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A subtle issue in the study of mushy zones which form during the solidification of binary
alloys is that there are two distinct types of solid-mush interfaces which may occur.
One of these is a eutectic front and the other is a front which separates the mushy
layer and, assuming complete solute rejection, a layer of a pure solid. For semi-infinite
domain configurations that admit similarity solutions, such as those at a uniform initial
temperature and concentration with an imposed cold temperature at the lower boundary,
only one of the two types appears and the type of front is determined by the various
parameters of the system. In a finite domain, it is possible for each type of front to
appear at different times. Specifically, the advance of the eutectic front is restricted by
the isotherm associated with the eutectic temperature, and the other front type will
appear over a longer time-scale. Leading up to the time when the front changes type, the
concentration being frozen into the solid decreases. This process writes a history of the
system into the solid.

1. Introduction

Solidification of a binary alloy from a cold boundary can result in a variety of phenom-
ena. First, a planar solid-liquid front can advance from the cold boundary. Second, if the
temperature at the lower boundary is in an appropriate range, a mushy zone can appear
as the result of an instability caused by a build-up of solute ahead of the solidification
front. We are concerned with the behavior of the system when a mushy layer is present.

A typical experimental arrangement consists of a tank filled with a uniform solution
at a uniform temperature placed upon a cold surface. If the system is arranged in such
a way that a mushy zone will appear, two different sets of conditions at the solid-mush
interface are possible, and the temperature field plays an important role in determining
which set applies. The two sets of conditions at the solid-mush interface can be described
as a diffusion-controlled front and a T" = T front, where Tr denotes the eutectic tem-
perature, at which solidification occurs regardless of the concentration of the alloy. Both
of these possibilities were permitted in models studied by Fowler (1985) and Emms &
Fowler (1994). These studies are primarily concerned with the occurrence of convective
instabilities, with Fowler (1985) using a basic state solution containing prescribed motion
of the solid-mush and mush-liquid interfaces.

On the other hand, we are more interested in the solutions of the free-boundary prob-
lems, which have been addresed in the context of similarity solutions by Worster (1986)
and Anderson (2003). The results of Anderson (2003) are for ternary alloys, but can be
modified to apply to binary alloys. Worster (1986) considered the case where the tem-
perature at the bottom of the tank is no colder than the eutectic, so the solid-mush
interface is controlled by solute diffusion. On the other hand, Anderson (2003) considers
the case where the bottom of the tank is very cold, so that a T' = Tg front describes the
solid-mush interface. In other words, it is clear that the results of Worster (1986) apply
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when Ts > Tk and the results of Anderson (2003) apply when T is sufficiently below
Tg. For values of Ts below but still near Tg, the eutectic isotherm can appear below
the diffusion-controlled front. This indicates that there is some critical temperature at
the base T where the front type changes. Both of these prior studies utilize similarity
solutions, and each of the fronts for these similarity solutions can be written in the form

h(t) = a/kt.

Only one of the two possibilities occurs for a given set of parameters. Determining which
of the front types is present can be done by calculating the similarity solution given
by Worster (1986) and then checking the interface temperature, but we will discuss a
method for identifying the critical temperature T at the base of the tank, with other
parameters fixed, at which the switch between the two interface conditions occurs.

In a finite tank, the issue becomes more complicated. The upper and lower boundaries
are held at fixed temperatures, so the T' = T isotherm reaches a finite depth steady-
state that can be easily determined. However, once the T' = Ty isotherm slows sufficiently,
solute diffusion can begin to drive the advance of the solid-mush interface. In other words,
both cases can occur as the solidification progresses.

This is different from what occurs in the absence of solute diffusion. In such a case,
the solid-mush interface follows the T' = T isotherm exactly if the lower boundary is
cooled below T' = T or never appears if that cold boundary is fixed above the eutectic
temperature. This is essentially the behavior described by Emms & Fowler (1994), where
latent heat was included with the velocity of the solid-mush interface given by either
the Stefan condition, if eutectic, or being approximately zero otherwise. However, as
demonstrated in Worster (1986) and Gewecke & Schulze (2011), solute diffusion can still
drive the advance of a solid-mush interface even when the temperature at the bottom of
the tank is above the eutectic. This effect also appears more generally when the solid-
mush interface is not eutectic, even if the base of the tank is fixed at a subeutectic
temperature. Hence, the two possibilities for the interface are eutectic, when T'= T at
the interface, or diffusion-controlled.

The behavior in a finite tank without the possibility of a T' = Tg front has already
been studied by Gewecke & Schulze (2011). In that study, the temperature at the base of
the tank is restricted so that Ts > Tr. An assumption of negligible latent heat permitted
the application of the method of characteristics to the problem. We will take a similar
approach to the more general case where we require only that Tz is cold enough to cause
formation of a mushy layer. The previous study demonstrated that the mushy layer will
eventually vanish. This is due to the mush-liquid interface being restricted by a particular
isotherm and the advance of the solid-mush interface being driven by solute diffusion,
and these two eventually intersect. In the present case, the mushy layer will still vanish
on a finite domain.

A major focus of this paper is to identify when certain conditions apply at the solid-
mush interface. In contrast, conditions at mush-liquid interfaces have previously been
studied by Worster (1986) for growth from a cold boundary in an infinite domain, by
Schulze & Worster (1999) and Schulze & Worster (2005) for the case of crystal pulling,
and by Gewecke & Schulze (2011) for growth from a cold boundary on a finite domain.
The conditions to apply in each case depend upon the interface velocity, and often involve
some other velocity arising in the system. We follow an approach similar to that used by
Gewecke & Schulze (2011), where the interface velocity can be compared with the velocity
of a characteristic at the interface to identify the applicable conditions at a given time.
In the present case, we will find that the interface follows the eutectic isotherm until the
velocity of that isotherm falls below the velocity of a characteristic at the interface.



Solid-mush interface conditions for mushy layers 3

The assumption of negligible latent heat is used to simplify the mathematical analysis
of the problem. The primary benefit of this assumption is that the temperature field no
longer depends upon other quantities in the problem. While the presence of latent heat
would serve to slow the solidification in the system, the transition from a eutectic solid-
mush interface to a diffusion-controlled solid-mush interface would still appear. Negligible
latent heat has also been used in other studies of binary alloy solidification, especially
in studies of directional solidification of alloys such as Langer (1980) and the results
reviewed by Davis (2001).

We will first review the model for an infinite domain and discuss our simplifying as-
sumptions. Then, we will investigate the issues for the infinite domain that we have
discussed above, identifying a method to determine which of the two conditions deter-
mines the location of the solid-mush interface. After that, we will describe the changes
for the model associated with a finite domain. We will then identify our method for
numerically solving the finite-domain model. Results will be presented and discussed,
illustrating the transition discussed above.

2. Infinite-domain case

The two cases we are concerned with differ only at the solid-mush interface. We will
present the model as given by Worster (1986) with complete solute rejection and a
noneutectic solid-mush front, and then describe the modified interface conditions due
to a eutectic front. For both cases, we assume equal thermal properties in all phases
and total solute rejection from a noneutectic solid. Here, we present the model with
latent heat, but we will later assume that latent heat is negligible. Let a(t) denote the
solid-mush front and b(¢) denote the mush-liquid front.

In the farfield, z — oo,

T — T, (2.1a)
C— Co, (21b)
where T denotes temperature and C' denotes the concentration of solute in the liquid

phase.
In the liquid region, b(t) < z,

oT o*r
E = KJW’ (223,)
oC 0%C
i DW, (2.2b)
where k and D are the thermal and solutal diffusivities, respectively.
At the mush-liquid interface, z = b(t),
[Tt =0, (2.3a)
(O] =0, (2.3b)
L . oT oT
Z(1— = - — — 2.
Cp( x)b H(az>b— K<8Z>b+’ (2.3¢)
. oC oC
Cy(1— b=D — — | = 2.3d
-wi=nu(5) (%) (2.30)

<?9_Z)+ =T <%)+. (2.3¢)
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The third condition is a Stefan condition balancing heat flux with the release of latent
heat, and the fourth is a Stefan condition balancing solute flux with solute rejection.
The fifth condition is a condition of marginal equilibrium, introduced by Worster (1986),
describing the minimum thermal gradient at the interface which would not result in
further growth of the mush. As shown in Worster (1986), the assumption of equal thermal
properties in all phases allows this fifth condition to be replaced by the condition

xXp =1, (2.3f)

which simplifies (2.3c) and (2.3d).
In the mush, a(t) < z < b(t),

oT 0’T L ox

E = Hﬁ — p—cpa, (243,)
oxC) 9 [ aC
T =Ty —IC, (2.4c)

where L is the latent heat, p is the density, ¢, is the specific heat, x is the liquid fraction,
I" is the slope of the liquidus, which is assumed to be linear, and T); is the melting
temperature of the pure material. The third equation is an approximation of the lig-
uidus curve, and represents local thermal equilibrium within the mush. The underlying
assumption is that dendrites grow or decay sufficiently to maintain this relationship.

At the solid-mush interface, z = a(t),

7]+ =0, (2.5a)
L . oT oT
gxaa =K (E>a— - K (E)a+ , (2.5b)
: oC
CaXaa - _DXa (&)aJr . (25(3)

The second and third conditions serve the same roles at this interface as (2.3¢) and (2.3d)
serve at the mush-liquid interface.
In the solid, 0 < z < a(t),

or o*T
E = KJW, (263,)
%—Cf =0, (2.6b)

where ¢ denotes the concentration in the solid phase. In the case of a noneutectic solid-
mush interface with our assumption of complete solute rejection, we have ¢ = 0. This
will change in the eutectic case, however.

At the bottom of the tank, z = 0,

T="Tg. (2.7)

The initial conditions for this system are
T(z,0) =Ty, (2.8a)
C(z,0) = Cp. (2.8b)

This system produces a solid-mush interface satisfying Cs = 0. If Ts < T'g, it is possible
that the solid-mush interface will have a temperature below the eutectic, so a eutectic



Solid-mush interface conditions for mushy layers 5

front would appear instead, which is the possibility specifically studied by Anderson
(2003). Such a possibility was also accounted for in the models of Fowler (1985) and
Emms & Fowler (1994). In this case, we replace (2.5a)-(2.5¢) with

[T]F =0, (2.9a)
T =Tp, (2.9b)
L oT oT
axaa =K (a)a - K <£>a+ , (2.9¢)
(Cga_ - a‘*’Xa‘*’)a = DX+ <@> . (29(31)
0z ) +

The concentration of solute that is frozen into the solid is given by %,-, an unknown
quantity which must be determined by (2.9d). We will assume that there is no solute
diffusion within the solid. Since the concentration in the mushy layer is tied to temper-
ature through the liquidus relationship (2.4c), the second condition above can also be
expressed as

Coe = Chp. (2.10)

3. Similarity solutions

The systems set forth in the previous section admit similarity solutions, specifically
through the similarity variable
z

= Vart’

with the mush-liquid and solid-mush interfaces respectively satisfying
b(t) = 2\, Vkt, (3.2a)
a(t) = 2\ Vkt. (3.2b)

This transforms the system from a system of partial differential equations to a system
of ordinary differential equations. The details of the similarity solutions in the two cases
under consideration can be determined by modifications of Worster (1986) and Anderson
(2003). Due to the structure of these similarity solutions, only one of the two potential
solid-mush interfaces appears for a given problem, and this is determined by the param-
eters for a given problem.

For the rest of this paper, we will assume negligible latent heat, so L = 0. In this case,
the temperature profile for the similarity solutions is given by

T(n) =Tp+ (Too - TB)erf(n)7 (33)

(3.1)

where erf(n) is the error function

n 2
erf(n) = %/0 e de.

For the similarity solution which satisfies (2.5a)-(2.5¢), we have
Oy + (chfcf))erfc(n/ﬁ)’ N <,
C( ) . erfc()\b/ﬁ) (3 4)
= (TM - T(n))/r7 Ao <1 < Ao, ’
0, 0<n<Ag,
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and
¢(n) =0, (3.5)
where )\, and \, satisfy
o ((2-1)%) =T St (30
0= (2XaCo+ + €Cly) Xa+, (3.6b)
with € = D/k. We note that (3.6b) requires either
Xat+ =0 (3.7a)
or
20,Co+ +€Cly =0, (3.7b)

but we will demonstrate at the end of this section that both of these conditions are
satisfied, which is guarnteed only when latent heat is neglected. For the similarity solution
in the case of a eutectic solid-mush front, we have

(Cr—Co)erfe(n//e)

c B Co + erfo( A /v/€) ) Ap <1,
(n) = (T =TT, Ap<n<, (3:8)
0, 0<n< AE,
and
0 Ap<n,
E(n) = { B (3.9)

where A, satisfies (3.6a) and Ag solves
erf(/\E) = (TE — TB)/(Too — TB). (310&)

For both similarity solutions, the liquid fraction is given by

_ M eC"(€) +26C7(€)
x(n) = xpexp (/n O/(6) 1 26006 df), (3.11)

where x, = 1 due to the combination of our assumptions and the condition of marginal
equilibrium.

We will now demonstrate that both of the conditions (3.7a) and (3.7b) are satisfied at
the noneutectic solid-mush interface. This is a summary of the discussion in the appendix
of Gewecke & Schulze (2011). Under the given similarity transformation, the equation
governing the liquid fraction in the mushy layer is

(2nC + eC)x' = —(2nC" + eC")x. (3.12)

When this is integrated, we get (3.11). The solid-mush interface position solves (3.6b).
Now, if (3.7b) is satisfied, then the interface appears at a regular singular point of (3.12).
Near the singularity, a series solution of the form

) = anln — &),
n=0

can be identified if the function
2nC’ 4 eC”
pln) = 2 ;
2nC + eC
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FIGURE 1. The various interface positions are shown as functions of the difference 77 (Co) — T’s.
The dashed curves represent the locations of interfaces that do not appear for a given tem-
perature Tp. The A values are in terms of the similarity variable. Here, As is the solid-liquid
interface position predicted by the Stefan problem, )\, is the predicted noneutectic solid-mush
interface position, A, is the mush-liquid interface position, and Ag is the location of the eutectic
isotherm, which also corresponds to the predicted eutectic solid-mush interface position.

has a simple pole at the singularity, which we denote &,. This is indeed the case, and we
find that

—2(1— )&
2(1 —€)é2 — ¢’

T =

(n—¢&s)p(n) =

for the series solution. As a result, we find that

— lim
n—&s

Xo+ = lim x(n) =0,
n—=Ad
which satisfies (3.7a). On the other hand, if (3.7a) is satisfied but not (3.7b), then x =0
throughout the mushy layer, which contradicts y,- = 1. As a result, both of (3.7a) and
(3.7b) are simultaneously satisfied when fulfilling (3.6b).

4. Switching temperature

It is natural to wonder which of the two sets of solid-mush interface conditions, (2.5a)-
(2.5¢) or (2.9a)-(2.9d), applies for a given set of parameters. If Tp > Tg then the first
case applies, and if T << Ty then the second case applies, but for T below but near
TE there is some ambiguity. However, under the assumption of negligible latent heat,
the main changes in the outcomes are the location of the solid-mush interface and the
concentration on the solid side of that interface. The temperature profile in the whole
domain, the mush-liquid interface position, and the concentration profile in the liquid
remain the same, while the liquid fraction in the mushy layer is described by (3.11) despite
the change in size of the resulting layer. In figure 1 we demonstrate the predicted positions
of the interface positions A; in terms of the similarity variable. For Tz near T, (Cy),
only a liquid-solid interface appears. Once T is sufficiently cold for undercooling to
occur at a solid-liquid interface, two interfaces bounding a mushy layer appear instead.
For Tp < Tg, the eutectic solid-mush interface can be predicted, but the noneutectic
interface dominates for a relatively narrow range of T’z values. However, once Tz crosses
some critical value T}, the eutectic solid-mush front begins to dominate the noneutectic
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solid-mush front. The left-hand portion of this figure, before the Ag curve appears, is
very similar to figure 5 in Worster (1986).

In the absence of any other method for determining which of the two conditions will
hold for a given set of parameters, one could determine the similarity solution with
a noneutectic solid-mush interface and then check the temperature at the solid-mush
interface. If that temperature were at or above the eutectic, then the correct system
was used. If that temperature is instead below the eutectic, then the other system must
be utilized. Rather than use this approach, it would be useful to have a method to
determine a priori which of the two similarity solutions to use. We will present a method
that fixes all parameters except for the temperature at the base of the tank Tz and then
determines the critical temperature T at which the switch between the two similarity
solutions occurs.

We focus on the solid-mush boundary conditions. Under the assumption of negligible
latent heat, these become

[T =0, (4.1a)
or1Tt
e o
) oC
CaoXxa@ = —Dxq (g)a+ , (4.1c)
for the noneutectic front and
[T]F =0, (4.2a)
T =Tp, (4.2b)
C=Cg, (4.2¢)
orTt
A o
oC
(o = Cortar) = Do (52 ) (4.20)

for the eutectic front. Should the two fronts coincide, we find by combining (4.1c) and
(4.2¢) that

1}

which is expected for the non-eutectic front.
For both systems, we know that the temperature field is given by (3.3). In terms of
the similarity variable, (4.1¢) becomes

(Ca+ + ¢ Cl+) Xa+ = 0, (4.3)

22X, ¢

for a noneutectic front and (4.2e) becomes

(CE + 2—;{10(/14—) Xat+ = Ca-» (4.4)

for a eutectic front, where C” denotes the derivative of concentration with respect to 1.
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Furthermore, in the diffusion-controlled case,

Xa+ =0,
Cut + 5 Clhy =0
at 2)\a+ at — Y

both hold, as previously discussed in section 3. Assuming that the two fronts coincide,
we can combine the conditions above to find that

€
CE + 2)\(1 (IL+ = 07 (45)
where
T —Tg
erf(y) = (46)

Alternatively, we can manipulate (4.5) and utilize the liquidus relationship (2.4c) to
get the switching condition

2/\a(TE — T]u) + €T;+ =0. (47)

As a result, we can fix all but one of the parameters and determine the critical value
of the remaining parameter which causes the switch in the conditions at the interface.
Realistically, since k, D, Tg, Cg, and T' are fixed for a given material, and since Cj is
not present in the above condition, we can fix T, and determine the critical temperature
T at the base of the tank which causes the switch, or we can fix T and determine the
critical initial and farfield temperature 7.

To determine the critical value T numerically, we perform the following routine, fixing
all other system parameters:

(a) Provide an initial guess for T which is less than Tg.

(b) Calculate A\, as the solution of

erfN) = (Tg — Ty) /(T — T5).
(¢) Update the guess for T using a Newton iteration, with

E(Too — TB)
S

where A is a function of T satisfying

o\ Te — Ts
o5 <(Too — TB)2> exp()\Q).

(d) Repeat from the first step until G(Tz) and the change in Tz are sufficiently small.
The resulting value will be T75.
For temperatures Tp at the base of the tank below this critical value, the eutectic solid-
mush front will appear. Otherwise, the noneutectic front will appear. A similar routine
can be used to calculate a critical value of 7% given T'z. In Figure 2 we show a portion
of the T, — T'’s plane separated into four regions, one where no solidification occurs, one
where there is no mush, one where the noneutectic solid-mush front appears, and one
where the eutectic solid-mush front appears. For these purposes, we have utilized the
parameters Set 1(a) from Table 1 in Worster (1986), which roughly approximate a 14%
sodium nitrate solution, with latent heat omitted.

G(Tg) = exp (=A%) + A (T — Tu),
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FIGURE 2. The horizontal line near the top indicates the maximum temperature at the bottom of
the tank T at which solidifcation will occur, and is at Ts = T (Co). The middle curve describes
the critical temperature at the bottom of the tank at which a mushy layer first appears. The
lower curve describes the critical temperature at the bottom of the tank at which the solid-mush
front transitions to a eutectic front. In other words, the three curves divide the Tr — T plane
into four regions: a region at the top where no solidification occurs, the upper-middle region
where a solid-liquid front appears, the lower-middle region where a mushy layer appears with a
noneutectic solid-mush front, and the lower region where a mushy layer appears with a eutectic
solid-mush front.

5. Finite-domain case

For a finite domain, only a few modifications to the model are required. Instead of
far-field conditions, we instead have at an upper boundary z = H the conditions,

T = TH, (51&)
aC
= =0 (5.1b)

where Ty > T1.(Cp). The first condition states that the temperature at the top of the
tank is fixed, and the second states that no solute may exit the tank. Additionally, the
initial conditions are

T(z,0) =Ty, (5.2a)
C(Z, 0) = C(). (52b)

We have delayed introduction of a rescaled system until this point because the infinite-
domain system lacks a clear choice of length scale whereas the finite-domain system has
the natural length scale H. We nondimensionalize both systems using the scalings

T — TE R ~

t=—t, 2=—z.

[ ——
Ty —Tp = H2 " H

The concentration C' is scaled so that it ranges between zero and one, but with the
eutectic concentration Cpg satisfying 0 < C'g < 1. These scalings are the same as those
used by Gewecke & Schulze (2011), but with a modified thermal scaling. Nondimensional
parameters will be presented as they arise, but we note that the Stefan number will not
appear due to our standing assumption of negligible latent heat. We will also drop the
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‘hats’ on the variables, so any references to these variables will refer to the nondimensional
variables unless otherwise noted.
The boundary conditions at the upper boundary (now z = 1) become

0=1, (5.3a)
oC
y 0. (5.3b)
In the liquid region b(t) < z < 1 the equations become
00 9%
E = @, (54&)
oC 0%C

where € = D/k is the inverse Lewis number.
At the mush-liquid interface z = b(t) the conditions become

6] =0, (5.5a)

[C]f =o, (5.5b)
+

{%] = 0, (5.5¢)

Cy(1 — xu)b = exs (Z—f)b_ — (Z—f)w . (5.5d)

The condition of marginal equilibrium given by Worster (1986), which in the present
case takes the form

X7 (1)) =xp- =1, (5.6a)

applies whenever

. oC , _ -

b(t) > —e (E(b (t),t)) /C (b (1),1). (5.6b)
This specifies a value for x; only when such a condition is needed, which is when the
interface is advancing more rapidly than the leading characteristic. Otherwise, the value of
Xb is determined by the characteristic curves terminating on the interface. This restriction
indicating when the condition of marginal equilibrium applies was identified in Gewecke
& Schulze (2011). The condition of marginal equilibrium reflects the idea that the mushy
layer grows to resolve undercooling, and this condition should not be expected to hold
when there is no undercooling to relieve. In the latter case, the diffusion of solute from
the mushy layer into the liquid layer controls the evolution of the interface. In general,
the condition of marginal equilibrium will cause 0 < x; < 1 whenever that condition
applies.

In the mushy layer a(t) < z < b(t) the equations become

a0  9%0
E = @, (57&)
oxe) _ o ([ oC
ot o: <X az> ’ (5.7D)
0 =—I(C—Cg), (5.7¢)

where I' = T'/(Ty — Tk).
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At the solid-mush interface z = a(t) the conditions depend upon whether the interface
is eutectic or noneutectic. They can be summarized, similar to Fowler (1985) and Emms
& Fowler (1994), as

6 0 (eutectic)
{ ¢,- 0 (noneutectic) (5-82)
[0)F =o, (5.8b)
901"
|:£:| - = O, (58(3)
oC
(Cga_ - a+Xa+) a4 = €Xq+ (%)aJr . (58(31)

As in Gewecke & Schulze (2011), the thermal field is independent of the concentration
and liquid fraction due to negligible latent heat. Additionally, the liquid fraction in
the mush can be tracked by the method of characteristics. The characteristic curves
initiate on the mush-liquid interface but eventually terminate along either the mush-
liquid interface or the solid-mush interface. The position of the characteristics and the
liquid fraction along such characteristics is described by

{G6) = = (G €leh o) ) /C(C(o) ), (5.9

7(s) =1, (5.9b)
s Ga2—g T 9¢ , T

th%/ag«>@ mu@@m@.
0

5 ) -
TRE, () (5.9¢)

This leads to the condition described by (5.6a) and (5.6b). The evolution of characteristic
curves is illustrated in figure 3. The solid-mush interface advances more rapidly than
characteristics initiated at early times, but eventually slows to follow a characteristic,
when the front becomes diffusion-controlled instead of eutectic.

Additionally, this description of the characteristics allows us to recast the condition
(5.8a) at the solid-mush interface as

{ 0 =0, when a > —¢ (% (a*(t),t)) /Cla™(t),1),

%,- =0, otherwise. (5.10)

Alternatively, we may use C,+ = Cg instead of § = 0, due to the liquidus relationship.

6. Numerical method

Our numerical scheme modifies the scheme presented in Gewecke & Schulze (2011),
accounting for the possibility of a eutectic solid-mush front. An additional quantity, the
concentration in the solid region, must be calculated and retained. Since the system will
be initialized using the similarity solutions, we must determine which of the two similarity
solutions to use, as discussed in Section 4. At each time step, care must be taken to find
the correct solid-mush interface, whether it be a eutectic or a noneutectic front.

The discretizations are much the same as in Gewecke & Schulze (2011), but we will
give a brief overview below. We will then discuss the numerical method, explaining how
each quantity is determined.
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FIGURE 3. Characteristic curves (dashed) initiate along the mush-liquid interface (upper solid
curve), and (a) terminate on the mush-liquid interface as in Gewecke & Schulze (2011) or (b)
along a eutectic solid-mush interface (lower solid curve). Once the solid-mush interface switches
from eutectic to diffusion-controlled, the interface follows a characteristic. This can be seen in

(b).

6.1. Discretization

The various quantities in this problem appear on different domains. As a result, the
discretizations for each quantity are different. To transfer data between different compu-
tational grids, we interpolate data as needed.

The liquid fraction is only computed within the mushy zone. Since we track the liquid
fraction along characteristic curves, there is no fixed computational grid nor is there
uniform spacing. The temperature field, since it is not influenced by any other quantities
in the problem, uses a uniform spatial discretization over the full domain.

The concentration is handled separately in each of the three subdomains. In the solid
layer, we keep track of the concentration on the solid side of the solid-mush interface at
each time step, and that quantity becomes frozen in, so at any given time, the concentra-
tion in the solid can be determined by that data. There is no solute diffusion within the
solid, so there is no specific computational grid needed. The history of the solid-mush
interface position dictates the spatial grid within the solid. In the mushy layer, the con-
centration and its derivatives can at all times be computed from the temperature field
through use of the liquidus relationship. For the liquid layer, we utilize the mapping

z—b(t)

TEL S T

from (b(t),1) to (0,1). This transformation changes (5.4b) into

aC  (1—&b(r)aC € *C 61
or  H—b(r) 9§ (H—b(r))? 9>~ (6.1)

The gridpoints in (0,1) do not move, so data at the previous timestep can be utilized
directly.
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6.2. Scheme

We initialize the system at some very small initial time 5 using one of the two similarity
solutions. To pick between the two, we calculate the switching temperature 75 using the
method outlined earlier and compare with our prescribed value of Ts. A small number
of characteristics are initiated at this time, including a characteristic at each of the two
interfaces.

For each following timestep ¢;, we do the following:

(1) We update the temperature distribution over the whole domain.

(2) For each characteristic present at ¢;_1, we update the position and liquid fraction
data, assuming that all characteristics remain in the mush. The values for concentration
and its derivatives are calculated using the liquidus relationship and interpolating the
values of 6 and its derivatives.

(3) We determine the location of the solid-mush interface a;. Since the noneutectic
solid-mush interface follows a characteristic, we first check to see if the corresponding
characteristic has temperature above or below Tg. If it is above that temperature, then
we accept that position as the interface position, set the concentration on the solid side
of the interface to zero, and proceed to the next step. If the temperature is instead at or
below the eutectic, we perform the following steps:

(i) Perform a search to identify the position of the ' = T isotherm. This position
will be a;.

(ii) The liquid fraction on the mush side of the interface is determined by the char-
acteristics terminating on the interface.

(iii) We calculate the concentration on the solid side of the interface, using (5.8d).
(iv) The characteristics which terminated along the solid-mush interface, which are
those whose positions had been calculated to be below the new interface position,
are removed. In practice, the locations of these characteristics and the liquid fraction
along these characteristics are set to the values at the interface.

(4) We then determine the location of the mush-liquid interface b;:

(i) We guess an interface position b; and a secondary guess b; + J, with ¢ small.

(ii) The concentration field in the liquid is calculated using the two guess values
above.

(iii) Residuals for each of the two guesses are calculated using (5.5d).

(iv) Using the residuals calculated in the previous step, we use a secant-line approx-
imation of the derivative in a Newton iteration to update the guess for b;. With this
updated guess, we repeat the previous two steps.

(v) Once the size in the change for the guess is small enough, we terminate the
iteration. If the accepted value of b; is ahead of the leading characteristic, we initialize
a characteristic at (b;,t;) with x = 1. If the accepted value of b; is not ahead of
the leading characteristic, we remove characteristics as needed so that the leading
characteristic is at (¢;, ;). In practice, the locations of such characteristics and their
corresponding liquid fractions are set to the values at the interface. We then proceed
to the next timestep.

7. Results

The parameters used to produce results are from Set I of Table 1 in Worster (1986),
with some slight modifications due to treating the concentration as a fraction rather than
a percentage. Additionally, we set Cg = 0.5 and Ty = —20 degrees Celsius, primarily
for convenience. These parameters roughly approximate a 14% sodium nitrate solution.
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FIGURE 4. In (a), the solid-mush (lower curve) and mush-liquid (upper curve) interface positions
are shown from ¢ = 0 to the time when the mush vanishes. The long-time behavior is shown
in (b), with only a single curve denoting the solid-liquid interface once the mush has vanished.
The parameters used are provided in the main text.

Set II of Table 1 in Worster (1986) more accurately represent such a solution, but do
not exhibit equal thermal properties in all phases. We additionally set Ty = 15 degrees
Celsius and T = —25.6 degrees Celsius, with the height of the tank being H = 15 cm. In
nondimensional terms, we have € ~ 7.7 x 1073, '~ 1.143, 05 = —0.16, and the melting
temperature of the pure material Th; = 0 corresponds to 6 ~ 0.57.

In figure 4 the positions of the solid-mush and mush-liquid interfaces are plotted against
time. Figure 4(a) demonstrates the evolution until the mush vanishes, whereas figure 4(b)
shows the evolution over a longer range of time values, with a solid-liquid front present
after the mushy layer has vanished. Over a short time, both of the interfaces advance very
rapidly, but each eventually slows. After a critical time, the solid-mush interface switches
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FIGURE 5. Three different snapshots of the concentration profile. The circles in each image
represent the location of the solid-mush interface; note the jump in concentration across the
interface. The square in each image represents the location of the mush-liquid interface. In
(a) we see a sample concentration profile while the eutectic solid-mush front is present. In (b)
we see the concentration profile when the transition from eutectic to noneutectic solid-mush
interface occurs. The concentration profile at a later time is shown in (c), where the jump in
the concentration gradient at the mush-liquid interface is visible.

from a eutectic front to a diffusion-controlled interface, which continues to advance until
the disappearance of the mushy layer.

We demonstrate the evolution of the concentration profile in figure 5. Below the solid-
mush interface the concentration of solute frozen into the solid is shown, and above the
interface the concentration in the liquid phase is shown. We have already demonstrated in
figure 4 that the solid-mush front never retreats, so the solute that is frozen into the solid
at the interface remains in the same place forever. Figure 5(a) shows the concentration
profile at an instant when the solid-mush interface is eutectic, figure 5(b) shows the
concentration profile at the instant when the solid-mush interface changes type, and
figure 5(c¢) shows the concentration at a later time when a small region of pure solid can
be seen. The concentration on the solid side of the interface is plotted as a function of
time in figure 6, to highlight the fact that the amount of solute being frozen into the solid
declines over time, eventually becoming negligible once the evolution of the temperature
field has stagnated sufficiently. Once that occurs, the solid-mush front switches from a
eutectic front to a noneutectic front.

The evolution of the liquid fraction in the mushy zone is given in figure 7. Early on, the
liquid fraction appears to behave as in the similarity solution, as the profile mainly gets
stretched out. Once the temperature field has equilibrated, the liquid fraction along each
characteristic is constant, so the curve advances with the characteristics, with portions
of the curve vanishing as characteristics pass the mush-liquid interface.

Another important aspect is how this solution compares with the solution that would
be generated if we were to ignore the possibility of a T = T front. Figure 8 shows
the interface positions generated in the present case along with the interface positions
generated by utilizing the method set forth in Gewecke & Schulze (2011), ignoring the
impact of eutectics. We see three major impacts. The most easily predicted impact is that
the solid-mush interface advances much more rapidly at early times when the T' = Tg
front is incorporated. Next, we see that the time until the mush vanishes is reduced.
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FIGURE 6. As time progresses, the concentration frozen in at the solid-mush interface varies, as
demonstrated in (a). We can also see this effect by looking at the concentration profile in the
solid when the interface switches from a eutectic interface to a noneutectic interface, as shown
in (b). The vertical line in (b) represents the concentration in the solid for the infinite-domain
model.

This is primarily due to the rapid advance of the solid-mush front at early times. Finally,
we can see that the eventual steady states are different, with the solid-liquid interface
advancing farther when the 7" = T interface is incorporated. This is also an intuitive
result, as some of the solute becomes incorporated in the solid, so there is less total
solute in the liquid in this long-time regime. Since the steady-state location of the solid-
liquid interface is dictated by the liquidus relationship, with the concentration being the
uniform concentration of the remaining liquid, the interface must advance farther when
less solute is present.
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FIGURE 7. The curves are liquid fraction () profiles within the mush at various stages of system
evolution. The curves in (a) are at evenly-spaced intervals during the advance of the mush-liquid
interface. The remainder of the time until the mush vanishes is illustrated in (b), again at evenly
spaced intervals.
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FIGURE 8. The interface positions for the present study (solid curves) are compared with the
interface positions ignoring eutectic effects (dashed curves). At early times, both systems have a
solid-mush interface (lower curve) and a mush-liquid interface (upper curve), and at later times
both systems have a solid-liquid interface. The mushy layer disappears sooner when eutectics
are taken into account.

8. Conclusions

When a finite-height tank filled with a uniformly-mixed binary alloys is placed onto a
cold surface, a mushy layer may form. If it does form, the mushy layer initially advances
very rapidly into the liquid region. A solid layer also grows, but the growth of the solid
layer may be rapid or slow, depending upon the temperature at the base of the tank.
If the cold surface is sufficiently cold, the solid-mush interface will initially be dictated
by the isotherm associated with the eutectic temperature and will move rapidly, though
not as rapidly as the mush-liquid interface. Once the advance of the isotherm slows, the
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advance of the solid-mush front will be dictated by solute diffusion, and this advance will
be slow. If the cold surface is above some critical temperature, then the solid-mush front
will advance slowly, as discussed in Gewecke & Schulze (2011). In either case, the mush-
liquid interface eventually begins a very slow retreat. The solid-mush front continues its
slow advance until it overtakes the mush-liquid interface, which takes a long time. After
the mushy layer has been eliminated, a solid-liquid front progresses until the system
stabilizes.

This switch between two different solid-mush interface types, eutectic and diffusion-
controlled, is an important feature. In the case of an infinite domain, using our assump-
tions, we can identify the base temperature at which this switch occurs for a particular
alloy. This also aids in identifying the early-time dynamics in the case of a finite tank,
when the similarity solutions from the infinite domain serve as excellent approximations
of the true solutions. In a finite tank, we get additional information when we recognize
the presence of both conditions. If the solid-mush interface is a eutectic front at early
times, then the amount of solute being frozen into the solid varies with time, which es-
sentially writes a history of the system into the solid. Under our assumption of complete
solute rejection, once the system equilibrates we will have a liquid region in equilibrium
with a heterogeneous solid region. This solid region will essentially have three layers: a
bottom layer with a nearly uniform concentration of solute frozen in, a middle transition
layer where the concentration of solute decays to zero, and then an upper layer that is
pure.

The variation of solute concentration within the solid is also of interest. The similarity
solution for the infinite domain has uniform concentration throughout the solid, as does
the solution for the finite domain with no solute diffusion. This may also have physical
consequences, contributing to variations in the microstructure of the resulting solid. Fol-
lowing the discussion in Kerr et al. (1990), the eutectic solid that forms in the present
case consists of frozen interstitial fluid (with concentration at the eutectic) between den-
drites that were previously a part of the mushy layer. This variation of concentration in
the solid phase may also have consequences in geophysical applications of mushy layers,
such as the solidification of magma chambers.
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