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Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo
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We consider the growth of a single FCC dendrite into an undercooled melt. Unlike most sim-
ulations of this well-studied phenomenon, we adopt an atomistic growth model that uses kinetic
Monte Carlo to track the free boundary. The model allows for both phase change and exchange
between liquid and solid atoms on the surface of the crystal and is coupled to a continuum model
for heat transport away from the interface. For small length and time scales, this approach provides
simple, effective front tracking with fully resolved atomistic detail. An interesting finding is that the
surface exchange mechanism appears to be important for capturing effects due to anisotropy that
are needed to produce realistic growth shapes.

PACS numbers: 68.70+w, 68.08-p

The growth of a dendrite into an undercooled melt
is a well studied phenomenon, typically modeled from
a macroscopic point of view as a Stefan ( i.e., free-
boundary) problem [1]. For pure materials, morpholog-
ical instability leading to dendritic growth is the result
of interfacial perturbations growing into an environment
that is below the material’s melting temperature [2]. This
enhances the subsequent growth of the perturbations and
eventually leads to an intricate, snow-flake like growth
pattern. When simulated using continuum models, there
are two essential challenges: tracking the free-boundary
and resolving the thermal boundary layer ahead of the
front. Much effort has gone into each of these issues, with
the phase-field [3, 4, 13] and level-set methods [5] fea-
turing prominently in the first, and adaptive mesh tech-
niques [4] and random walks with adaptive step sizes [6]
in the second.

In this paper, we focus on the front-tracking problem,
adopting a discrete, atomistic model in the spirit of the
kinetic Monte-Carlo (KMC) simulations that are popu-
lar in the epitaxial growth literature [7]. This approach
is closely related to that in [8], where KMC was used to
examine the evolution of a Face Centered Cubic ( FCC)
nano-cluster toward its equilibrium Wulff shape. A num-
ber of related studies have examined the growth of sim-
ple cubic crystals, starting with work on diffusion limited
aggregation [9], continuing with a number of related two-
dimensional studies [10], and including at least one study
of three-dimensional, simple cubic growth [11]. Here, we
consider the combination of growth and surface diffusion
for an FCC crystal. For convenience, the interface ki-
netics are coupled to a continuum model for heat flow,
which is then discretized, in both phases, on the same
FCC lattice. The aim is to demonstrate that this ap-
proach to front-tracking is relatively easy to implement
and competitive on scales ranging from nanometers up to
several microns while providing a natural way to incor-
porate both anisotropy and atomistic effects. The model
can be extended, as in some of the studies cited above,

to consider discrete models for heat flow, allowing for
additional effects due to thermal fluctuations.

In the sharp-interface formulation of the continuum
model, the computational domain Ω ⊂ R

3 is typically
decomposed into an inner, solid region ΩS and an outer,
liquid region Ω\ΩS, separated by a closed surface ∂ΩS .
The principal governing equation is the heat equation,
with the outer boundary ∂Ω held at a fixed temperature
TB < TM , the temperature of the solid–liquid interface
determined by the Gibbs–Thompson equation, and the
interface motion determined by a Stefan condition that
balances the latent heat release with the heat flux away
from the interface:

∂tT = κ∇2T, x ∈ Ω, (1)

T = TB, x ∈ ∂Ω, (2)

T = TM − γTM

ρL
∇ · n̂(x), x ∈ ∂ΩS , (3)

ρLvn̂ = k (∇T · n̂|S −∇T · n̂|L) , x ∈ ∂ΩS . (4)

The thermal diffusivity κ and density ρ have been as-
sumed to be the same in both phases, n̂ is the normal
pointing into the liquid, k = κρcp is the thermal conduc-
tivity, L the latent heat released per unit mass, and vn̂ is
the normal velocity of the interface. The interfacial tem-
perature is given by the equilibrium melting temperature
for a flat interface TM modified by a curvature term ac-
counting for surface energy (the Gibbs-Thompson effect.)
With the unit normal pointing into the liquid, a spherical
region has positive mean curvature and a lower equilib-
rium melting temperature. After scaling lengths on the
distance between neighboring lattice sites a, time with
the thermal diffusion time scale a2/κ, and temperature
with ∆T = TM −TB, there are two principal parameters
(in the absence of anisotropy)—a surface energy param-
eter Γ and the Stefan number S:

Γ =
γTM

aρL∆T
, S =

L

cp∆T
.
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In the discrete model, the Stefan number is related to the
attachment rate and surface energy can be included by
making the melting temperature depend on the number
of solid phase nearest neighbors. Other effects, such as
kinetic undercooling for a rapidly solidifying interface can
also be included. The surface energy γ and diffusivity κ
are often modified to model anisotropy by making them
a function of orientation. Indeed, this is essential for
producing realistic results with the continuum model [13].
In the discrete model, one might have thought that the
underlying lattice would play this role, but we find that
it is also essential to include a surface exchange process
that conserves the number of atoms of each phase while
allowing the shape of the interface to change.

The FCC lattice can be defined using integer combi-
nations xijk = ia + jb + kc of three basis vectors

a =
î + ĵ√

2
× a, b =

î + k̂√
2

× a, c =
k̂ + ĵ√

2
× a,

that are themselves formed by combinations of Cartesian

unit vectors î, ĵ, and k̂ and the equilibrium distance be-
tween two atoms a. In practice one need only store and
manipulate integer triples (i, j, k), converting to Carte-
sian coordinates for visualization. Upon scaling, {a,b, c}
become unit vectors and it is useful to expand this set to
the twelve vectors

{ei}12
i=1 = {±a,±b,±c,±(a− b),±(b− c),±(c − a)}

that point to the nearest neighbors of a given lattice site,
storing them in the skewed coordinate system, so that
they have integer components.

The solid atoms are constrained to lie on the FCC lat-
tice and the heat equation is solved numerically using
a discretization on this same lattice in both phases. Like
any Ising model, we use an order parameter σijk ∈ {0, 1},
to specify liquid (0) or solid (1) phase. In addition to this
phase configuration, we associate a temperature Tijk with
each lattice point. Together, σ and T specify the system
state, which will evolve through a combination of thermal
diffusion and a stochastic model for surface evolution.

The solidification model is analogous to the combina-
tion of the Gibbs-Thompson equation (3) and the Stefan
condition (4.) The former suggests associating a melt-

ing temperature TI(Nijk) = 1 + Γ̃(Nijk − 3) with each
lattice site, where Nijk is the number of solid nearest
neighbors, temperature has been scaled and translated
so that TM = 1, and Γ̃ is the surface energy parame-
ter identified above times an unspecified geometric fac-
tor that translates coordination number into a measure
of curvature. Note that TM is taken to be the melting
temperature of the (111)-facet, as most atoms will solid-
ify/melt along such facets when they have three nearest
neighbors. We assume that liquid sites below this tem-
perature and solid sites above this temperature are sus-
ceptible to phase change, but neglect nucleation (which
is equivalent to setting TI(0) = −∞ and TI(12) = ∞.)

For the problem of solidification into an undercooled melt
specified above, only freezing will occur.

Liquid sites with temperatures T n+1

ijk < TI have their
temperatures pinned at TI . Thus, these sites serve as
sources of latent heat. In the continuum model, the Ste-
fan condition (4 ) governs the amount of heat needed to
convert the phase of such atoms. In the simulations pre-
sented below, this condition is enforced in the mean by
setting the solidification rate to

qS
ijk =

{

J(xijk), if σijk = 0 & Nijk > 0
0, otherwise

,

where J (see 6 below) represents the net heat loss at site
xijk measured in units of latent heat release per atom
upon solidification. After an atom has solidified, the con-
straint on its temperature is released. The model can be
modified so that heat is strictly conserved by coupling
the growth model to a discrete model for heat transfer.

Anisotropy is included in the model as a surface dif-
fusion process where solid atoms in contact with one or
more liquid sites are susceptible to exchange with liq-
uid sites that have at least one additional solid neighbor.
This latter rule is similar to what is called the “solid-on-
solid” (SOS) assumption in the epitaxy literature and
prevents most detachments. Upon exchange, the liq-
uid site retains its (previously constrained) temperature
value and the solid site becomes a solidification site with
an appropriately constrained melting temperature. Fol-
lowing the standard practice for surface diffusion used in
epitaxial growth simulations, we set the hopping rates

qH
ijk =

{

νe−∆E/kBT , if σijk = 1 & Nijk < 12
0, otherwise

,

where the prefactor ν ≈ 1013 hz is an attempt frequency
that depends weakly on temperature, but is usually mod-
eled as a constant, kB is Boltzmann’s constant, and ∆E is
an energy barrier that must be overcome in moving from
a local energy minimum to an adjacent one in the sys-
tem’s configuration space. We adopt the simple model in
[8] with ∆E = ENNijk proportional to the coordination
number. This is also a common assumption with SOS
models for simple cubic growth because it is extremely
fast, has a simple heuristic explanation, uses a minimal
set of parameters, and is easily reproduced by others.

We assume that all of the random processes occur inde-
pendent of one another ( i.e., they are Poisson processes.)
At each KMC timestep δtn, a hopping (exchange) or so-
lidification (flip) event is selected with probability pro-
portional to their rates and a random waiting time is
associated with the event.

When the accumulated micro-timesteps δtn exceed a
macro-timestep ∆t the temperature field is updated, sub-
ject to the interfacial constraints described above, using
an explicit discritization of (1) tailored to the FCC lat-
tice:

T n+1

ijk = T n
ijk +

∆t

2

(

12
∑

m=1

T n(xijk + em) − 12T n
ijk

)

. (5)
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FIG. 1: Two surface images from the early stages of a single
simulation, showing about 104 (left) and 105 (right) atoms
colored by coordination number Nijk.

Note that this comes with the severe time-step restric-
tion of ∆t ≤ 1/6 for numerical stability. More efficient
methods are, however, not so easily adapted to the FCC
lattice. For the immediate purpose of studying the merits
of KMC as a front-tracking algorithm, we therefore ac-
commodate the time-step restriction by assuming a very
small thermal diffusivity and Stefan number. If we take
S−1 = 0.9, for example, we boost the attachment rate of
atoms by about three orders of magnitude over more real-
istic values while staying under the hypercooling thresh-
old S−1 < 1 [1]. To produce realistic dendrite shapes,
we find that we must also boost the hopping rates, con-
trolled by the nondimensional parameter K = νa2/κ, by
a similar order of magnitude.

Note that with the maximum value of the time step
∆t = 1/6, (5) reduces to a simple average over the twelve
nearest neighbors and the attachment rate becomes

J = S−1 1

12

12
∑

m=1

[TI(xijk) − T n(xijk + em)] . (6)

In practice the time spent tracking the front is small
compared to that solving the diffusion equation. Indeed,
if, as an experiment, the temperature field is fixed so that
it simply decays rapidly with distance from the interface,
results qualitatively similar to those shown here can be
obtained in minutes rather than hours. In part, this is
due to the time step restriction just mentioned, but is also
because of an efficiently implemented KMC algorithm
described in [12].

For the results presented below, the surface energy pa-
rameter is fixed at Γ̃ = 0.01, the scaled nearest neighbor
energy Ẽ = EN/(kBTM ) = 0.0034, and the computa-
tional domain is a sphere with a radius 25 times the ra-
dius of the initial solid region, a spherical cluster of about
400 atoms. The initial temperature is set to TM in the
solid and TB in the liquid. We briefly explore the behav-
ior of the growth as the remaining parameter, the surface
diffusion prefactor K, is varied. The principal observa-
tion is that the strength of this relative to the growth
rate controls the extent to which faceting and anisotropy
dominate the morphology.

FIG. 2: Three surface images from the late stages of three sep-
arate simulations, showing about 106 atoms colored by tem-
perature gradient. The rate of surface diffusion is increasing
by a factor of ten as you move down the page.
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Fig. 1 shows the solid atoms, colored by coordination,
that lie on the surface of the crystal. In the first image,
the crystal contains about 104 atoms and, in the second,
there are about 105 atoms (the images are not to scale).
These images correspond to two times in the same simu-
lation that started from a spherical cluster of about 500
atoms. This simulation had a large value of K = 106,
so that surface diffusion dominates, especially during the
early stages of growth, when the surface area is small.
In this regime, the crystal grows close to its equilibrium
Wulff shape, and the results are similar to that in [8].
The truncated octahedral shape can be understood as a
competition between the two slowest growing facets—the
(100) and (111) facets, where the diffusing atoms have co-
ordination numbers of four and three, respectively. Note
that for an equal number of exposed lattice sites, there
would be a net flux of atoms from a (111) facet to a
(100) facet, due to the faster hopping rate on the for-
mer. Thus, nucleation is favored on the (100) facet. Due
to the geometry, each time a layer is completed, a facet
shrinks somewhat. The dominance of the (111) facets at
early times can therefore be traced back to the slower
nucleation rate.

During growth, the surface is nearly isothermal, with
T ≈ TM . As the crystal becomes larger, the isotherms
near protruding regions of the surface become com-
pressed. This effect is most pronounced at the vertices
of the octahedral structure. This compression, which
implies a steeper temperature gradient, enhances nucle-
ation, and we can see in Fig. 1b that there is a cascade
of steps that starts to flow away from the vertices. As

the crystal becomes larger, this effect begins to change
the morphology of the crystal. In particular, note that
the edges are no longer straight in Fig. 1b.

In Fig. 2, the solidifying atoms ( i.e., liquid atoms on
the surface) are colored using the heat flux Jijk. The
images shown are from the late stages of several differ-
ent simulations where the surface diffusion parameters
K has been adjusted to exhibit three characteristic mor-
phologies. The lower image correspond to a much later
stage of the simulations exhibited in Fig. 1, with more
than 106 atoms now represented and the instability hav-
ing produced the primary branches of a dendrite. The
branching process occurs at earlier stages of growth if
surface diffusion is less active. In Fig. 2b, secondary and
nascent tertiary branches have already formed when the
crystal is about the same size as that in Fig. 2a. If the
surface diffusion rate is dropped another order of mag-
nitude, the dendrite loses its octahedral symmetry and
takes on a cauliflower-like appearance.

In summary, KMC appears to be a promising alter-
native to modeling and simulation of dendritic growth
on atomistic scales. Enlarged versions of the images
shown here, available from the author, reveal a spectac-
ular amount detail that offers enhanced insight into the
growth process. In future work, there is every reason to
expect that the range of parameters addressable by this
technique can be greatly increased by coupling it to more
efficient methods for solving the heat equation.
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