icat ion into CSL. Plot  of the cr i t ical  
value of M -L as a funct ion of F for k = 0 . 3 ,  S = 8 1 . 0 ,  

/2 = 10.0 and  E ={0,  20, 40, 60}. The  ar row indica tes  the  

d i rec t ion  in which E increases.  The  in te r face  is l inear ly  s tab le  
(S) when  the inverse morpho log ica l  n u m b e r  is above the 

neu t ra l  curve. All  of the curves  pass  t h rough  the point  ( /"  = 0, 
M - 1 =  1), however  the ca lcula t ions  for for the  E = 60 curve 

were  t e rmina t ed  before  reach ing  tha t  point .  Not ice  tha t  the 
range  of p a r a m e t e r  values  for which the in ter face  is s table  
increases  with E. 

results f rom the large number  of  modes  needed  
for convergence.  

In the absence of  flow and with k fixed, the 
neutral  curve depends  only on the surface-energy 
parameter  F. In our  previous figures we have 
used the value F = 0 . 6 .  In Fig. 6 we plot the 
critical value of  M -z as a function of  F for 
E = {0, 20, 40, 60}. When  ~ > 0 this result depends  
on segregat ion coefficient, Schmidt number,  and 
the forcing frequency. For  this figure we have 
again used the values k = 0.3, S = 81.0 and O = 
10.0. The nondimensional  critical wavenumber  
approaches  infinity as F ~ 0 along these curves, 
and, for small values of  E, approaches  zero as F 
is increased. Notice that the flow has a diminish- 
ing effect on stability as F approaches  zero, and 
that the neutral  curve always passes through M -  
= 1 when / ' = 0 .  In the absence of  flow the 
system is stable for F > l/k, referred to as the 
absolute stability limit, F~. As E is increased, F~ 
decreases, and for larger values of  E the critical 
wavenumber  no longer approaches  zero as F 
approaches  the absolute stability limit. 
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- 0 . 4 0  I . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . .  

o.oo o a 0  0.40 0.6o 'b:~b ...... i:6o 

Fig. 7. Directional solidification into CSL. Plot of  M - 1  as a 
function of a for k = 0 . 3 ,  S =81 .0 ,  • = 2 0 ,  / 2=10 .0  and 
F = {0.5, 0.75, 1.0}. The region above each curve corresponds 
to a linearly stable (S) interface, and the region below each 
curve corresponds to a linearly unstable (U) interface. As F 
increases, the critical wavenumber  continuously approaches 
z e r o .  

M -1  

0.20 1 

o o o  

-0,~.0 

--0.40 

- 0 . 6 0  

S 

F=0.5 

F=0.75 

F= 1.0 

0.00 0.20 0.40 0.60 0.B0 1.00 O~ 
Fig. 8. Directional solidification into CSL. Plot of M - 1  as a 
function of a for k = 0 . 3 ,  S=81 .0 ,  • = 4 0 ,  / 2=10 .0  and 
F = {0.5, 0.75, 1.0}. The region above each curve corresponds 
to a linearly stable (S) interface, and the region below each 
curve corresponds to a linearly unstable (U) interface. As F is 
increased past the absolute stability limit, the critical 
wavenumber  abruptly shifts to zero due to the existence of 
two local maxima on the neutral  curve. 

The cases where the critical wavenumber ap- 
proaches zero and where it approaches a finite 
value as F ~ F s are further illustrated in Figs. 7 
and 8. In Fig. 7 we plot M-~ as a function of a 
for e = 20 and F =  {0.50, 0.75, 1.00}. For this 
value of E, the critical wavenumber approaches 
zero continuously as F is increased. When F is 
increased past F s, the critical wavenumber re- 
mains zero since the point at the origin of the 
neutral curve is fixed, but the system is absolutely 
stable since the morphological number must be 
positive. In Fig. 8 we plot similar curves for 
e = 40 and note that there are now two local 
maxima on the neutral curve. Tracking the loca- 
tion of the larger of these two maxima reveals 
that the critical wave number approaches a finite 
value as F approaches F s. When F > Fs the local 
maximum at o~ = 0 is the larger of the two - thus 
there is an abrupt shift in the critical wavenum- 
ber as F is increased past the absolute stability 
limit. 

In Fig. 9 we reproduce the information from 
Fig. 6 in terms of dimensional variables, plotting 
the pulling speed V as a function of the far-field 
concentration C~ with the temperature gradient 

v (:m/~) 

lOO S 
10 

0.1 

0.01 

0.001 

. . . . . . . .  , . . . . . . . .  u . . . . . . . .  i . 

0.01 0.1 1 10 Coo 

Fig. 9. Directional solidification into CSL. Plot of the neutral  
curve in dimensional  form: V versus C® for k = 0.3, S = 81.0, 
/2 = 10.0 and • ={0, 20, 40, 60}. The arrow indicates the 
direction in which • increases. The  temperature  gradient G is 
200 K / c m .  All of the curves extend infinitely along tangents  
to the portions shown. The interface is linearly stable (S) 
when the far field concentration is to the left of the neutral  
curve. Notice that the stability of the interface increases with 
E. 
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Table 2 
Window of stabilization, ~Qrnin <~ ~ < ~max, and the approxi- 
mate  value of the modulation amplitude E * at the frequency 
J2 * above which the instability is suppressed for all morpho- 
logical numbers  

Material  J~min J~max J~ * ~ * 

Pb-Sn  0.7 66 10 60 
Si-Sn 0 2000 5 > 500 
SCN-Ace  1.5 2500 5 500 

G fixed at 200 K / c m .  From this figure, we see 
that if the far-field concentration C= is suffi- 
ciently large, the interface will be unstable for a 
range of pulling speeds. The critical wavenumber,  
in units of D / V ,  approaches infinity along the 
lower branch of this curve and zero along the top 
branch. The stable regime lies to the left of the 
curve. We have previously noted that as • is 
increased, the interface becomes more stable. 
This result is evident in Fig. 9; for as • is in- 
creased, the nose of the neutral curve is shifted 
downward and to the right, and the upper  branch 
of the curve is lowered. The lower branch of this 
curve is relatively unaffected, however. 

To give some idea of how this scheme works in 
general, we present results for the three different 
alloys in Table 2. These three materials were 
chosen to represent metallic alloys (lead-tin),  
semiconductors (silicon-tin) and organic materi- 
als (succinonitrile-acetone). The parameter  val- 
ues used are those indicated previously in Table 
1. The table gives the approximate range of the 
window of stabilization in the limit • ~ 0 and the 
approximate value of the modulation amplitude 
• * above which the instability is eliminated by 
using a circular translation. Notice that • * is a 
function of k, S, F, and /2. The angular fre- 
quency corresponding to • * is denoted as /2 * in 
the table. Note that g2 * is not necessarily the 
optimal frequency for stabilization purposes, al- 
though an effort was made to use a frequency 
close to the optimal value. We were unable to 
calculate a definite value of • * for the Si-Sn 
system. However, we were able to establish that it 
would be greater  than 500. Calculations at larger 
values of • require more computer  memory than 
we had available. 

In general, the interface becomes increasingly 
difficult to stabilize as the surface energy parame-  
ter F is reduced. The necessary values of • and 
/2 needed to achieve stabilization for all morpho- 
logical numbers for small F may not be obtain- 
able in practice. Formulas for determining the 
dimensional radius r and angular frequency to of 
the circular motion in terms of the nondimen- 
sional quantities and the pulling speed V are 

r = U / t o  = • D / V O ,  (4.10a) 

to = v z / 2 / D .  (4.10b) 

5. Other modes of instability 

In all of the results we have found, the Floquet 
exponent tr is identically zero on the neutral 
curve, indicating that the frequency of the distur- 
bance is synchronous with that of the forcing. In 
general, when one solves systems of differential 
equations having periodic coefficients, one ex- 
pects that there may be a subharmonic response 
as well. Subharmonics are found in a number  of 
hydrodynamic systems with time-periodic forcings 
that are normal to the boundary, the classic ex- 
ample being the problem of Faraday resonance, 
which leads directly to Mathieu's  equation [14]. 
Another  example of this type, involving convec- 
tion and solidification in the presence of g-jitter, 
is discussed by Murray et al. [15]. Subharmonics 
are also known to appear  when the temperature  
of the boundary in the Rayleigh-B6nard system 
is temporally modulated [16] or when the system 
is subjected to vertical oscillations [17]. 

We have sought subharmonic solutions to the 
present problem, but have not been able to locate 
any. It appears  that this system has only syn- 
chronous modes of instability. It is interesting to 
note that subharmonics are also seemingly absent 
in the Rayleigh-B6nard system when one of the 
boundaries is subjected to periodic motion paral- 
lel to the boundary [18] and in modulated plane 
Poiseuille flow [19,20]. Thus, in the problems of 
which we are aware, the presence of shearing 
motion is correlated with an absence of subhar- 
monic response. 
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6. Stability of the CSL 

The stabilization of the morphological instabil- 
ity would be of little practical use should the 
system undergo a hydrodynamic instability in the 
same parameter regime. If we neglect distur- 
bances to the interface shape, we have purely 
hydrodynamic problem for the CSL. A linear 
stability analysis of the CSL reveals that it is even 
more stable than the Stokes layer, which is be- 
lieved to be linearly stable for all Reynolds num- 
bers [21,13]. In Fig. 10 we plot the growth rate o" r 
and Floquet frequency tr i as a function of the 
Reynolds number with the wave number fixed at 
a = 0 . 1 5  for each of these flows. Here, the 
Reynolds number is defined as 

Re = Uv'~/vto. (6.1) 

Notice that for both flows the growth rate is 
negative for all Reynolds numbers with the larger 
growth rate corresponding to the Stokes layer. 

It is interesting to note that while the compres- 
sion of the boundary layer has a stabilizing effect 
in this problem, it has the reverse effect for plane 
Couette flow. Plane Couette flow is also linearly 
stable for all Reynolds numbers. However, when 
suction is applied, resulting in an asymptotic suc- 
tion profile (ASP), the flow becomes unstable [22] 
at a Reynolds number around 50000. In our 
previous publication [10] we pointed out that the 
CSL in the quasisteady limit g / ~  0 produces an 
effect on morphological stability that is qualita- 
tively similar to that produced by the ASP, which 
is the flow generated by a steady translation of 
the crystal parallel to the interface. We should 
emphasize that this result was valid in the limit of 
small Reynolds number, for, in light of the infor- 
mation above, it appears that the situations may 
be very different at large Reynolds number. 

No discrete eigenvalues are to be found for the 
Reynolds numbers lying in the gaps between these 
curves. There is, however, a continuous spectrum 
for all Reynolds numbers given by tr = o" r < - a  2. 
Thus, both the continuous and discrete spectra 
have negative growth rates. When the Reynolds 
number is below some critical value, the discrete 
spectrum permanently vanishes. Similar behavior 

o'r & 0"; 

1.00 
a; for SL 

0 .00  

- 1 . 00 .  

- 2 . 00  

- 3 . 00  

a; for CSL 

" ~  Cr, for SL 

\ 

\ \ \ o ,  fo~ csL 
- 4 . 00  ~ ~ ,  

- 5 . 00  . . . . . . . .  i . . . . . . . . .  r . . . . . . . . .  , . . . . . . . . .  u . . . . . . . . .  , . . . . .  

o.oo 1oo.oo ~ . o o  ~ . o o  soo.oo sao.oo Re 

Fig. 10. Direct ional solidification into SL and CSL. Plots of  
the real and imaginary part of the Floquet exponent tr as a 
function of the Reynolds number with a = 0.15 for both the 
Stokes layer and CSL. The real part of tr, corresponding to 
the growth rate, is unique and always negative for both types 
of flow. The CSL is always more stable than the Stokes layer. 
The imaginary part of tr is not uniquely determined - one 
may change the sign of a n d / o r  add an arbitrary integer to ~r i 
and still have a valid solution. For viewing convenience, cr i for 
the Stokes layer is plotted with its smallest positive value, and 
cr i for the CSL is plotted with its largest negative value. In 
addition to these discrete eigenvalues, there is a continuous 
spectrum for tr = tr r < - a 2 which is not shown. 

is observed as the wavenumber is decreased. This 
behavior is identical to that found for the Stokes 
layer by Hall [13]. 

Eigenvalues corresponding to those of the CSL 
can be found for the solidification problem when 
the interface is disturbed, although tracking them 
is made somewhat difficult by their intermittent 
disappearance. The same continuous spectrum 
exists for this problem, and for large ranges of 
the parameter space this is the only spectrum 
associated with the CSL. Again both the discrete 
and continuous spectrum have negative growth 
rates, so there appears to be no hydrodynamic 
instability. 

It should be noted that both experiments and 
numerical calculations show that the Stokes layer 
is unstable to disturbances of finite amplitude 
[23] at Reynolds numbers around 500. Based on 
Fig. 10, we anticipate that the CSL will be at least 
as stable as the Stokes layer when subjected to 
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disturbances of finite amplitude. The Reynolds 
number  can be related to our parameter  E by 

Re = eV/-f/OS. (6.2) 

For the lead- t in  system which we have used as an 
example throughout this paper,  a Reynolds num- 
ber of 500 corresponds to a value of • = 10 000, 
which places it well above the level likely to be 
used for stabilization purposes. 

7. Conclusions 

In this paper,  we have shown, on the basis of 
linear stability theory, that nonplanar oscillations 
with sufficiently large amplitude may be used to 
suppress morphological instability during direc- 
tional solidification. By choosing an appropriate  
frequency for the oscillations, this method may be 
used for a wide range of materials and operating 
conditions, with the principle limitation being sys- 
tems with very low surface energy. It  remains to 
be seen if the stabilized system will maintain its 
stability when subjected to disturbances of finite 
amplitude since subcritical bifurcations may be 
present. 

Finally, we wish to point out that complete 
stabilization for all operating conditions is not 
necessary for this method to be useful. For exam- 
ple, although Table 2 indicates that a value • = 
500 is necessary to stabilize a S C N-Ace  interface 
for all morphological numbers, it turns out that a 
value of E = 50 is sufficient to extend the range of 
stable solute concentrations significantly. 

Acknowledgements 

This work was supported by grants from the 
National Aeronautics and Space Administration 
through the Graduate  Student Researchers Pro- 
gram (TPS) and the Program on Microgravity 
Science and Applications (SHD). We are grateful 
to S.R. Coriell for bringing to our attention the 
work of Delves [2]. 

Appendix A 

The constants in Eqs. (2.7) are 

i - 1  + ~/1 + 16S2j2 2 

A = 8S 2 , ( A l a )  

1 + i l  + 1 ( _  1 + ~/1 + 16S2/-2 2) 
B = 2S ( A l b )  

The recursion relations for the coefficients in 
Eqs. (4.6) are given by 

i . ,(pn m-1 j - l e ~  +, + p n m + ,  j - l e ~  - , )  
Pnmj = P2 P3 

(A2a) 

i°te(qn m-I j-IQ~ +) + q,, m+l j-IQ~ -)) 
qnmj = 0203  

(A2b) 

for all n, m and j > 0. Pk and Qk are given by 

P[-+)= [a + ( j -  1 )B- i (n-m_+ 1)A] 2 
- a 2 - r 2, (A3a) 

P2 = [a +jB - i (n - m ) A ]  2 - a 2, (A3b) 

P3 = S[( a + j B -  i(n - m ) A ) 2 - o l  2] 

- ( a + j B - i ( n - m ) A )  -imO, (A3c) 

0~ ±)= [v n + ( j -  1 ) B - i ( n  - m  + 1)A] 2 

- a 2 - r 2, (A3d) 

02 = [ v , , + j B - i ( n - m ) A ] 2 - a  2, (A3e) 

Q 3 = S [ ( v n + j B - i ( n - m ) A ) 2 - o t  2] 

-(v,,  + j B - i ( n - m ) A ) - i m 1 2 ,  (A3f) 

and for j = 0, Pnmo and q,m0 are given by 

PrimO = ¢~nm, (A4a) 

q,~,,,o = ~nm" (A4b) 

The recursion relations for the coefficients in 
Eqs. (4.7) are given by 

P n m j :  {•Pnmj+iolE//2[Pn m-I  j -1  +Pn m+l j-l]} 
X { [ a  + j B  - i ( n  - m ) A  + 1] 2 - [ a  + j B  

- i ( n - m ) A  + l] 

- a  2 - imO} -l,  (A5a) 
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qnmj= {~'qnmj"F iol ' / /2[qn m-1 j -1  q-qn m+l j - l ] }  

×{[u.  + j B - i ( n - m ) A  + 112 

-[un + j B - i ( n - m ) A  + l ] 

_a2 _ imO} -1, 

r.mj= [iae/2(r. m--1 j -1  + r. m +l  j - l ) ]  

× { [ p . + j B - i ( n - m ) A ]  2 

- [ p n  + j B - i ( n - m ) A ]  

--O/2 -- img2}  - 1 ,  

(A5b) 

(ASc) 

for all m, n and j > 0. For j = 0 they are given by 
~'Pnmo 

Pnmo 0l -- imJ2 ' (A6a) 

Eqnmo 
qnmo = (v n+ 1) 2-  (v n+ 1 ) - a  2-imO' 

(A6b) 

rnm 0 = 6nm. (A6c) 
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