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One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type
lattice system with nearest-neighbour interactions, an external field and a degeneracy parameter. The un-
derlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary,
the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal
entropy between the two phases. We evolve this minimal model by applying rejection-free canonical and
microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square
(2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise
adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we
are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-
dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt
coexistence in the microcanonical ensemble, where we detect negative specific heat capacities and find that
this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The
negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio
is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal
nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model’s utility in
tracking crystal-melt interfaces at the atomistic level.

I. INTRODUCTION

Melting and crystallisation are common examples of a
first-order phase transition, and manipulating these pro-
cesses is an important aspect of materials science.1 The
consequent demand for predictive capability has moti-
vated the development of numerous theoretical meth-
ods, with continuum models at one end of the spectrum,
and molecular dynamics (MD) simulations at the other
extreme. MD provides a fully atomistic description of
multi-phase systems, but the associated computational
cost restricts the approach to relatively small length- and
time-scales, making it difficult to simulate rare events
(such as phase nucleation). This restriction does not ap-
ply to continuum models, but there the difficulty lies in
formulating a description of the phase boundary, and any
continuum model inevitably fails to provide a meaning-
ful picture of the microscopic mechanisms operating at
the nanometre scale. In order to reach a suitable com-
promise, it is desirable to pursue a mesoscopic approach
with an appropriate level of coarse-graining. Phase field
crystal (PFC)2 modelling is one possible way forward,
but it still does not offer an intuitive microscopic pic-
ture. In the present contribution we outline an alterna-
tive approach based on lattice Monte Carlo (MC), which
admits a highly intuitive microscopic description of the
interface structure and kinetics, and it allows for precise
adjustment of the volumetric contribution to the relevant
thermodynamic potential, facilitating the simulation of
phase nucleation.

Lattice models have played an important role in shap-
ing the current understanding of crystal growth.3 Kinetic

lattice MC models have also been recognised as an ef-
fective method for simulating microscopic dynamics at
long time-scales, thus filling the wide gap between what
can be accomplished with continuum models and MD
studies. Examples where this approach has proven effec-
tive include the growth of thin films in chemical vapour
deposition,4 the relaxation of nanoscale atomic clusters in
vacuum,5 the growth of dendrites in a dilute solution,6

etc. In many of these applications the objective is to
track the interface between a condensed phase and a di-
lute (gas-like) environment or vacuum, in which case the
atomistic interpretation of a two-component lattice sys-
tem is clear: an occupied lattice site represents an atom,
and a vacant site represents empty space. Modelling the
solidification of a pure melt, however, requires the iden-
tification of an interface between two condensed phases,
and it does not necessarily make sense to classify indi-
vidual atoms as solid or liquid at such a boundary. Still,
in MD simulations the two phases can be fairly well dis-
tinguished by an appropriate local order parameter (see
Fig. 1). A two-state lattice model can be viewed as de-
scribing the behaviour of such an order parameter, whose
globally-averaged value may fluctuate. Note that the as-
signment of liquid atoms to a fixed lattice is an approxi-
mation: many melt-specific characteristics will be lost as
a result; but some of the lost features that are necessary
for the description of the phase boundary can potentially
be reintroduced via additional (preferably meaningful)
parameters.

A simple and intuitive model for cohesion in a two-
component lattice system is the binary alloy model.9 It is
based on the assumption that only the adjacent sites can
interact with each other, and that these interactions can
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FIG. 1. Distribution of instantaneous values of the Steinhardt
q6 local order parameter,7 refined using the scheme of Lechner
and Dellago,8 in a single configuration from a microcanoni-
cal MD simulation of coexisting (bulk) Lennard-Jones system
containing 32000 atoms with periodic boundary conditions.
The distribution is clearly bimodal, so we can characterise
atoms with q6 > 0.3 as ordered (face-centred cubic) and dis-
ordered otherwise. The inset illustrates the configuration with
ordered atoms coloured in gold and disordered in blue.

be characterised by a fixed energy parameter. The total
potential energy then becomes a weighted sum of nearest-
neighbour “bonds”, with only three distinct bond types.
This energy function can be recast in the more familiar
form of a spin-half Ising Hamiltonian with a coupling con-
stant J and an external field of magnitude B. The statis-
tical mechanics of spin-half Ising systems is relatively well
understood:10 in the absence of an external field (B = 0),
on a lattice with coordination number greater than three,
there is a temperature-driven second -order transition at
a lattice-specific temperature Tc. There is also a field -
driven first-order transition at Bf = 0 for all T < Tc (see
Fig. 1a). In order to study temperature-driven first-order
transitions, Harris11 has modified the Ising model so that
the first-order transition occurs at a particular tempera-
ture Tf < Tc and Bf 6= 0. Harris’s modification relies on
just one additional parameter, δ > 0 — akin to fugacity
in the lattice gas model with non-conserved number of
particles9,12 — which adjusts the relative weightings of
the two possible atomic states in the partition function.
This reweighting effectively introduces degenerate states
into the system, and δ represents the degeneracy ratio of
one atomic state to the other. It is also meaningful to
think of δ as the difference in communal entropy between
the two phases, and its value fully determines the slope
of the phase boundary in the BT phase diagram (see
Fig. 2b). This key feature extends the binary alloy model
to heterogeneous systems composed of two energetically-
and entropically-distinct condensed phases. Since the rel-
ative fraction of constituent phases can fluctuate, the re-
sultant model is perhaps better described as a reactive
binary alloy.

The aim of this work is to combine Harris’s degener-
ate Ising model with Ray’s microcanonical Monte Carlo
approach12 and study equilibrium crystal-melt coexis-

FIG. 2. The BT phase diagram for (a) the ferromagnetic Ising
model and (b) the degenerate variant with δ > 0 carried by
one of the two atomic states. The red line represents a phase
boundary: crossing the solid portion constitutes a first-order
phase transition, while the dashed portion is associated with
a smooth transition. The dot at T = Tc represents a critical
point: a second-order transition will occur when the point
is passed while traversing along the phase boundary. The
slope of the boundary is − 1

2
kB ln δ, and the value of Tc is

independent of B or δ.

tence. Recall that a crystal-melt boundary is inherently
unstable in the canonical ensemble at fixed temperature,
because the interface free energy is usually positive, and
the system can always lower its total free energy by
adopting a homogeneous state (i.e. fully solid or fully
liquid). In the microcanonical ensemble it is the total
energy and not the temperature that is fixed, with the
equilibrium behaviour of a system now dictated by the
principle of maximum entropy, and when passing through
the solid-liquid transition the solid and liquid phases can
be forces to coexist indefinitely under certain conditions.
Constraining the total energy makes it possible to study
the equilibrium properties of the phase boundary, and
it also admits the possibility of direct comparison with
MD. Our implementation of microcanonical Monte Carlo
is based on the work of Ray,12 which differs from the ap-
proach taken by Harris et al.11,13,14, who used Creutz’s
N -demon algorithm.15 We found that the simplest form
of Creutz’s algorithm (with just one demon) exhibits pro-
nounced and somewhat inconvenient artefacts due to the
discrete nature of the potential energy landscape. These
discrete effects are rendered negligible in Ray’s approach,
which is actually more natural than Creutz’s for classi-
cal N -particle systems and is equally straightforward to
implement.

The format of the paper is as follows. In Sec. II we for-
mulate the degenerate Ising model and the rejection-free
MC method for simulations at constant temperature. In
Sec. III we analyse the model’s canonical behaviour on
a square lattice. We show how the degeneracy param-
eter admits precise control of the free energy barriers
associated with the minority phase nucleation, and we
exploit this feature to test a dimension-dependent scal-
ing expected from classical nucleation theory. In Sec. IV
we outline Ray’s12 approach to microcanonical MC and
use it to perform constant-energy simulations on square
(2D) and fcc (3D) lattices. We focus on the equilibrium
crystal-melt coexistence and discuss the occurrence of
negative heat capacities. We also simulate microcnaon-
ical nucleation and subsequent relaxation to an equilib-
rium Wulff shape. Sec. V serves as a brief summary.
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II. DEGENERATE ISING MODEL

A. Mapping of a binary alloy to an Ising spin system

Consider a d-dimensional periodic lattice with coordi-
nation number z and assume that all the potential energy
is stored in the nearest-neighbour bonds. Each lattice site
can be either solid (represented by ↓ to indicate that it is
the lower energy state) or liquid (↑), which calls for three
distinct bond types: solid-solid (↓↓), solid-liquid (↓↑) and
liquid-liquid (↑↑); and the corresponding energies will be
specified by (positive) parameters ε↓↓, ε↓↑ and ε↑↑. The
total potential is then

U = −ε↓↓N↓↓ − ε↑↑N↑↑ − ε↓↑N↓↑, (1)

where N↓↓, N↓↑ and N↑↑ are the bond counts that can
vary from state to state. Equation (1) is often referred to
as the binary alloy or bond-counting model. Assuming
the periodic lattice has no vacancies, the total site- and
bond counts will respect the following relations: N↓ +
N↑ = N , N↑↑ = zN/2 − N↓↑ − N↓↓, and N↓↑ = zN↓ −
2N↓↓ = zN↑ − 2N↑↑; which allow us to express (1) in
terms of just two independent variables, say N↓ and N↓↓:

U = −(ε↓↓+ε↑↑−2ε↓↑)N↓↓−(ε↓↑−ε↓↓)zN↓−ε↑↑
zN

2
. (2)

To connect with the Ising model, we now represent the
state of each site by an integer σ, which takes a value
of −1 for ↓ and +1 for ↑, so the entire configuration
space is now described by σ = {σn ∈ {±1}}Nn=1. In this
representation

N↓ =
1

2

∑
n

(1−σn) and N↓↓ =
1

4

∑
〈m,n〉

(1−σm)(1−σn),

where 〈m,n〉 denotes the set of all distinct nearest-
neighbour pairs (without double counting). After sub-
stituting these expressions for N↓↓ and N↓ into (2), some
algebraic manipulation yields the Ising-like form:

U(σ) = −B
∑
n

σn − J
∑
〈m,n〉

σmσn + C, (3)

where, in the context of ferromagnets, the parameter
B = z(ε↑↑ − ε↓↓)/4 models the effect of an external field
and J = (ε↓↓+ε↑↑−2ε↓↑)/4 is a coupling constant charac-
terising the interaction between neighbouring sites. The
additive constant C = zN(ε↓↓ + ε↑↑ + 2ε↓↑)/8 merely
shifts the energy scale, so the underlying statistical me-
chanics is the same as in the traditional spin-half Ising
model. For future reference we also note the inverse map-
ping:

ε↓↓ = J − 2B/z + 2C/(zN),
ε↑↑ = J + 2B/z + 2C/(zN),
ε↓↑ = −J + 2C/(zN).

 (4)

B. Canonical Monte Carlo

The equilibrium behaviour of the Ising model under
particular physical constraints is usually studied by sam-
pling the appropriate ensemble using MC. This procedure
usually takes the form of a Markov chain with transition
probabilities (i.e. normalised rates) between states satis-
fying a principle of detailed balance:

ρ(σi)Pij = ρ(σj)Pji. (5)

Here P is the Markov transition matrix such that Pij ≡
P (σi → σj) is the probability of traversing from state σi

to state σj , Pji is the probability of the reverse transition
(i.e. σj → σi), and ρ(σ) is the ensemble-specific (equi-
librium) probability distribution. Note that the Markov
matrix must satisfy

∑
j Pij = 1, which is enforced by

normalising the transition rates rij : Pij = rij/
∑

j rij .
In practice, only a relatively small number of transitions
are allowed, with most of the rates set to zero. For ex-
ample, it is common to only allow transitions that flip
the sign of a single spin component σn. (In the crystal-
melt system this is to be interpreted as a single atom
changing phase, as determined by the local order param-
eter.) When choosing which transitions to allow, one
must be careful to assure ergodicity: it must be possi-
ble for a sequence of transitions to navigate between any
two possible states. Even with this choice made, detailed
balance does not come close to prescribing unique rates.
The most common choice is due to Metropolis et al.,16

where transitions correspond to individual spins flipping
with the rates

rij = min{1, ρ(σj)/ρ(σi)}, (6)

where j runs over all states σj that differ from σi at a
single lattice site. In the Metropolis scheme all flips are
attempted at a uniform rate and accepted with probabil-
ity equal to rij . In effect, this also defines null moves by
assigning a rejection rate 1−rij to each of the attempted
flip moves. Collectively, the rejected moves contribute to
a rate,

r̃ii = 1−
∑
j

rij , (7)

to do nothing on a given MC time step. The sum of the
rates for any state i is then constant:

r̃ii +
∑
j

rij = N,

so that the normalized probabilities satisfy (5) with ρ
equal to the Boltzmann distribution.

When the computational cost of the rejected moves is
high, an alternative algorithm, due to Bortz, Kalos and
Lebowitz (BKL)17, is to discard the rejection moves and
always perform a flip with the rates (6). This corresponds
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to simulating a continuous time Markov process, where
the detailed balance condition now takes the form

ρ(σi)rij = ρ(σj)rji, (8)

and one must associate nonuniform time-intervals be-
tween jumps governed by a Poisson process with a total
rate Ri =

∑
j rij for jumping out of state i. This modi-

fication once again allows the detailed balance condition
to be satisfied by the Boltzmann distribution.

The Boltzmann distribution models a system coupled
to a heat reservoir at constant temperature T — a sit-
uation described by the canonical ensemble. Each state
σ is weighted by a Boltzmann factor exp(−βU(σ)), with
β ≡ (kBT )−1 denoting the reciprocal of the thermody-
namic temperature, and the distribution function is:

ρT (σ) = Z−1 exp(−βU(σ)), (9)

where Z is the canonical partition function. Note that,
when obtaining canonical ensemble averages, the kinetic
part (K) of a Hamiltonian separates and integrates to the
same constant for every Boltzmann factor. Hence, the
parameter β should be interpreted as a fixed constraint
that defines the ensemble. In the microcanonical ensem-
ble for isolated systems, however, it becomes necessary
to introduce additional degree(s) of freedom to mimic the
fluctuating kinetic contribution in the Hamiltonian.

C. Harris’s degeneracy parameter

For reasons that have already been stated in Sec. I,
Harris11 has modified the ferromagnetic Ising model by
introducing degenerate states into the model, which ef-
fectively amounts to using the grand canonical ensemble
with the following probability distribution:

ρ̃T (σ) = Z̃−1δN↑(σ) exp (−βU(σ)) (10)

= Z̃−1 exp (−β {U(σ)−N↑(σ)kBT ln δ})

where δ > 0 is a parameter introduced to act as an ad-
ditional weighting factor for the liquid state, N↑(σ) =
1
2

∑
n(σn + 1) is the number of “liquid” atoms (i.e. spins

with σ = +1) in state σ, and Z̃ is what appears to be
the grand canonical partition function:

Z̃ =
∑
i

δN↑(σi) exp (−βU(σi)) . (11)

Note that δ would normally be called fugacity in the
grand canonical sense,9,18 but here we interpret it as a
parameter that controls the communal entropy of the liq-
uid phase, allowing us to compensate for the phase space
that has been lost as a consequence of liquid atoms being
restricted to a lattice (on par with the solid). Hence, we
refer to δ as the liquid degeneracy or multiplicity param-
eter, and we set δ > 1 to endow the liquid with more

entropy. With this simple modification each Boltzmann
factor now contains an effective potential

Ũ(σ) ≡ U(σ)−NlkBT ln δ

= −
(
B +

1

2
kBT ln δ

)∑
i

σi − J
∑
〈i,j〉

σiσj

−1

2
NkBT ln δ

where the last term is a constant that has little effect on
the underlying statistical mechanics and (in most cases)

can be ignored. A desirable feature in Ũ is the effective
field

Beff ≡ B +
1

2
kBT ln δ (12)

passing through zero at a particular temperature Tf :

Tf =
−2B

kB ln δ
, (13)

which is positive when B and ln δ have opposite signs.
Note that −2B = z(ε↓↓ − ε↑↑)/2 can be thought of as
the latent heat and kB ln δ as the entropy change (both
per particle) during melting; so (13) is suggestively rem-
iniscent of the thermodynamic relationship between the
melting temperature (Tm), latent heat (L) and entropy
change (∆S): Tm = L/∆S. According to Harris,11 if B
and δ are specified so that 0 < Tf < Tc, the modified
Ising model will go through a first-order phase transition
at T = Tf , as was already indicated in Fig. 2b. In Sec. III
we will verify this temperature-driven first-order transi-
tion and analyse its features by Monte Carlo simulation,
which will require the use of a modified set of rates:

r̃ij =

{
min{1, ρT (σj)/ρT (σi)} if σi

n = −1,
δ−1 min{1, ρT (σj)/ρT (σi)} if σi

n = +1,
(14)

where ρT (σ) is the canonical (Boltzmann) distribution
given in (9). With these rates, the average number of
transitions with σn = +1 7→ σn = −1 is now a fraction
f = (δ − 1)/δ of that in (6).

D. Alternative formulations and links to other models

Before discussing simulated results, it is worthwhile
commenting on how the degenerate Ising model relates
to other better-known lattice models. Firstly, Griffiths19

has pointed out that δ = 2 corresponds to a special case of
the spin-one Ising system (often referred to as the Blume-
Emery-Griffiths model20). Extension to integer δ > 2
can also be formulated somewhat analogously to the q-
state Potts model,21 with the state of each lattice site
represented by sn ∈ {−1, 1, 2, . . . , q − 1} and the energy
given by

UP = −J
∑
〈n,m〉

sgn(sn) sgn(sm)−B
∑
n

sgn(sn).
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Here the signum (sgn) function makes all positive states
degenerate with effective δ = q − 1. Generalization to
rational values of δ can be achieved by allowing more
negative states, i.e. sn ∈ {−p, . . . ,−1, 1, . . . , q} so that
δ = q/p. Inclusion of all real numbers may be possible
through an XY -like model, where the state of each lattice
site is represented by a continuous variable. However,
Harris’s approach of manipulating the relative weighting
of only two Ising-like spin states via a single degeneracy
parameter is more convenient.

Also, recall that Harris’s δ gives rise to a temperature-
dependent effective external field, which is precisely what
Stevenson et al.22 have introduced in their Ising-like
model for glass forming liquids. However, in the con-
text of two-phase systems, the notion of the degener-
acy parameter is more meaningful than an effective field:
1/(1 + δ) and δ/(1 + δ) represent the fractions of total
phase-space volume associated with the “solid” and “liq-
uid” states, respectively. These fractions may be inferred
from a more accurate description of the underlying en-
ergy landscape.

III. CANONICAL SIMULATIONS

A. Square lattice (2D)

We now discuss our results from canonical MC simu-
lations on a square lattice. For this discussion it is con-
venient to adopt the following dimensionless quantities:
T ∗ ≡ kBT/J , B∗ ≡ B/J and E∗ ≡ E/NJ , where E
represents any form of energy (potential or kinetic). The
datasets in Fig. 3 were obtained by annealing the system,
initially in the ground state, from T ∗ = 1.5 to T ∗ = 2.7
or above, and then back to T ∗ = 1.5. For each anneal-
ing cycle the temperature was ramped in increments of
0.02. At each increment the system was first equilibrated
for 104 MC steps, with one step defined by the num-
ber of attempted spin flips matching the total number of
spins (104 for the 100 × 100 system); and averages were
accumulated over another 104 MC steps, with just one
contribution to the average from each step after its final
spin-flip attempt. The canonical heat capacities (CT )
were calculated using the fluctuation formula

CT =
(
〈U2〉 − 〈U〉2

)
/(kBT

2), (15)

and the corresponding dimensionless quantity is C∗T ≡
CT /NkB .

The C∗T and net magnetization (M) plots in Fig. 3
for the case where B∗ = 0 and δ = 1 clearly exhibit
the expected ferromagnetic transition near T ∗ = 2.269.
The corresponding caloric curve (U∗ versus T ∗) shows
no signs of a discontinuity, consistent with the transi-
tion being second-order. Setting B∗ = −1 and δ = 3,
on the other hand, eliminates all signs of a transition at
T ∗ = 2.269, and instead introduces a transition near the
temperature T ∗f = 1.82 predicted by (13). Clear disconti-
nuities in the corresponding caloric curves and noticeable

0.1

1

-1

0

1

1.5 2 2.5 3
-4

-2

0

1.82 2.269 2.89

FIG. 3. Dimensionless specific heat (C∗
T ), net magnetization

(M/N) and potential (U∗) for the canonical degenerate Ising
model on 100× 100 square lattice. Note that the C∗

T axis has
logarithmic scale. Hollow symbols correspond to the heating
stage and filled symbols correspond to the cooling stage of
the annealing cycle. The black circles (B∗ = 0 and δ = 1)
show the second-order phase transition near T ∗

c = 2.269. For
red squares (B∗ = −2, δ = 9) and green triangles (B∗ = −1,
δ = 3) the transition temperature predicted by (13) is T ∗

f =
1.82 < T ∗

c , whereas for blue diamonds (B∗ = −1, δ = 2) we
have T ∗

f = 2.89 > T ∗
c .

hysteresis verify that the transition is first-order. Note
that halving the temperature ramping rate had no signif-
icant effect on the hysteresis, indicating that the present
rate was sufficient to allow the system to relax. Chang-
ing the value of B∗ from −1 to −2 and δ from 3 to 9,
while keeping T ∗f = 1.82 constant, leads to a less pro-
nounced hysteresis and increases the size of the energy
jump in the caloric curves (i.e. the latent heat). Finally,
for B∗ = −1 and δ = 2 the net magnetization smoothly
passes through zero at T ∗f = 2.89 > T ∗c , as anticipated;
and the dimensionless heat capacity C∗ peaks at around
2.7. The position and shape of this peak appears to be
independent of system size, which indicates that it is not
an artefact of periodic boundary conditions, but rather a
feature that is possibly a remnant of the first- and second-
order transitions.
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B. Application of classical nucleation theory

The observed change in hysteresis at fixed T ∗f = 1.82

for two different combinations of B and δ (see Fig. 3) can
be rationalised using classical nucleation theory. The for-
mation of a minority-phase nucleus of d-dimensional “vol-
ume” V ∈ Rd and interface “area” A ∈ Rd−1 will change
the total free energy of the system by ∆F = V∆f +Aγ,
where ∆f is the contribution that scales with “volume”
and γ > 0 scales with “area”. The difference in scaling
gives rise to a critical nucleus size and a corresponding
energy difference

∆F † = αdγ
d(∆f)1−d, (16)

where αd is a geometric factor whose sign changes with
dimension: α = 16π/3 for a sphere in R3, and α = −π
for a circle in R2. Note that ∆F † > 0 when ∆f < 0,
and it represents a barrier that must be surmounted in
order to allow a nucleus to grow and form the new ther-
modynamically stable phase. From (16) it is clear that
increasing the magnitude of ∆f at fixed γ will reduce
the magnitude of ∆F †, which will make it easier for the
new phase to nucleate and thus diminish the propensity
for undercooling and overheating. This change can also
render any manifestation of a hysteresis less pronounced.

In Harris’s model, in the “dilute” regime (i.e. mini-
mal phase intermixing) at temperatures well below Tc,
the magnitude of the volumetric contribution to ∆F is
twice the effective field defined in (12): ∆f± ' ±(2B +
kBT ln δ), where the minus sign is to be used when the
solid (σ = −1) is the nucleating minority phase. It is also
clear that γ should not depend on B or δ, because these
two parameters are completely decoupled from inter-
phase interactions (i.e. J or ε↓↑). From this reasoning it
follows that increasing B and δ at fixed Tf (and T ) should
raise the magnitude of ∆f in a predictable manner, but
have little or no effect on γ. The nucleation energy bar-
rier in (16) is then expected to become smaller, which is
consistent with the diminishing hysteresis in Fig. 3.

A large body of work23 has already been done to asses
the applicability of classical nucleation theory to Ising
systems. Here we shall only briefly demonstrate how
in the degenerate Ising system the average lifetime of
a metastable liquid (σ = +1) can be adjusted at a fixed
degree of undercooling. Recall that the rate I of crystal
(σ = −1) nucleation is related to ∆F † via24

I = I0 exp

(
−∆F †

kBT

)
= I0 exp

(
− αdγ

d

(∆f)d−1kBT

)
,

where I0 a prefactor with appropriate units, and it may
weakly vary with temperature. As was already ex-
plained, we can adjust ∆f = −(2B + kBT ln δ) at fixed
T , Tf and γ, and then count the average number of
MC steps (NMCS) required for a nucleation event to oc-
cur. Since the cumulative number of MC steps (NMCS)
taken by the BKL algorithm becomes proportional to
cumulative physical time (tw) in the long run, so that

FIG. 4. Double logarithm of the average waiting time (in
terms of Monte Carlo steps) versus the logarithm of the differ-
ence in volumetric free energy density between the two phases.

NMCS ∝ tw ∝ I/I0 in the limit of long waiting times, and
thus from classical nucleation theory we expect the plot
of ln lnNMCS versus ln(−2B∗ − T ∗ ln δ) to be a straight
line with slope 1 − d. Fig. 4 shows our simulation re-
sults meeting this expectation. Note that every average
NMCS was accumulated from one hundred independent
simulations, each with a different random number seed
and all sites initialised to the +1 state every time, and
the waiting period was considered to be finished when
the fraction of −1 sites has exceeded 0.5.

IV. MICROCANONICAL ENSEMBLE

A. Ray’s approach to microcanonical Monte Carlo

As was already explained in Sec.I, it is both interest-
ing and worthwhile to apply microcanonical sampling al-
gorithms in studies of first-order phase transitions. Al-
though all the equilibrium quantities can be inferred di-
rectly from the classical density of states, which can
be computed efficiently by Wang-Landau sampling,25 we
will instead look to algorithms that admit kinetic simu-
lations. There are (at least) two distinct approaches that
suit our needs: one due to Creutz,15,25 which Harris et
al.11,13 have used, and one due to Ray.12,26 We adopt
the latter, because it is simpler and more intuitive for
atomistic systems.

Ray’s approach to microcanonical MC relies on explicit
assignment of conjugate momenta p and a kinetic energy
K(p) to the Ising system. This assignment would be
difficult to interpret for ferromagnetic systems, but it is
natural for a system of classical particles. Now consider
the uniform distribution in the classical N -particle phase
space, subject to the constraintH(σ,p) = U(σ)+K(p) =
E:

ρE(σ,p) = CδD(E −H(σ,p)), (17)

where C is a normalisation constant (the inverse of the
microcanonical partition function) and δD is the Dirac
delta function. We would like to reduce (17) to a distri-
bution over just the configuration space by integrating
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FIG. 5. Microcanonical caloric curves and magnetization
plots calculated on 100 × 100 square lattice. The simulated
system snapshots (top) are for δ = 3, with solid (−1) sites in
gold and liquid (+1) sites in blue.

over the momentum dependence in the kinetic energy:

ρ′E(σ) =

∫
CδD(E −H(σ,p)) dp.

As explained by Pearson et al.,27 the integration can be
done by first taking a Laplace transform with respect to
the energy

L{ρE(σ p;E)}(s) =

∫ ∞
0

ρE(σ,p;E)e−sE dE.

This procedure separates the momentum coordinates,
which can then be integrated over; inverting the trans-
form then gives:

ρ′E(σ) = C ′(E − U(σ))dN/2−1H(E − U(σ)) (18)

=

{
C ′(E − U(σ))dN/2−1 if U ≤ E,

0 otherwise,

where H denotes the Heaviside (i.e. unit step) function
and d is the dimensionality. Replacing ρT in (14) by ρ′E
gives the appropriate rates for evolving Harris’s degen-
erate Ising model consistent with Ray’s microcanonical
MC.

B. Simulations on square lattice (2D)

Equilibrium caloric curves and magnetization plots for
a 100× 100 square lattice are shown in Fig.5. The plots

-3 -2 -1 0

0.2

0.4

0.6

FIG. 6. Caloric curves and snapshots for 50×50 square lattice
with B∗ = −2 and δ = 1000.

were generated by ramping the total dimensionless en-
ergy per site (E∗) up and down in increments of 0.1 or
smaller, starting from the ground state, with the same
number of MC steps used for equilibration and averaging
as in Sec. II. The value of T ∗f = 1.82 was kept fixed, and
three different sets of δ and B∗ were chosen in accordance
with (13). Note that increasing B∗ and δ widens the
coexistence range, consistent with the increase in latent
heat. Also note how the data-points in the coexistence
region do not rise monotonically with energy, but rather
exhibit an overall downward slope. Such back bending
in a caloric curve indicates negative heat capacity: the
temperature of the system decreases as the total energy
increases. The data points also exhibit distinct temper-
ature jumps, whose magnitude decreases as δ and B∗

increase. The origin of these jumps can be linked to topo-
logical changes in the phase boundary, resulting from fi-
nite size effects and periodic boundary conditions. From
the instantaneous configuration snapshots we infer that
the first jump corresponds to the nucleation of a quasi-
circular liquid fraction in a solid; after the second jump
the system forms a liquid band and a solid band with two
quasi-planar interfaces; the next jump marks the break-
up of the solid band, resulting in a quasi-circular solid
fraction surrounded by the liquid; and after the last jump
the system is completely molten. Not all the datasets
have all four jumps: the state with a quasi-circular solid
fraction does not occur for δ =

√
3, and in that particular

case the system also fails to solidify when the energy is
ramped back down. This is again consistent with smaller
B∗ and δ making phase nucleation more difficult, as al-
ready discussed in Sec. III B.

Note that, although the topological transitions are ulti-
mately an artefact of periodic boundaries, they have been
recognised as a potential route for estimating the inter-
face free energies in a variety of two-phase systems.28–30

They have been analysed for equilibrium liquid-vapour
interfaces simulated using the Lennard-Jones,28,31 the q-
state Potts,30 and the lattice gas29 models, all with pe-
riodic boundary conditions. However, we stress that the
degenerate Ising model is distinctly different in that it
is a two-state lattice model with variable bipartition of
particles. The underlying microscopic mechanism dif-
fers from that of a conventional lattice gas: here the in-
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-20
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FIG. 7. Microcanonical caloric curves (top) and heat capacity
plots (bottom) for the degenerate Ising model with B∗ = −0.7
and δ = 2 on square lattices of different size (L2). Note that
some values of C∗

E are outside the plotted range, intended for
clearer illustration of C∗

E < 0 varying smoothly with E∗ in
certain regions of the coexistence range.

terface topology changes solely via individual spin-flips,
representing individual atoms changing phase; whereas
conventional lattice-gas models rely completely on spin-
exchanges, which correspond conceptually to the process
of diffusive mass transport.

The snapshots of the phase boundary in Fig. 5 exhibit
significant roughness and noticeable intermixing between
the two phases. These characteristics are perhaps more
reminiscent of the liquid-vapour interface, and they are
due to our choice of relatively high T ∗f . In Fig. 6 we con-
sider a lower value of T ∗f = 0.58 and find much sharper
phase boundaries with planar facets. Note that we use a
smaller (50×50) system in Fig. 6 to make microscopic fea-
tures more apparent. Our results indicate that lowering
Tf (< Tc) generally reduces the degree of mixing between
the two phases and yields a sharper phase boundary. This
is where the degenerate Ising model is particularly useful,
because it admits arbitrary tuning of the entropic bar-
rier associated with nucleating a faceted phase boundary
through adjustment of B∗ and δ at fixed T ∗f , thus not in-
terfering with the equilibrium structure of the interface
(see Sec. III B).

C. Negative specific heat capacities

The inherent simplicity of the degenerate Ising model
makes it straightforward to isolate the origin of nega-
tive specific heat capacities (CE) in the microcanoni-
cal ensemble. Note that Chomaz et al.32 have previ-
ously used a conventional lattice-gas model to analyse
this phenomenon, and their microcanonical results were

0 0.5

1.8

2.0

0.1 0.2 0.3 0.4

-3

0

3

FIG. 8. Analogous to Fig.7, but the system size is kept fixed
at 100 × 100 and the value of B is varied instead. Unfilled
symbols correspond to heating, and filled symbols correspond
to cooling.

obtained by sorting canonical events generated with stan-
dard Metropolis MC sampling. The degenerate Ising
model considered here is more general, and since we are
operating within the microcanonical ensemble, we can
calculate the heat capacity directly from the fluctuations
in the kinetic energy by using12,27

CE = NkB
[
N − (N − 2/d) 〈K〉〈K−1〉

]−1
, (19)

where 〈. . . 〉 indicates the (microcanonical) ensemble av-
erage of the quantity within, and K is the instantaneous
kinetic energy.

In Fig. 7 we plot caloric curves and the correspond-
ing C∗E ≡ CE/NkB for systems of different size. It
is immediately apparent that the back-bending in the
caloric curves correlates with negative values of C∗E . It
is particularly noteworthy that C∗E is negative and well-
behaved (i.e. varies smoothly with E∗) only in parts
of the coexistence region where the caloric curves are
smooth and have negative (non-zero) slope. These partic-
ular patches correspond to crystal-melt interface topolo-
gies with non-zero mean curvature, in which case the
interface-area-to-volume ration is ought to vary smoothly
with E∗ as the interface grows or shrinks. Whenever
the two phases are separated by two disjointed crystal-
melt interfaces with zero mean curvature (i.e. the banded
topology in Figs. 5 and 6), the interface-area-to-volume
ratio does not change with E∗, and the apparent slope
of the caloric curves is always close to zero. In these flat
patches C∗E fluctuations erratically between large posi-
tive and large negative values, which is consistent with
CE = (∂T/∂E)−1 diverging for ∂T/∂E = 0. On the ba-
sis of these observations, we conclude that a necessary
requirement for a smooth negative branch in heat capac-
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FIG. 9. Microcanonical caloric curves and configuration snap-
shots from simulations with B∗ = −10 and δ = 104 on fcc
lattice with 32000 sites. The snapshots illustrate topological
changes in the phase boundary at different energies in the
coexistence range. Note that “liquid” sites are coloured blue
and “solid” sites are in gold, and atomic radii are varied to
aid visualisation.

ity is that the interface-area-to-volume ratio must vary
smoothly with the excitation energy.

It is clear from Fig. 7 that the negative C∗E branch
becomes less smooth as system size increases, consistent
with the volumetric contribution dominating the total
(communal) entropy and flattening the phase coexistence
region. This observation suggests that smooth negative
branches will vanish in the limit of infinite system size.
However, within the degenerate Ising model it is also pos-
sible to manipulate the negative branches without vary-
ing system size, but rather by directly adjusting the com-
munal entropy and the latent heat at fixed Tf , as demon-
strated in Fig. 8.

D. Face-centred cubic lattice (3D)

We now move on to the three-dimensional face-centred
cubic lattice, for which our canonical Metropolis MC
yields T ∗c ≈ 9.8, as expected.33 Fig. 9 is analogous to
Fig. 6, showing caloric curves obtained by first heating
and then cooling a system of 32000 atoms on fcc lat-
tice. Topological transitions occurring when the system
passes through the coexistence region are also illustrated.
For T ∗f = 2.17 the phase boundary is sharp and faceted,
whereas increasing T ∗f leads to roughening of the inter-
face and more intermixing between the two phases, as
illustrated in Fig. 10 for T ∗f = 4.33.

E. Crystal nucleation and relaxation to a Wulff shape

The BKL algorithm17 in principle allows us to study
the kinetics as well as the equilibrium picture. In

FIG. 10. Snapshots from simulations with B∗ = −9 and
δ = 64, exhibiting a rougher phase boundary than in Fig. 9.

0 2 4 6 8 10

2

3

4

FIG. 11. Nucleation, growth and relaxation of a crystal from
the melt (not shown) with B∗ = −10, δ = 104 and E∗ = 5.
One MC step is 32000 spin flips.

Fig. 11 we show results from simulated crystal nucle-
ation, growth and subsequent relaxation to an equilib-
rium Wulff-like shape. The simulation was started from
a fully liquid state and, after a waiting period of tw (mea-
sured in terms of MC steps), a crystal eventually nu-
cleates and rapidly expands. The growth slows due to
the constant-energy constraint, and the crystal gradu-
ally relaxes to an equilibrium shape. Note how the in-
terface structure is rough in the initial stages of rapid
growth, but the overall shape remains close to spherical.
Dendritic growth is not observed because the Mullins-
Sekerka instability34 is completely suppressed by the ab-
sence of thermal gradients in Ray’s microcanonical MC.
The present model effectively operates in the limit where
heat transport occurs significantly faster than the propa-
gation of phase boundaries. For more realistic modelling
of far-from-equilibrium kinetics one can adopt Creutz’s
N -demon algorithm,15,25 which is precisely what Har-
ris et al. have used to simulate dendritic instabilities in
two13 and three14 dimensions.

V. SUMMARY

We have revisited Harris’s11 degenerate Ising model
and used it to simulate melting and crystallisation on
square and face-centred cubic lattices. The model’s dis-
tinguishing feature is a degeneracy parameter, represent-
ing the difference in communal entropy between the solid
and the liquid phases, and it makes the field-driven first-
order transition in the conventional Ising model occur at
a precisely-defined temperature. We evolved the model
by applying rejection-free canonical and microcanonical
MC algorithms, with the microcanonical variant based
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on the approach due to Ray.12 We calculated canoni-
cal and microcanonical caloric curves and heat capacity
plots, and we used this data to analyse the first-order
phase transition when it is driven thermally. Particular
attention was given to the equilibrium crystal-melt phase
coexistence in the microcanonical ensemble. Our simula-
tions show that the occurrence of negative specific heat
capacities is more evident when a large portion of the
total entropy is associated with the interface. We con-
cluded that a necessary requirement for a smooth nega-
tive branch in a heat capacity plot is that the interface-
area-to-volume ratio must vary smoothly with the excita-
tion energy. Furthermore, a useful feature of the degen-
erate Ising model is that it allows for precise adjustment
of bulk free energy differences completely independent
of the interface free energy, which makes it possible to
tune phase nucleation barriers at fixed degree of under-
cooling / overheating, without affecting the roughness
of the interface. We exploited this feature to verify a
dimension-dependent scaling expected from classical nu-
cleation theory, providing additional evidence that this
theory is valid in Ising-like lattice systems. Finally, we
used the model to simulate crystal nucleation and sub-
sequent relaxation to an equilibrium Wulff shape in the
microcanonical ensemble, demonstrating the model’s po-
tential utility for simulation studies where detailed and
accurate tracking of the phase boundary is a priority.
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