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Abstract

Simulation of heteroepitaxial growth using kinetic Monte Carlo (KMC) is
often based on rates determined by differences in elastic energy between two
configurations. This is computationally challenging due to the long range
nature of elastic interactions. A new method is introduced in which the
elastic field is updated using a local approximation technique. This involves
an iterative method that is applied in a sequence of nested domains until a
convergence criteria is satisfied. These localized calculations yield energy dif-
ferences that are highly accurate despite the fact that the energies themselves
are far less accurate: an effect referred to as the principle of energy localiza-
tion. This is explained using the continuum analogue of the discrete model
and error estimates are found. In addition, a rejection algorithm that relies
on a computationally inexpensive estimate of hopping rates is used to avoid
a substantial fraction of the elastic updates. These techniques are applied to
1+ 1 dimensional KMC simulations in physically interesting regimes.

1 Introduction

Heteroepitaxial growth consists of slowly depositing one material onto a crys-
talline substrate formed from a second material. A classic example is Ger-
manium deposited onto a Silicon substrate. An important feature of this



process is that the natural lattice spacing of the deposited material can be
different from the substrate’s, resulting in elastic strain. The total elastic
energy stored in the film is reduced when three dimensional islands form,
making this the preferred morphology despite an increase in surface energy.
In many cases the three dimensional islands that arise are as small as tens of
nanometers in size and are referred to as quantum dots [24, 31|, due to their
unique electronic properties. For example, solid state lasers have been made
out of such materials. In addition, there is hope that such materials may be
useful in quantum computing applications.

Heteroepitaxy has often been studied using fully continuum models, where
the formation of quantum dots (islands) is known as the Asaro-Tiller-Grinfeld
instability [1, 13]. The morphological instability leading to island formation
has been studied extensively [35, 9, 32, 33, 7]; see Gao [10] for a more ex-
tensive review. More recent works adopting the continuum approach include
(34, 36, 37, 39, 40] .

In this work, we adopt an alternative, atomistic approach developed by
Orr et al. [23], Lam, Lee and Sander (LLS) [15], and Lung et al. [20]. Elas-
tic interactions are accounted for using a ball and spring model, chemical
interactions with a solid-on-solid (i.e., no voids or overhangs) bond-counting
model, and the system is evolved in time using kinetic Monte Carlo (KMC).
While this model is idealized, it nevertheless captures the essential physi-
cal effects of heteroepitaxial growth, such as adatom diffusion, nucleation,
surface diffusion, and long range elastic interaction. In addition, KMC nat-
urally captures effects associated with fluctuations and noise. Related work
includes models of heteroepitaxy using the Frenkel-Kontorova model [25, 26]
and off-lattice KMC simulations [2, 12, 21, 22].

In order to implement a standard rejection-free KMC method one must
tabulate a list of all the rates and then choose an event at random with a
probability proportional to its rate. Therefore to move an atom we must
know the hopping rate of all the atoms. For heteroepitaxy, this would entail
computing the change in elastic energy for each possible move. To overcome
this computational bottleneck, we combine inexpensive, relatively sharp, up-
per bounds on the individual rates with rejection. This allows us to avoid
pre-computing the rates for all possible moves for a given system configu-
ration. Instead, a single atom is selected using the approximate rates and
a decision of whether or not to move that atom is then based on a single
subsequent elastic computation.

Since the displacement field is very nonlocal and at least two calculations



must be made for each accepted move—once with the atom removed and,
when a move is accepted, once in its final location—this is still prohibitive.
The Fourier-multigrid algorithm developed in [29] helps with this (see also
Ref. [4]), but we find we can do better using approximate local calculations
centered on the locations of the atom being moved. Whenever an atom
is added or removed from the lattice, we implement an efficient iterative
technique based on successive over-relaxation to update the displacement
field in a sequence of nested domains until a convergence criteria is satisfied.
This exploits the fact that changes to the system’s configuration naturally
propagate outward from the moving atom.

One might expect this approach to be rather poor, owing to the long
range of elastic interactions. To explain why this is not the case, in §5 we
shall use the theory of continuum elasticity, combined with a small slope
approximation, to study a film with a stress-free strain on top of a semi-
infinite substrate. We compute the difference in the elastic energy density
between the original film and one where a localized amount of material has
been removed. It is established that this quantity decays, but very slowly.
One might view this as a Saint-Venant’s Principle [30] (see, for example, [18]
or [38]) for the density of the elastic energy change. Despite this slow decay,
we are able to prove, for the specific geometry of an island sitting on a wetting
layer which, in turn, is on a substrate, that the numerical approach described
above will in fact provide accurate estimates for the change in elastic energy
when an atom is removed. This implies that our approach is able to localize
the energy change while at the same time providing an accurate displacement
field.

Finally, we remark that one could develop similar theorems for the case
in which a stressed film is sandwiched between two semi-infinite “substrates”
and material is removed from the stressed film. For an arbitrarily shaped,
but finite, removed region, it appears that our results can be extended using
the mean value theorems of Diaz and Payne [5] (a discussion can also be
found in [14]) without resorting to the small slope approximation.

2 Model Description

We now describe the LLS model [15]. This is a solid-on-solid model in which
the height of the film at lattice location 7 is given by the integer h; where
1 =1,2,3,...,M. The hopping rate associated with the ith surface atom is



r;. When an atom hops it moves k steps from its current location, where k is
a random variable uniformly distributed on {41, £2, ..., £K}. The hopping
rate is modeled as

ri =roexp [(—yn + AW + E) /kgT], (1)

where n is the total number of nearest neighbor and next nearest neighbor
(diagonal) bonds, v is the bond energy, kg7 is the thermal energy, and ry is
given by
12D
o = . (2)
(K+1)2K +1)

The constants F and D are chosen so that adatom diffusion will match
experimental values. The expression given by (2) ensures that the diffusion
rate on a flat surface will be independent of K. The elastic correction to the
energy barrier is given by AW which is modeled as

AW = W (with atom i) — W (without atom %),

where W is the total elastic energy. Deposition is incorporated by adding
atoms at a rate
Taep = (K +1)(2K + 1)F/6,

where F'is the deposition rate in monolayers per unit time. It was shown in
LLS[15] that the dynamics is relatively insensitive to the choice of K. How-
ever, the computational speed can be greatly increased with larger choices of
K.

Apart from the AW term, the hopping rate r; can be easily calculated
by bond counting. The AW term, on the other hand, requires considerably
more effort. First, one must calculate the equilibrium displacement field and
evaluate the total elastic energy. Second, one must remove the ith atom,
recalculate the displacement field, compute the total energy, and then take
the difference.

We now describe the discrete elastic model. It is useful to introduce the

misfit
ay — as
I o (3)

where a; is the lattice spacing of the substrate atoms and a4 is the lattice
spacing deposited atoms. Typical values of u range from -0.05 to 0.05. For
example, the misfit for Germanium on a Silicon substrate is 0.04.



In this elastic model, neighboring atoms are connected with springs—
nearest neighbors having spring constant &y and next-nearest neighbors hav-
ing spring constant kp. We employ a reference configuration that consists of
a periodic array of complete layers of, say, Germanium atoms on top of a pe-
riodic array of, say, Silicon atoms, with the Germanium atoms compressed so
that their horizontal lattice spacing matches that of the Silicon. The vertical
lattice spacing, ar, is chosen so that the resulting system is in mechanical
equilibrium. One can show that

k
ar, :CLQ‘FCLSMﬁ. (4)

Note that the atoms are always on a rectangular lattice of size M x N
with a solid-on-solid constraint enforced. The atom located at site (i, j) has a
displacement field (u; j,v; ;). In addition, we introduce the following variable
defined on this lattice

- _ J 1 if(4,) contains an atom
Pij 0 if (4,j) otherwise.
We also define
Oi5;mn — PijPit+m,j+n- (5)

For this model the total elastic energy is

1
W = 5 izjwid',

where
iy = w0l + 20, ©)

and
wfjx - % (Ui’j;l’o(uiﬂ’j — Uiy d1)2 + 0 gio10(Uis1y — Wi + d1)2)

+ ]%D (0s o (Wirrjin — i — do)? 4 0511 (U151 — iy + dy)?

+ i1 (Ui o1 — iy — d1)* 4 0igin (Ui — i+ di)?)

wij B % (ai’j50’1(vi’j+1 — Vi — d2)” + O jio-1(Vig-1 — Vijj + d2)2)

+ k;TD (O-ivj;lﬂ(vi-i-l,j—i-l —Vij — Olz)2 + 04 5-1,-1(Vic1j—1 — vij + d2)2



+ 05 ji1,—1(Vig1,j—1 — Vij + d2)2 + 0511 (Vim1 jr1 — Vi — d2)2) )

- k
wy = ZD (sji—1—1(wim1jo1 — wij + di) (vim1j—1 — vij + do)
+ 0 (i1 — ig — d1)(Vig1,541 — Uiy — da)
_Ui,j;l,—l(ui+1,j—l — U5 — dl)(vz’+1,j—1 —Vij + d)
_Ui,j;—l,l(ui—l,j+1 — Ui j + d1)(Ui—1,j+1 — Vij — d2) ) )
g = b ag—as for g-g and s-s bonds (7)
e 0 for s-s bonds
and
g = for g-g and g-s bonds (8)
2 0 for s-s bonds '
The equilibrium configuration is determined from
ow ow
=0 and =0,
8ui,j anJ'
which results in a linear system of equations
AU = F, (9)

where U is a vector containing the unknown displacement fields. These
equations are presented in [29] (see Egs. 4 and 5). Also in [29], a method
based on a combination of multigrid and discrete Fourier transforms was used
to develop an efficient algorithm to solve (9).

We remark that the three dimensional version of Eq. 6 presented in [28]
is incorrect: the cross terms were inadvertently not included. The discrete
equations for the displacement field are, however, correct.

3 Computational Methods

In this section we explain three improvements over earlier computational
work on this model. First, we implement easily computed rate estimates 7; >
r; that are tailored to the local topography, greatly reducing the number of
rejections and, hence, unnecessary applications of the elastic solver. Second,
we describe a technique that greatly improves the calculation of the elastic
binding energy based on local calculations. Finally, we describe an efficient
technique for performing local elastic updates in response to isolated changes
in the system configuration.



3.1 Upper Bounds on Rates

In a standard implementation of kinetic Monte Carlo the hopping rate of
each surface atom must be known. For the model we have adopted this
would entail finding the change in elastic energy for each and every atom
just to move one atom. This would then be repeated after each move. Even
with the efficient techniques for updating the displacement field outlined
above, such an algorithm would be far too slow to be practical. On the other
hand, suppose we had a reasonably sharp upper bound for the elastic energy
change that was inexpensive to evaluate. In view of (1), one would have
an upper bound, 7;, on the hopping rate. Atoms are now selected with a
probability proportional to 7;. At this point, the change in elastic energy
will be calculated and the actual rate will be revealed. The hop is then
accepted with a probability r;/7;. If the upper bound is close to the actual
rate then the rejection rate will be small. In this way, one gains considerable
computational savings by avoiding elastic calculations for moves that will
ultimately be rejected.

We have found, based on physical intuition, a reliable approximate upper
bound on the change in elastic energy. This is explained by first noting that
the total elastic energy can be written as

1
W:§Z€p,
p

where e, is the elastic energy stored in the springs connected to atom p. If
atom p is located at (4, j), e, = w; ; (see Eq. 6). The factor 1/2 is the result
of double counting of bonds in the sum over atoms. It was found through
numerical experiments, in 141 dimensions, that

1.5 n=3
AW < AW = C(n)e,, where C(n)=4q 24 n=4 (10)
3.5 n>5.
This leads to the following upper bound on rates
Ty = T'oexp ((—7n+AW\+E)/kBT). (11)

Note that for a low-curvature surface, one can anticipate e, will be positive
based on a general principle that the energy increases (decreases) as mass is



added (removed) from the system; see, for example the discussion in [8] on
p. HoT. -

As it turns out in most cases AW is only slightly greater than AW. For
this reason the rejection rate is typically quite small (.005 to .04). Finally we
point out another approach for obtaining upper bounds was used in [15, 20]
and the details can be found in [16].

3.2 Energy Localization Method

Despite the reduction in the number of elastic calculations provided by the
local rate estimates, the dominant computational task is still the repeated
update of the displacement field in response to isolated changes in the system
configuration. It is natural to attempt a local correction to the displacement
field when a single atom is added or removed, an intuition consistent with
Saint-Venant’s Principle [30] (see, for example, [18]) regarding the decay of
the influence of localized forces.

Suppose we wish to calculate the elastic energy barrier for an atom to
hop. Let u = (u,v) be the exact displacement field and u® be the exact
displacement with the atom removed. The exact energy barrier for the hop
is

AW = W(u) — W (u?).

The energy localization method is an approximation to this barrier based
on a local solution uj with the atom off in a subset 2 C € of the original
computational domain having a characteristic size p. Importantly, the dis-
placement of the local solution on the boundary is constrained to agree with
the atom-on solution u; see Figure 1.

To assess the accuracy of a local solution, the residual, defined as

R =AU - F, (12)
is computed. We define the global residual error as

Re = [|R[[2/|[F]l2,

where || - ||5 is the discrete L? norm. The local residual error in a region €2,
is defined as ]

Ry = R 13

LT ngj;XI | (13)

where both Rs and R; are dimensionless.



Figure 1: The region €27 is composed of the atoms contained in the red box in
the figure on the right. This is the set of points in which the displacement field,
uy, is updated using the displacements of the atoms in I', (surrounded by red)
as Dirichlet boundary conditions. The region (2, is shown in the figure on the
left and is used for the local elastic “energy on” calculation, whereas (27 is for

the local “energy off" calculation (color available on-line).

A local calculation is considered successful if Ry is sufficiently small,
with the residual typically decreasing as the characteristic size p of the local
region increases. This implies that the atoms just outside the last shell have
a small net force and are therefore somewhat out of equilibrium. If the entire
system were allowed to relax, this would have a small global effect on the
displacement field, but, as we shall see, the cumulative effect on the elastic
energy can still be significant.

A local elastic energy barrier is defined to be

AW, = W (w; Q,) — W(u 02, (14)

where W (u;(,) is the energy associated with a given set of atoms 2, and
QF is 2, with one atom removed. The reader is reminded that uj is a local
solution where uj = u, for the atoms on the lower boundary T';; see Figure
1.

Numerical computations reveal the following observations.

OBSERVATION 1 - Residual Estimate. The local residual error, Ry, decreases
with the characteristic size, p, of the local region.

OBSERVATION 2 - Energy Barrier Localization. When Ry, is small we find



An important point is that the residual can be computed inexpensively,
whereas an actual calculation of the error in (14) would require a global
computation.

Notice that, with a local solution in a region with characteristic size py,
computing (14) in a region Q¢ any larger than this will have no effect, as the
displacement field outside this region is the same for the atom on and off.
However, using a smaller region for the energy calculation leads to very poor
results. Surprisingly, this is true even if the elastic fields for the atom on and
off are the result of full global solutions and we use a region for the energy
calculation large enough that a local solution of the displacement field would
have been accurate:

AWr = W (w;9,) — W (u; Q). (15)

Indeed, such an approximation is quite poor.

OBSERVATION 3 - Energy Nonlocality. The approzimation AW ~ AWr is
poor, even when computed in a relatively large region.

Later, in §5 we characterize these observations further by proving analo-
gous results in the continuum limit for smooth, small amplitude film profiles.
Intuitively, it appears that constraining the outermost shell of atoms traps
any change of energy due to removing an atom within the local region, so
that one gets a very good approximation to the exact energy barrier. Strictly
speaking, our results assume the initial, atom-on, field is exact, but extensive
numerical experiments demonstrate that this remains true if we start with
fields that are the result of multiple local approximations. It is important,
however, that the boundary data be of sufficient quality to reflect the effects
of the topography over large length scales. For example, calculations with
the correct local configuration and zero displacement boundary conditions
for the atom on and off give poor results.

REMARK - Observation 1 is expected, but given Observation 3, Observation
2 is quite unexpected.

3.3 Expanding Box Method

Again noting that the dominant numerical task is repeatedly accounting
for isolated changes in the system configuration, it is efficient to use a local
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Figure 2: Schematic for the Expanding Region. The hop is indicated with the
arrow. Three iterations of the expanding region method have been applied.
The atoms surrounded by red are used as Dirichlet conditions on the last of
these. When a full elastic computation is peformed, the displacement field of
the dark blue and the green atoms are updated using the Fourier-multigrid
method in [29] (the displacement of the light blue atoms is deduced using an
artificial boundary condition [28].)

solution technique that exploits the fact that any changes in the displacement
field will propagate outward from the location of this isolated change.

We adopt a simple iterative technique with successive over-relaxation.
Since we are starting from a system which is, to a certain level of accuracy,
relaxed, the first iteration of the displacement field will have negligible effect
for lattice points that are more than one lattice spacing from the change.
Similarly, the second iteration will have significant impact up to two lattice
spacings from the site of the change. In this way, the effect of any localized
change continues to propagate into the lattice at the rate of one site per itera-
tion. For this reason, we apply SOR, (method of successive over relaxtion) on
a region that expands no faster than this, as illustrated in Figure 2. In view
of the energy localization observations, the boundary values for the displace-
ment field are taken to be pre-correction values. Extensive experimentation
with this technique indicates two applications of SOR for each box size is
optimal for typical calculations. Iterating more than this is often wasteful as
the box is going expand further.

In cases where the size of the expanding box exceeds a threshold S, we
abandon the local calculation in favor of a global one. If the threshold is
set too small, the solution reverts to a global calculation too frequently; if
it is set too large, then a local update can take longer than an application

11



of the Fourier-multigrid method. For our calculations we found the optimal
value was around 50 lattice spacings, but this ultimately is a function of the
error tolerance. Typically, global solutions were needed for especially difficult
configurations or as the result of accumulating errors in the displacement field
after many local updates.

3.4 The Algorithm

We now present an algorithm based on the ideas outlined in sections 3.1 to
3.3. First, we briefly review how to calculate a global update of the displace-
ment field which uses a solution of the discrete half-plane problem by fast
Fourier Transforms [28, 19]. In effect, this provides an artificial boundary
condition by mapping displacements to forces. In principle, this boundary
condition could be applied to any layer of the substrate and in previous work
was typically placed at the interface between substrate and film. However, to
implement the expanding box method, we need to update the displacement
field in a neighborhood of a moving atom. This requires us to place the arti-
ficial boundary condition at a depth greater than or equal to the maximum
allowable size S of the expanding box. Therefore, as shown in Figure 2, we
place the artificial boundary condition, indicated with light blue, at depth
S below the substrate. The displacements of all remaining atoms, including
substrate atoms, colored blue, and film atoms, colored green, must be com-
puted by other means. The algorithm described below assumes that all of
these remaining displacements have been initialized by what we refer to as a
full elastic solution. This is computed by the Fourier multi-grid method of
Russo & Smereka[29]. The algorithm then proceeds as follows:

1. Select an event by choosing a uniformly distributed random number r €
[0, R), with R = 4., + 5. #. This interval represents an overestimate
of the sum of rates for atoms hopping plus the rate of deposition. The
event to which r corresponds is located using a binary tree search [3].

2. If the event is a deposition, locally update the height & connection
arrays and attempt a local elastic solution; revert to a full elastic com-
putation if the expanding box exceeds size S. Update the rate estimates
using (11) in the same region in which the elastic field was updated.
Return to Step 1.

3. If the event selected is a hop, then take into account elastic effects:

12



(a) Make a copy of the displacement field u, (atom on). Follow the
same procedures in Step 2 to compute the displacement field with
the atom removed, uj (atom off).

(b) Once the elastic field has been updated (locally or globally as
necessary), calculate the energy barrier and actual rate r; (< 7;) .

(c) Use rejection to decide whether or not to make the move. Note
that the atom-off calculation must be performed whether or not
this move is made.

(d) If the move is rejected, no change is made to the displacement
field. Return to Step 1.

(e) If the move is accepted, a hop is made. Update the displace-
ment field in the vacated position using uj. Perform a second
local/global calculation in the atom’s new position thereby up-
dating u.

4. Return to Step 1. One event has been completed.

4 Results

In this section we present an important test case, a comparison with a result
from LLS [15], and some new results. We shall use the same parameters,
which were chosen to model the growth of Germanium on Silicon. For the
convenience of the reader we recall the formula for the hopping rate

ri =roexp [(—yN + AW + E) /kgT],
with
ro=12D/((K +1)(2K +1)).
Following LLS [15], we take

D= Dy/a? and K =38,

where a, = 2.715 A (the lattice spacing of Silicon), Dy = 3.83 x 10" A”/sec,
E =0.53 eV, and v = 0.4 eV. For this choice, adatom diffusion will match
experimental values. The spring constants are taken to be k;, = 13.85 eV /a?
and kp = k1 /2. In this way, the model matches the bulk and shear modulus
of Silicon.
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4.1 Test Case

One test of our algorithm proceeds as follows. First, consider a typical film
profile (e.g. Figure 3a) and compute the displacement field, u, using the
Fourier-Multigrid method (a global computation). Second, remove an atom
and update the displacement field with the Fourier-Multigrid method, de-
noting this as u®. The change in elastic energy is AW = W(u) — W(u),
and we shall refer to this as the exact value for the change in elastic energy.
Next, put the atom back and replace the displacement field by u. Repeat
this procedure for every surface atom.

Now, we want to compare this to a computation of the displacement field
for the atom-off configuration using the expanding box method instead of
using the Fourier-multigrid method. This displacement field is denoted as uy.
One then calculates the change in elastic energy using the approach outlined
in §3. In this way, we have AW, = W(u,Q,) — W(u3,Q7). Numerical
experiments reveal that AW is well approximated by AW}, provided that p
is chosen large enough so that the local residual is small. Typically we choose
a tolerance of 1072 so that Ry < 1072 (Ry is given by Eq. 13).

While this is a reasonable test, it is lacking one important feature. Namely,
in virtually all circumstances, the displacement field, u, will not be the result
of a global update using the Fourier-Multigrid method, instead it will be a
displacement field that has been updated many times using the expanding
box method. We shall refer to this displacement field as the approximate
atom-on field, u,,,. Now we apply the expanding box method to compute
the change in elastic energy using u,,, instead of u. To mimic an approxi-
mate atom-on field we first compute the global elastic field corresponding to
a perturbed interface where every 20th atom has been removed and midway
between removed atoms an atom has been added. Next, we restore the film
back to its original profile one atom at a time while updating the displace-
ment field locally using the expanding box method. Now we perform the test
described above but using u,,, instead of u.

The top of Figure 3 shows a subsection of the profile we used for the
test. The middle figure shows a plot of the exact energy change, AW (in
blue, mostly obscured), the approximate energy change using the expanding
box method AW, (in red), and the naive approximation AW7 (in green,
using a generous p = 50) all as a function of atom location. The bottom
figure shows the size of the expanding box, p, that was needed to achieve
R;, < 1072. As one can see the expanding box method provides a very

14
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Figure 3: The top curve shows the film height. The middle figure shows the
calculation of the change in elastic energy using a full elastic computation (the
blue curve, largely hidden). The green curve displays the change in elastic energy
for a region with p = 50. The red curve shows the result using the expanding
box method. The last figure shows the size of the region used when obtaining
the red curve. In these simulations R; < 1072.
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Figure 4: Evolution of film growth with F' = 0.8 monolayers/second, T" = 600
K, Re < 1072 and R; < 1072. The total number of events was 1.09 x 107.
There were a total of 223 global elastic computations. The rejection rate was
initially 0.0009 and increased to 0.032. The total computation time was two
hours on a 2.6 GHz dual core linux box.

accurate approximation. In particular note that in many cases, the size of
the expanding box is much less than 50 which was the fixed valued used for
AWr.

4.2 Growing Films

We now compare our results to Figure 2¢ of Ref [15]. This means we will use
= 0.04, F = 0.8 monolayers/sec, and T' = 600 K. For the results shown in
Figure 4 we used the following tolerances on the residuals: Rg < 1072 and
R; < 1072. The results obtained are in good agreement with those found by
LLS [15]. Figure 5 shows the same calculation except that Rg < 1072 and
Ry < 1073, These are similar to the previous case suggesting that the lower
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Figure 5: Evolution of film growth with /' = 0.8 monolayers/second, 7' = 600
K, Rg < 1073 and R, < 1073. The total number of events was approximately
1.1 x 107. There were a total of 234,194 global elastic computations. The
rejection rate was initially 0.0009 and increased to 0.044 The total computation
time was 30 hours.
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Figure 6: Evolution of film growth with F' = 0.08 monolayers/second, 7' = 600
K, Re < 1072 and R; < 1072. The total number of events was 10%. There
were 699 global elastic computations. The rejection rate was approximately
0.015. The total computation time was 17 hours.
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Figure 7: Equilibrium shapes for different misfits at 7" = 450 K, Rg < 1072
and R < 1072, The system was annealed for 10% events. Then ten different
realizations were averaged. Each of these realizations were separated by 10°
events. In the upper figure (11 = 0.02) no facets appear to be present, whereas
the middle figure (1 = 0.04) shows three facets and bottom one (1 = 0.06)
shows five.

tolerances are sufficient. It is noteworthy that in both cases we have reduced
the total number of global elastic computations dramatically (see data in
figure captions). Figure 6 shows the same case as Figure 4 except that the
deposition rate has been decreased to 0.08 monolayers/sec. Not surprisingly
the islands are more spread out.

4.3 Equilibrium Profiles

We examine the equilibrium shapes of a single island for various amounts of
misfit. The initial condition consists of an island whose profile is a rectangle;
the system is then evolved for 107 events, sampled 10 times and ensemble
averaged. The samples were separated by 10° events. The results are shown
in Figure 7. In the case g = 0 (not shown) the equilibrium profile would
be a straight line since this minimizes the surface area. However as the
misfit increases the elastic contribution to the energy makes it increasingly
favorable to have island formation. The results for p = 0.02 suggest the
formation of an island with no facets and wetting angle of zero. When p is
increased to 0.04 the island now has three facets—one (0, 1) facet and two
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(1,1) facets. When g is further increased to 0.06, the results seem to indicate
the formation of two (2, 1) facets.

5 Analysis of Energy Localization

In the remaining sections we aim to provide theoretical insight into the energy
localization method based on the use of the continuum theory of elasticity.
We begin in this section by first formulating a continuum limit of the discrete
elastic energy density (6) which will be used to provide a continuum version
of the discrete mechanical system (9). While the integrals (36) and (37)
representing the errors in the truncaton and energy localization approxima-
tions, repsectively, are more general, the theorems consider a system where
a substrate occupying the entire half-plane y < 0 is completely covered by
a small-amplitude film 0 < y < h(z) of uniform height H for |x| > A. This
scenario is meant to characterized an isolated island sitting on an unbounded
and otherwise flat film on a flat substrate. The periodic case with more arbi-
trary topography would also be nice to consider, but we have no results for
this at this time.

5.1 Continuum Limit

We measure the horizontal and vertical displacement of the film, u, relative to
a reference configuration in which a flat film on the substrate is in mechanical
equilibrium. With this choice, a film with zero displacement experiences an
inherent “stress-free” strain. Following our earlier notation, the union of the
film and the substrate will be denoted by 2. The boundary between the film
and vacuum is denoted 0f2.

The equations of continuum elasticity are more easily manipulated with
the aid of index notation, where we denote the components of the displace-
ment u = (u,v) as (uq,uz). We also find it convenient to define the strain
parameters

a; = (a;, —as) and ay = (a, —ar)

and make use of the Heaviside function

] 0 ify<0
9<y)_{1 if y > 0.
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Finally we use approximations such as
Uip1,j — Wiy ~ O1uy
in (6) to pass to the continuum limit, which then gives the elastic energy
density
wo= Skt k) (G — aB)) + (B — cnd(y)] +

kp (O1uy — aq0(y)) (Oeus — anf(y)) +

%k’p(agul + Oyuy)?.
This expression corresponds to a material with cubic symmetry; for the ma-
terial to also be isotropic one requires kz, = 2kp [6]. Restricting our attention

to materials that are both isotropic and cubic, we may then write the energy
density as

3
w = 5]{}1) [(81U1)2 + (82112)2} —+ kD(ﬁlul)(ﬁﬂlg) + ]{ID(82U1 -+ 81u2)2.

—3k’D [a181u1 -+ Oég@g’dg] H(y) — ]{?D [Ozl@qu + agﬁlul] Q(y)
1
+§kD [3(af + a3) + 2702 O(y) (16)
This form is consistent with the energy density of an isotropic material whose
Lamé constants are both equal to 2kp [17]. Finally, it is convenient to choose
units so that kp = 1. The results proven below are readily generalized for

arbitrary Lamé constants.
Eq. (16) can be written in a more compact way by first defining

o= (5 0, ), 7

where
gy = 30&1+O&2,
09 = 3a2+a1. (18)

Combining (17) with the summation convention we can now write (16) as
1 1 1
w = 5(@'%’)2 + 5(@'%)@%) + 5(@%)@%)
— 1
+Ti0u5 + 5 [3(af + a3) + 20102 O(y). (19)
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The stress tensor, denoted 7;;, is given by

ow
Ouij”
where u; j = 0;u;. This is related to the strain tensor Ej; by

T = 2B + 0ij By,

T; =

where B B
Eij = Eij + Eij,

- —Q 0
Eij = ( 0 —ay )9(?/)>

-1
Eij = 5(82’&] -+ @ul)

and

We note that the elastic energy density can be compactly written as

1
w = 2 i Lij-

It will be convenient later to observe that the stress tensor can also be broken
into an intrinsic and relative piece

Ti; =Ty + 13,
where B B B
Tij = 2E;j + 0ij B (20)
Mechanical equilibrium requires
&T,] = 0, x € ()
Tijnj = 0, x € 0N).
From this, one sees that the stress-free strain term could give rise to a singu-
larity in the second equation at the film/substrate interface. However this is
not the case here. Since we have chosen our reference configuration so that a
flat film is in mechanical equilibrium, it follows from (3), (4), and (18) that
09 = 0.

One then obtains the usual equations of linear elasticity

Q-Quj + 28]8kuk = 0, x € () (21)
i-jnj = onid;, X € 0K, (22)
u — 0, |x]— 0. (23)
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5.2 Principle of Energy Localization

In this section, we use the continuum limit of the discrete model to explain
why calculations of elastic energy differences with the energy localization
method are much more accurate than those calculated using truncated in-
tegrals of the full elastic solutions. Naively, one might have expected the
opposite.

We begin with a displacement field u that satisfies (21-23) on the original
domain §2. The removal of an atom is modeled using a modified domain
Q¢ C Q) that differs from €2 in a finite region at the top of the film.

The total elastic energy stored in any finite region €1, C €1 is the integral
of the energy density:

W0, — /Q wdx. (24)

For unbounded domains, we define the elastic energy barrier as follows. Let
Q, = {Qn{[x| < p}} and similarly for 2 (see Figure 8). The elastic energy
barrier is then

AW = lim [W(u;Q,) — W (u’Q0)], (25)

p—00

where u® is the atom-off solution (i.e., u® satisfies that same system as u but
on a domain with a modified surface; see Figure 8.)

The essence of the energy localization method is to approximate the atom-
off solution u” with a solution on a finite domain {27 using boundary data
that is constrained to agree with the atom-on displacement field u along the

lower boundary:
u,=u, xel, (26)

Our approximation for atom-off displacement field is then

_Jup i x| <p
w {u if |x| > p. (27)

Our approximation for the elastic energy barrier is
AW =W (u;Q,) — W(uy; €27). (28)
The continuum analogue of the residual is

r=V -T(w—u®) =V-Tw,
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where R
Tu = aﬂL]’ + @-ui + 5,J8kuk

This quantity is zero, except on I',, where it is equivalent to
r = (T% — T)ndy,, (29)

with dr, being a Dirac delta function concentrated on the curve I,; T and ’I‘Z
are defined using (20) with displacement fields given by u and uj respectively.

Therefore we see that the residual per unit length on I', is (’Tg — T)n,
and hence we conclude the continuum version of (13) is
R; = H%%X ‘(TZ — T)n‘ :
For the situation we now consider the film profile is H + h(z), where
h(x) is smooth and of small amplitude. More specifically we take h and its

derivative, h,, to be O(€),e < 1. The theorems stated below are valid to
O(€e?) and correspond to Observations 1, 2 and 3 in Section 3.2.

THEOREM 1 - Residual Estimate. Suppose that h(x) is a compactly supported
function whose support includes x = 0. Further, suppose that h(zx) is modified
by a localized change centered at x = 0 then the following is true

Ry =0(ep™?) as p— oo.

This justifies the use of the residual as a convergence criterion. We shall also
prove

THEOREM 2 - Principle of Energy Localization. Under the same hypotheses
of Theorem 1 the following is true

AW = AW (1+0(p™?)) as p— oo,

where AW and AWy, are defined by (25) and (28) respectively.

This explains the high accuracy of our method. We will see that this can
be traced to a fortunate canceling of a large part of the error on the lower
boundary of the expanding box.

Naively, one might expect an energy barrier approximation based on a
simple truncation of the energy integrals using the exact displacement fields
u and u®,

AWr =W (u;Q,) — W(u*Q7), (30)
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would provide a better approximation, but our final theorem shows that this
is not the case:

THEOREM 3 - Nonlocality of the Energy Density. Under the same hypotheses
of Theorem 1 the following is true

AW = AWr(1+O(Hp™)) as p— oo.

where AW and AWy are defined by (25) and (30) respectively.

Not only does this error decay slowly as the region expands, but it gets
larger as the film thickens. In view of this result, the accuracy of the energy
localization approximation is rather surprising, but it is this rather large
error term that is precisely cancelled when the displacement is constrained
by (26).

Rickman & Srolovitz[27] considered a somewhat similar problem. An
important difference, however, is that we consider a film with stress free
strain.

5.3 Proof of Theorems

The proofs of all three theorems rely on converting (24) to boundary integral
form. We begin by inserting (19) to find

1
W(u; Qp) = 5 0 8Z (uj&-uj -+ ujﬁjui + ujéwakuk) dx
1
2 Jo,

Q, Q,

where C' = 3 [3(of + 03) + 2aj0). The second integral vanishes owing to
(21), the fourth is proportional to the area/volume of the film Qp contained
within €2, and the remaining two can be converted to boundary integrals of
surface forces:

1 ~ —

A similar expression gives W (u; Qg) Note that for the portion of the bound-
ary coinciding with the surface of the film, (22) gives T;jn; = —T;;n;, so that,
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Atom on Atom off

Figure 8: Schematic for the energy calculations in the case where an atom
has been removed

in the limit, (25) gives

1 — 1 _
AW = —/ ujTijni ds — —/ unij’fli dsS + C‘Q\Qa‘
2 Jaa 2 Joqa
From this point forward, we find it simpler to work with this expression in
vector form

1 — 1 —
AW = —/ u-TndS——/ u® - TndS + C|Q\Q°. (33)
2 Joa 2 Joqa

Note that since oo = 0 these integrals vanish over any portion of the boundary
that is horizontal.

Next, we compare the two approximations AWr and AW, for AW. In
the first, we use the displacement fields, u and u® without further approxi-
mation but truncate the domain of integration in the energy functional. This
truncation approximation will be used to demonstrate the long range nature
of the elastic energy density in the film. In the second approximation the
change in elastic energy is localized within the truncated domain by using
the approximation (27) that constrains displacement field, uf, to agree with
the atom-on displacement field, u, on I',. This is the continuum analogue of
the change in energy used by the expanding box method.

For the truncation approximation we get three contributions to the bind-
ing energy analogous to those in (33) plus additional contributions in the
form of integrals over portions of the boundary that are in the interior of the
film /substrate:

AWp = %/u-TndS—%/ u® - TndS + C|Q\Q°| +
F a
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1/ (u-T —u®- Ta)nds+/ (u—u®)-TndS, (34)
2 Jr, r,
where we have decomposed the boundaries 0€2, = I'UT', and 9Q7 =T U,
into surface and subsurface components. Note that the last integral vanishes
over the portion of I', in the substrate.

For AW/, this last integral vanishes completely as a result of (26) and it
is this cancellation, we shall see, that leads to a significantly better approxi-
mation:

AW, = %/u~TndS—%/ u? - TndS + C|O\Q°] +
F a

1 T N(I
5 /Fp u- (T —T))nds. (35)

The error Ep = AW — AWy for the truncation approximation is

1 —
Er = —/ (u—u")-TndS —
2 Joor

1 - - _

5/(u-T—u“-T“)ndS—/(u—u“)-TndS, (36)
r, r,

while the error £y = AW — AW} for the energy localization approximation

is

1

E, = —/ (u—u")-TndS +
2 Jaor

1 a ay . m 1 T Ta
§/a(up—u )-TndS—§/F u- (T —T))ndS. (37)

P

5.3.1 Approximate Evaluation of Energy Formulas

The reader is reminded that the film profile for €2 is h(x) and we denote the
film profile for Q¢ as h%(z).

In this section we present a situation where we can provide asymptotic
expressions for (36) and (37). We take the film profile to be H + h(z) where
h(xz) = 0 for |x| > A. In addition shall take h and h, to be O(e) for |z| < A
where h, is the derivative of h. This implies we can use the small slope
approximation for the surface normal

_ T
n= (he 1) = ey — hye; + O(e%)

Vh2+1
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and approximate the film/vacuum interface as flat when applying the stress
boundary conditions. It is convenient to chose our coordinate system so the
film/vacuum interface is located at y = 0. This implies that the film/substrate
interface is now at y = —H and (17) with o9 = 0 becomes

Ty={( 7 2 )ow+H) (38)
0 0
The boundary condition (22), to leading order, is
Tn = (Tu)e, = —o1hye;, at y =0, (39)

where T is defined by (41). This replaces the system (21-23) with the half-
plane problem

Vu+2V(V-u) = 0, fory<0
(Tu)eQ = —o1hge;, aty=0,
u — 0, [x|]— o0 (40)

where T is the operator defined through the relation
T = Tu,
which implies N
Tu = &-uj + 8ju2- + 5w8kuk (41)

The solution to (40) can be deduced by following the derivation in [17]
and one finds

u=o; /_)\ f(x — s,y)h(s)ds, (42)

B 1 v(32% —y?) |
- Am(a? +y?)? y(3y* — 2?) T

and g is the Green’s function for the problem

where

Vig+2V(V-g) = 0, fory<0
(Tg)eQ = (5(,’,5) €1, at Yy = 07
Vg — 0, [x|]— oo. (43)
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An analogous expression, with h(z) — h%(z) holds for u®. In [11] a similar
appoach is used to analyze slightly undulating surfaces.

To prove the theorems we need to estimate the integrals that appear in
(36) and (37). The first of these integrals is

11:—/ (u —u") - TndsS.
2 Jao\r

Since the film/vacuum interface is flat for [x| > A\, Tn = 0 for this portion
of the interface. As a consequence, we have I} = 0 for p > A. In §5.3.2 we
will establish the following results for the remaining integrals:

I - % /Fp(u T —ut - T dS = 0(2/p?), (44)
I3 = /F (u—u")-TndS = O(eH/p), (45)
I— % /a(ug — ) - TndS = O(c/p?), (46)
and .
I = §/F u- (T - T)nds = 0(/2). (47)

We use the fact that I; = 0 and combine this with the estimates for I
and I3 in (36) to obtain
Er = 0(eH/p). (48)

Based on our assumptions concerning the film profile it follows that AW =
O(¢e). Combining this with (48) yields Theorem 3. Next, we use (46), (47)
and I; = 0 to find

Ep, = 0(¢/p?), (49)

which combined with AW = O(e) gives Theorem 2. Finally, it is shown in
§5.3.2 (see Eqgs. 56 and 61) that

(T —T9) = O(e/p?),

which gives Theorem 1.
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5.3.2 Proof of Estimates

In this section we establish the estimates used in the previous section.

Proof of Eq. 44. We begin by recalling (42) and its analogue

A
ut = 01/ f(z —s,y)h(s)ds.

A

We need to evaluate u on the lower semi-circle of radius p centered at (x =
(0,0)). If we let (x,y) = p(cos ¢, sin ¢) and substitute this into (42) and its
analogue and expand in 1/p we obtain

ulix—p = O(¢/p) and u’ =, = Ole/p), (50)
where we have used the fact that h = O(e). A similar argument shows that
T|jxj=p = Ole/p?) and  T*[iq=, = O(¢/p?). (51)

If we combine (50) and (51) in the expression for I we obtain the result.

Proof of Eq. 45. We restate (45):
/ (1 —u®) - TndS = O(cH/p).
Tp

This result is obtained by noting that Tn is zero in the substrate, so that the
only contribution occurs in the film. Further, since for p/H > 1 the length
of I, in the film is proportional to H. This combined with (50) gives (45).

Proof of Eq. 46. Recall that

1 —
I, = §/a(uz —u?)-TndsS.

We now use (38), the small slope approximation and the compact support of
h, to rewrite I, as

A
Iy = 1/ (u? —u?) - ejo1hlde. (52)

p
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To proceed further we let w = uj —u”, u =u—u” and h = h — he. Since
uy and u” satisfy the first two equations of (40) with h, replace by h? and
since uj(|x| = p) = u(|x| = p) the following is true:

Vw +2V(V-w) = 0 fory<O0and|x|<p
(Tw)e;, = 0 aty=0
w = u |x|=p and y<O0. (53)

Next we note that u satisfies (40) and u® satisfies (40) with h, replaced by
h%. This means that we can appeal to (42) to find

=0 /_A f(z — s,y)h(s)ds.

A

Notice that the compact support of & and A% is not strictly required for this
integral, as h will have this property more generally. We need to evaluate u
on the lower semi-circle of radius p centered at (0,0):

u(pcos g, psing) = i M, (54)

n+1
n=0 P "
A ~
where m,, = / s"h(s)ds and

cnl(d) = < (2 —n)cos[(n + 1)¢] + (n 4+ 1) cos[(n + 3)¢] )
n —(n+2)sin[(n+ 1)¢] + (n + Dsinf(n+3)g] |

We can now write the solution of (53) as
m,w™ (x/p)
w= Z n+1 ) (55>

where w,, satisfies (53) except the last boundary condition is replaced by
w™ =¢, for [x|=1 and y <0.

Due to the antisymmetry of ¢, - e, about ¢ = 7/2 we infer e; - w®(0,0) = 0;
this combined with (55) gives

w(0,0) = O(p~?).
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It also follows from differentiating (55) that
0,61 w)(0,0) = O(p~2).
Therefore we conclude
e -w(z,0)=0(p %) provided |z|=O(1).

If we substitute the above result into (52) and use the fact that h, = O(e)
we obtains (46).

Proof of Eq. 47. Finally we need to estimate
1 - N(I
5 Fpu- (T — T,)nds.
If we let v =u — uj then the formula above becomes
1 .
—/ u- (Tv)nds. (56)
2 Jr,

To estimate Tv we proceed as follows. We first observe that v satisfies the
system

Vv +2V(V-v) = 0 fory<0and|x|<p
(Tv)ey, = —oihse; y=0and |x| < p.

v = 0 |x|=pandy<0. (57)
It is useful to introduce the following auxiliary system defined on a semi circle
of radius one:

Viw +2V(V-w) = 0 fory<0and|x| <1
('T‘w)eg = —oip€1, aty=0and |z|] <],
w = 0 |x|=1andy<0, (58)

where p, is the derivative of an arbitrary function p and will be defined later.
We write the solution as

w = / i = s u)p(s)ds. (59)
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where f; is the z-derivative of the Green’s function for (58).

The system given by (57) will now be transformed into the form given by
(58). This will be done by letting x = px’, v/ = v(px’) and h(pz') = W/ (z')
to arrive at

VR +2V(V-v) = 0 fory <0and x| <1
(T'v')es = —oher, o =0and |2 <1
vi = 0 [¥|=1andy <0. (60)

Now set p = &’ and and compare (60) with (58). It then follows from (59)
that

Alp ~
v = / f1 (2" — s,y )W (s)ds,

—Ap

where we have used the fact that h is supported on [—A, A]. Since
Tv =p ' TV,

we have

. 1 [Me

Ty — _/ Th (o — 5,4/ ) (s)ds = O(e/p?). (61)
P J=\p

This follows because T'f; (' — s,3/) = O(1) and I'(s) = O(e), implying the

integrand is O(e). If we combine this with (50) and (56) we find

%/p u- (T - Tpnds = O(¢/").

6 Summary

This paper has addressed the important and computationally challenging
task of simulating heteroepitaxial growth using KMC. Following earlier stud-
ies, energy barriers for adatom diffusion were modeled as the difference in
elastic energy for the system with and without the moving atom. In contrast
to standard KMC, which is used for simulating epitaxial growth in the ab-
sence of strain, the principal challenge was to deal with the long range nature
of the elastic interactions.

To this end, we introduced three new ideas. First, we implemented a
rejection algorithm that relies on a computationally inexpensive estimate of
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hopping rates to avoid a substantial fraction of the elastic updates. To further
accelerate performance, we implemented a local approximation technique for
the remaining elastic updates. We found that these localized calculations for
the energy differences were highly accurate despite the fact that the energies
themselves were far less accurate. Using the continuum analogue of the
discrete model, we were able to explain this and derive estimates for the
error as a function of the size of the local region. Finally, whenever an atom
was added or removed from the lattice, we implemented a local iterative
technique based on successive overrelaxation to update the displacement field
in a sequence of nested domains until a convergence criteria was satisfied.
This exploits the fact that changes to the system’s configuration naturally
propagate outward from the moving atom. These techniques were applied
to 1+ 1 dimensional KMC simulations in physically interesting regimes and
found to be highly effective.
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