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Abstract. We study the growth of epitaxial thin films on pre-patterned substrates that
influence the surface diffusion of subsequently depositedmaterial using a kineticMonte
Carlo algorithm that combines the use of inverted lists with rejection. The result-
ing algorithm is well adapted to systems with spatially heterogeneous hopping rates.
To evaluate the algorithm’s performance we compare it with an efficient, binary-tree
based algorithm. A key finding is that the relative performance of the inverted list
algorithm improves with increasing system size.
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1 Introduction

A typical Kinetic Monte Carlo (KMC) [1, 3, 5, 7] model/simulation of epitaxial growth
features a small set of distinct rates related to a corresponding small set of different local
environments. KMC simulations become more complex, however, when the number of
distinct rates becomes large. Such situations arise, for example, when there is strain in
the system, or more generally, when the potential energy surface (PES) is varying contin-
uously.

In this paper, we implement an efficient KMC algorithm [13] that effectively han-
dles arbitrary rate distributions through a combination of rejection and inverted list tech-
niques. This generalizes the well-known Bortz-Kalos-Lebowitz (BKL) [3] algorithm. A
key feature of the BKL “N-Fold way” is the use of a binning strategy along with what
we refer to as “inverted lists”. Briefly, if a list {ek} stores the spatial location of an event
at (i, j) in memory location k, an inverted list {e(i,j)} allows one to quickly perform the

∗Corresponding author. Email addresses: msaum@math.utk.edu (M.A. Saum), schulze@math.utk.edu

(T.P. Schulze), cratsch@math.ucla.edu (C. Ratsch)

http://www.global-sci.com/ Global Science Preprint



2

reverse operation of identifying the memory location corresponding to the event at (i, j).
This type of data structure is needed to efficiently rearrange the events within the bins
after an event is executed. This feature is easily overlooked in the original work, how-
ever, and, without the inverted lists, a binary tree algorithm [2] is faster—scaling like
O(logN), where N is the number of independent random events to be sampled from. In
an earlier publication, Schulze [12] points out that an inverted-list BKL algorithm has an
operation count that is fixed as the system size N increases and compares the practical
performance of the two algorithms in the frequently occurring special case where there
is a small number, M≪N, of distinct rates.

When combined with rejection, the inverted list technique requires one to partition
the rates into M categories, the boundaries of which must be chosen by the user so as to
keep the rejection percentage low. There is a tradeoff between the reduced rejection of-
fered by increasing the number of categories and the increased cost of searching through
additional categories. This is the first work to fully implement and study the performance
of the combined algorithm and we have two aims:

1. give an example of a physical system where such a generalization is needed.

2. demonstrate that the partitions can be chosen so that the inverted list algorithm
outperforms the binary search.

As an example of a situation calling for the generalized algorithm, we take up the
study of directed self-assembly during epitaxial growth, as recently modeled by Niu et
al. [9], who used an island dynamics model and the level-set technique. This continuum
approach is based on the seminal work of Burton-Cabrera-Frank (BCF) [4]. The authors
show that regular arrays of nano patterns can be obtained if the PES for surface diffu-
sion is varied. Such variations can, for example, result from buried defects [6], and the
subsequent long-range strain field in the substrate. We also offer a few comments on the
tradeoffs between the continuum and atomistic models. As a rule, atomistic simulations
allow for a more faithful description of all relevant microscopic processes, but, as a result,
are limited to smaller length and time scales.

In the first section of this paper we briefly review the model and the KMC algorithm.
In the second section we compare results obtained from the KMC simulations with the
recent results of Niu et al. [9] and illustrate some additional situations that can be ad-
dressed using KMC. In the final section we compare the performance of the inverted list
with rejection KMC algorithm with a binary-tree based algorithm [2].

2 Growth Model and KMC Algorithm

Before presenting the results of our simulations, we briefly discuss the KMC algorithm.
KMC simulation of surface evolution requires one to keep track of possible events which
can move the system between states. For our purposes, at each lattice location on a
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large two-dimensional rectangular grid with lattice constant chosen to be unity, we con-
sider five possible events which can occur: either a deposition event at location (i, j) or
a diffusion (hopping) event from location (i, j) to one of the four nearest neighbor sites
{(i+1, j),(i, j+1),(i−1, j),(i, j−1)}. There are thus a total of N=NDep+NHop events {ek}

N
k=1

which can occur with rates {qk}
N
k=1. KMC requires us to repeatedly sample and update

this discrete distribution. Since deposition will be uniform in our simulations, this can be
treated separately and we focus on the algorithm for sampling the hopping rates.

The hopping rate at location (i, j) is given by the harmonic approximation to transition
state theory:

qijd =νexp(−β(∆E)ijd), (2.1)

where ν is the hop attempt frequency and d∈{0,1,2,3} indicates one of four directions to
hop in. KMC simulations often represent the potential energy barrier for surface diffu-
sion of atoms as

∆E=Es+nEn,

where Es is the energy barrier for surface diffusion of an adatom, n is the number of
in-plane lateral nearest neighbors, and En is the additional energy barrier for higher co-
ordinated atoms due to the nearest neighbor bonds.

In the work of Niu et al. [9] the effect of spatial variations in Es are studied by consid-
ering independent contributions to the transition energy from the adsorption and transi-
tion state:

Es=Etrans−Ead,

where

Etrans=A0+Atsin(πx/Lt+φt)

Ead=Aasin(πx/La+φa),

and the parameters {A0,At,Aa,Lt,La,φt,φa} provide flexibility in controlling the shape of
the PES.

Away from steps, the role of Es is essentially the same in both the KMC and the island
dynamics models. Tomake the comparison between the twomodels, we therefore follow
the earlier example and limit the spatial variation in the hopping rates to the Es contribu-
tion, while maintaining a fixed value of En. The parameter En accounts for detachment of
edge atoms and influences the critical size of small islands in the island dynamics model
[10]. In the KMC model, it plays a somewhat broader role, influencing edge diffusion
and vacancy formation, for example. In making our comparisons, we adjust En to match
the detachment rate Ddet used in the island dynamics simulations.

To convert to integer (lattice) coordinates, Etrans is evaluated at (x′,y′)∈{(i+1/2, j),(i, j+
1/2),(i−1/2, j),(i, j−1/2)} and Ead is evaluated at (x,y) = (i, j). When At = Aa = 0, we
have Es = A0 and recover the constant Es situation present in many KMC models. Note
also that we require the constraint Ead<Etrans in order to ensure Es>0.
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Figure 1: Rate Distribution. This figure illustrates a histogram of the rates of events executed during a simulation
undergoing 100 ML of deposition. Note that both axes are log10 scale and that the rates cluster into subsets
according to coordination number, with the fastest and most frequently realized events on the right.

As indicated above, we will compare two efficient KMC algorithms that differ in how
they manage the event and rate data structures from which hopping events are deter-
mined. The first is a binary tree algorithm (KMC-BT), as described in Blue, Beichl, and
Sullivan [2]. We use this as a benchmark to evaluate the performance of an inverted list
algorithm with rejection (KMC-IL), as described in Schulze [13].

For the inverted list algorithm, we partition the set of events {ek}
NHop

k=1 into M≪NHop

categories based on rates: Em={ek|r̂m+1<qk≤ r̂m}, where the number and position of the
partition boundaries {r̂m} can be chosen freely. As seen in Figure 1, which shows a his-
togram of the rates of events that where executed in a typical simulation, the distribution
of rates can be used as a guide to choosing these rate partition boundaries. In the present
case, for example, the rates cluster into subsets based on coordination number. Further,
we see that the number of low coordinated events is much larger than the number of
high coordinated events and, therefore, low coordinated events are executed much more
frequently. Therefore, in the calculations presented below, we will further subpartition
the zero- and one-neighbor clusters, with the total number of partions being M. We write

the resulting collection of M rate-ordered event lists as
{

{emℓ}
cm
ℓ=1

}M

m=1
and identify an in-

dividual event as emℓ. We define cm to be the count of events on event list m∈{1,2,.. . ,M}.

We also maintain an inverted list
{

e−1
(i,j)

}

which allow us to map (m,ℓ)↔ (i, j). Note that

it is the partitioning of rates into subsets with approximately equal rates that reduces the
amount of rejection and it is the inverted list that allows one to update such a structure
efficiently after an event has been executed. Without the inverted list, one would have
to search the event lists to locate events that need to be moved to another category as a
result of a change in their rate.



5

 

 

Etrans

Ead

Figure 2: Morphology obtained varying only Ead (left) and varying only Etrans (right). The PES envelopes are
shown below each picture. These pictures are a snapshot after 0.2 ML of deposition.

In the case where there is no spatial variation in Es and ∆E is a function only of the
coordination number, KMC-IL is rejection free. Otherwise, KMC-IL uses a rejection test
using qmℓ and the upper bound r̂m to determine if the event chosen is to be accepted.
Algorithm KMC-IL0 assumes that the hopping rates in each of the four directions are
the same and are independent of position (KMC is rejection free in this case); algorithm
KMC-IL1 does not make these assumptions.

3 Results of the KMC simulations

Without any spatial variations of the PES (i.e., for the case where At=Aa=0), we choose
A0 = Es = 0.97 eV and En = 0.28 eV. For a growth temperature of T= 700 K, and a hop
attempt frequency ν = 1013 s−1, this corresponds to an adatom hopping rate of approx-
imately 106 s−1 and an edge detachment rate of approximately 104 s−1. All simulation
results presented below, unless otherwise specified, were carried out with a deposition
flux F= 1 ML/s, 400×400 surface atom locations, and run on a 2GHz Intel R© CoreTM2
Duo processor with 4 MB of L2 cache. It should be noted that we have chosen a domain
large enough to rule out any finite size effects in the KMC simulations. The interested
reader is referred to [11] for a more detailed discussion of these effects. Figure 2 illus-
trates the morphology obtained for cases where Ead and Etrans are varied separately. For
the case where only Ead is varied, La = 25, Aa = 0.1 eV,At = 0, and φa = π. For the case
where only Etrans is varied, Lt = 25, At = 0.1 eV,Aa = 0, and φt = 0. All of these numbers
correspond to the variations of the PES in Niu, et al. [9], and the results are similar to
those shown in Fig. 1 of Ref. [9].

Figure 3 shows a comparison of spatial island density distributions betweenKMCand
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Figure 3: Comparison of spatial island density distributions between KMC and continuum island dynamics
calculations. The total densities are different because the meaning of Ddet is different for KMC and continuum
theory.

the results shown in Fig. 2 of Ref. [9]. KMC results are averages of island densities from
30 independent runs which are then averaged across the domain in the i-direction due to
periodicity of the PES. Continuum results are based on the island dynamics calculations
contained in [9]. Note that good agreement is obtained on locations of the distributions.
The total densities (i.e., the integrals under the curves) do not match because, while an
attempt was made to match Ddet between KMC and continuum theory, the meaning of
Ddet is different for KMC and continuum theory.

Figure 4 illustrates a case where variations of Etrans and Ead vary in-phase (La=Lt=25,
φa=φt=π), with the same amplitude (At=Aa=0.1 eV), and deposition involves multiple
monolayers. This result illustrates that if one could control the PES in such a manner, it
would provide a mechanism to grow nanowires. This case took approximately 4 minutes
of CPU time for 6.62×108 events undergoing 5 ML of deposition.

Figure 5 illustrates using KMC with a varying PES in the Diffusion Limited Aggre-
gation (DLA) regime [14], which is difficult to simulate with a continuum model. Here
adatoms are almost surely irreversibly attached once its coordination number becomes
one. In an atomistic model, such as KMC, one obtains fractal like geometries, where
the arm width of the fractals is determined (and limited) by the discreteness of the size
of an atom. In contrast, in continuum models, the arm width is determined by the nu-
merical resolution that has been chosen. Thus, it may take much greater computational
resources with continuum models to achieve the same resolution as KMC in the DLA
regime. The KMC-DLA case was run with En = 0.5 eV and Es = 0.25 eV on a 256×256
grid with T = 250 K, and it is the combination of lower temperature and decrease in Es

relative to En that makes the atoms essentially immobile once they attach to an island.
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Figure 4: 3-D surface morphology obtained where in-phase variations of Etrans and Ead occur. This picture
is a snapshot taken after 5.0 ML of deposition, 400×400 grid, T= 700 K, and F= 1 ML/s. This job took
approximately 4 minutes of CPU time for 6.62×108 events.

This case took approximately 2 seconds of CPU time for 2.16×106 events undergoing 0.3
ML of deposition.

A similar simulation using the level set (LS) formalism takes significantly longer,
about 10 seconds (depending on the numerical resolution and accuracy chosen). How-
ever, the increase in computational time for increasing detachment rate is slower with
the level set simulation. This can also be seen in Table 1, where we show a comparison of
the computational times for comparable LS and KMC simulations. The key result is that
the KMC simulation is significantly faster, but that the slowdown with increasing Ddet is
less pronounced in the LS method. We also note that the number of numerical timesteps
needed is orders of magnitude lower with the LS method, which might be advantageous
when other external fields such as strain are coupled to the simulation.

4 KMC Algorithm Performance

In Figure 6 we explore the influence of the number of rate categories M on the CPU
time per event (left axis) and rejection rate (right axis) when using KMC-IL1. The size
of the surface grid for these calculations was 1024×1024, with Aa = 0.1 eV, At = 0 and
F= 0.25 ML/s. The timing data is the average of ten separate runs undergoing 100 ML
of deposition, utilizing the same random seed, and error bars—which reflect variation in
system performance only—are one standard deviation above and below the mean. For
example, choosing to partition the rate space into 12 bins (M= 12) results in a time of
3.48×10−7 sec/event at a global rejection percentage of 25.8%. This data was obtained
on a 2.6 GHz AMD OpteronTMprocessor with 1 MB of L2 cache. As anticipated, as the
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Figure 5: Morphology obtained by varying the PES periodically for DLA case, with a total deposition of 0.3
ML. This case used a 256×256 grid, with T=250 K. This case took approximately 2 seconds of CPU time for
2.16×106 events.

Table 1: Comparison of KMC and continuum timing data. These results were obtained on a 200×200 surface
undergoing five ML of deposition with no spatial variation of the PES. The continuum results were obtained
utilizing a coarse resolution. We believe that the increase in computation time for Ddet = 1000 with the LS
method is an artifact of the timestep selection in this method, and that it could be reduced to a factor close to
1.1.

Ddet Type Time (sec/ML) t/t10
10 KMC 0.91 1

LS 33.42 1
31 KMC 1.04 1.14

LS 33.69 1.00
100 KMC 1.32 1.45

LS 34.65 1.04
316 KMC 1.91 2.10

LS 37.41 1.12
1000 KMC 2.84 3.12

LS 67.97 2.03
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Figure 6: KMC-IL1 Binning Strategy. This figure illustrates various binning strategies based on total number
of bins M, as well as global rejection fraction for the particular binning strategy. Note that it is clear that there
exists an optimal binning strategy for this particular problem.

number of bins is increased beyond a certain point (roughly 12 bins for these system
parameters), the reduced rejection rate is offset by the increased computational cost of
selecting a bin and summing the rates.

Figure 7 contains a comparison of performance for the KMC algorithms referenced
above for a variety of system sizes. The top panel utilizes the fundamental KMC perfor-
mance metric, time (sec) / event, and the bottom figure shows the ratios, KMC-BT/KMC-
IL{0,1}, for these same metrics. The data is plotted against p, which is representative of
the system size 2p×2p. The timing data trend is similar to that of previous results pub-
lished in Schulze [12] for systems with no spatial heterogeneity, where we have extended
the results to larger system sizes. Notice that for very large systems, both methods slow
down relative to the theoretical O(logN) (BT) and O(1) (IL) scalings, which would sug-
gest these curves should be linear (BT) and horizontal (IL). We present data below that
shows the degredation in performance is due to cache misses, which both alogorithms
suffer from as the system becomes very large. This effectively makes CPU operations
more expensive as the system becomes large, but as the bottom panel shows, the ratio of
the performance of the two alogorithms grows rougly linearly in p∝ logN, as expected,
and, for large systems, one obtains excellent speedup of KMC-IL1 over KMC-BT. This
data was obtained on a 2.6 GHz AMD OpteronTMprocessor with 1 MB of L2 cache.

The degradation of KMC-BT performance as p gets large is a combination of two
factors, algorithm and memory cache issues. For each event, KMC-BT requires a search
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Figure 7: KMC Timing Comparisons: KMC-BT vs. KMC-IL{0,1}. The top figure illustrates the amount of
time (sec) per event at different grid sizes, where the grid is 2p×2p. The bottom figure illustrates the ratio of
the time/event numbers for the binary tree compared to the inverted list algorithm. KMC-IL0 is rejection free
and used 5 rate categories (M=5), corresponding to coordination number. For the KMC-IL1 runs with spatially
dependent ∆E (Aa=0.1 eV, At=0), 12 rate categories (M=12) were used. Note that processor cache effects
start to play a large role as p gets large.
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of a binary tree of depth 2p+1, and up to seven traversals of the full depth to update the
partial sums in the tree, giving the binary tree algorithm a search and update complexity
of O(logN). Using the inverted list KMC algorithm one obtains an O(1) search and
update.

The second factor, related tomemory cache utilization, affects both algorithms roughly
in proportion to the number of instructions executed. Today’s computers utilize a cached
memory hierarchy which is based on the locality principle, motivated by the fact that
most memory references are made to a small number of locations. Temporal locality is
the principle that once a program references a memory location, it is likely that the same
memory location will be referenced again soon, which is true in the case of program iter-
ation or recursion. Spatial locality is the principle that a memory location near a recently
referenced location is more likely to be referenced than one further away, typically true
of data stored consecutively in arrays.

To investigate cache performance issues more thoroughly, we utilized the Cachegrind
tool which is a part of the Valgrind [8] distribution. Cachegrind is a flexible and powerful
tool that performs simulation of a machine’s cache as a program executes. Cachegrind
tracks cache statistics (L1 and L2 hits and misses) for every individual line of source code
executed by the program. We configured Cachegrind to simulate the AMD OpteronTM

processor with 1 MB of L2 cache. Note that Cachegrind does not model TLB (Translation
Lookaside Buffer) misses, which can be up to 100 times more expensive (in CPU cycles)
than an L2 cache miss. On the AMD OpteronTM, the L2 TLB can store 512 entries which
map 4KB pages between physical and virtual memory. Thus, when a reference is made
to a memory location which is not in L2 cache and the page referenced is not in the TLB,
then a TLB miss occurs.

Table 2 compares twometrics for the binary tree KMC and the inverted list KMC algo-
rithms for four different system sizes. The first colum gives the number of L2 data cache
misses per event and the second the number of CPU instruction per event. The latter col-
umn is consistent with the theoretical operation counts given above. In particular, note
that the number of instructions per event for the inverted list algoirithm is essentially
constant. The first column shows that the slowdown in both algorithms for large values
of p is clearly correlated with increased L2 data cache misses.

While stochastic simulations such as KMC inherently exhibit poor spatial and tem-
poral locality memory access patterns, the performance penalty for KMC-BT relative to
KMC-IL is exacerbated due to the increased number of instructions. Traversing and up-
dating the binary tree requires one to access many pages of virtual memory, resulting in
many cache misses. Similarly, but to a lesser extent, the inverted list algorithm suffers
cache misses when accessing the various lists of events. It may be possible to reduce this
effect for the inverted list algorithm through careful programming for the specific appli-
cation of epitaxial growth, where the dominant calculational cost in the simulation is due
to the motion of the adatoms, of which there are relatively few. The inverted list algo-
rithm naturally groups these few, but frequently realized events, together in memory. To
exploit this, however, one would need to avoid the cache misses encountered when an
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Table 2: Cache Performance Summary. This table summarizes performance characteristics for BT and IL KMC
algorithms for various system sizes. Note that L2 cache misses occur more frequently as the system size gets
large, especially when comparing BT to IL for the same system size. Note also the linear increase in the number
of CPU instructions per event with the BT and the essentially constant CPU instructions per event for IL, as a
function of system size p.

Size (p) Alg. L2 Miss/Event CPU Instr/Event

6 BT 0.0042 1184
IL0 0.0039 453

8 BT 0.122 1462
IL0 0.064 452

10 BT 0.855 1745
IL0 0.610 452

12 BT 14.1 2019
IL0 1.73 452

adatom hops to a site with coordination number four. Since most sites have a coordina-
tion number of four, it might be possible to avoid listing these sites entirely and simply
use uniform sampling of the grid with rejection to simulate the rare vacancy formation
events.
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