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Abstract. We present an approximate off-lattice kinetic Monte Carlo (KMC) method for sim-
ulating heteroepitaxial growth. The model aims to retain the speed and simplicity of lattice based
KMC methods while capturing essential features that can arise in an off-lattice setting. Interactions
between atoms are defined by an interatomic potential which determines the arrangement of the
atoms. In this formulation we assign rates for configuration changes that are keyed to individual
surface atoms in a fashion similar to bond counting schemes. The method is validated by simula-
tions of heteroepitaxial growth, annealing of strained bilayer systems and a qualitative verification of
Stoney’s formula. The algorithm captures the effects of misfit on the growth modes, anti-correlation
of quantum dots grown on both sides of a substrate, the effects of deposition flux on island size, the
formation of edge dislocations to relieve strain, and naturally incorporates intermixing.
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1. Introduction. This paper is aimed at simulating heteroepitaxy. To this end
we introduce an approximate implementation of an off-lattice kinetic Monte Carlo
(KMC) method. For the simulations we have in mind typical length scales are ap-
proaching a micron and time scales are on the order of seconds. Even with great
advances in accelerated molecular dynamics (MD) methods [32, 31, 33, 34, 30], it is
evident that MD simulations on these scales are impossible for the foreseeable future.
Closely related to MD and, in principle, nearly as faithful to the underlying physics
are off-lattice KMC methods. In a sense, these are the ultimate accelerated MD meth-
ods, but they are still too slow for simulations on the desired length and time scales.
For these reasons, most modeling and simulation of heterostructured nano-materials
has been done via continuum mechanics.

In contrast, simulation of the growth and evolution of pure crystals (e.g. ho-
moepitaxy) at the nanoscale is dominated by lattice based KMC. While most KMC
simulations are lattice based, many of the important technological applications in-
volve multi-component systems where lattice mismatch leads to elastic strain, one of
several reasons off-lattice effects may be important. Incorporating elastic effects into
KMC simulations in a way that retains the simplicity and speed of the basic method
has emerged as a central challenge. This work is a aimed at addressing this challenge.

1.1. Off-Lattice Kinetic Monte Carlo. The rationale for off-lattice KMC
simulation of crystal growth is based on observations of MD simulations and an ap-
proximate model of those simulations based on transition state theory (TST)[14, 12,
13, 19, 4, 20, 11]. The essence of this model is that the system spends most of its
time randomly oscillating within the N -particle, dN -dimensional configuration space
about a local minimizer xm ∈ R

dN of the system potential energy, U(x), with rare
transitions between these basins of attraction. For the system to transition from basin
i to basin j, it has to overcome a minimum energy barrier ∆Uij . If kBT is the en-
ergy scale defined by the temperature of the film, then the harmonic approximation
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to transition state theory (TST) estimates the rate Rij at which the transition from
basin i to basin j occurs as

Rij = K exp(−∆Uij/kBT ), (1.1)

where K(T ) is a weakly temperature-dependent attempt rate.
These observations suggest an alternative model where the Newtonian dynamics

is replaced by a Markov-chain, with the system making relatively rare, random transi-
tions between states Xi that represent local minimizers in the system’s configuration
space at rates Rij calculated from (1.1). More specifically the energy barrier

∆U = U(xs) − U(xm), (1.2)

requires locating both the initial local minimum, xm, and the saddle point, xs (where
∇U = 0 and all but one of the principal curvatures are positive), separating the basins
of attraction. Note that these local minima and saddle points are, in principle, de-
termined by the motion of all of the particles simultaneously within the configuration
space. When this sort of scheme is carried out in detail, it is referred to as off-lattice
KMC or on-the-fly KMC [14, 12, 13, 19, 4, 20, 11]. While this is much faster than the
corresponding MD simulation, or even accelerated MD simulations based on similar
considerations [32, 31, 33, 34, 30], it is still prohibitively expensive in that one could
not hope to simulate the growth of a crystal on physically relevant space and time
scales. Furthermore, this type of model is somewhat difficult to implement, requiring,
for each and every transition, an exhaustive search for saddle points within the dN -
dimensional configuration space. This level of generality allows the model to capture
complex, multi-atom transitions.

Monte Carlo simulations of crystal growth and diffusion on strained surfaces em-
ploying a continuous space potential have been in use for a while [7, 24]. In particular
there have been previous KMC studies of heteroepitaxy modeled with a Lennard-
Jones pair interaction potential [19, 4, 20]. The main difference in our work from
the approach of [19, 4, 20] is in how the rates are computed. The work in [19, 4, 20]
employs a frozen crystal approximation in 1 + 1-dimensions, where the saddle points
are the maxima of the potential energy surface produced by moving each surface atom
while freezing all other atoms. The frozen crystal approximation offers computational
speedup since the problem of detecting saddle points becomes essentially a one particle
problem.

1.2. On-Lattice Kinetic Monte Carlo. For single-crystal, homoepitaxial sys-
tems, an often-used and greatly simplified model immediately suggests itself[17, 6, 29].
In the simplified approach, the states are approximated using occupation arrays struc-
tured in the form of a perfect lattice—most often simple cubic, but face centered cubic
(fcc) and other lattices are also used; the allowed transitions are restricted to a limited
catalog of characteristic events; and the transition rates are parameterized based on
the local lattice configuration. Indeed, it is this type of model that people generally
refer to when they speak of KMC. In the vast majority of these models, an important
simplification is the restriction of the transition catalog to single-particle moves. In
this context, it is often simpler to label the rates using a single index i that refers to
the hopping atom, and we will adopt this notation from this point on. For example:

Ri = mK exp (−γni/kBT ), (1.3)
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where ni is the number of nearest-neighbor bonds that are broken by a single-particle
transition, i.e. “hop”, m is the number of destinations for the hop, and γ is the
bond energy. While this model is idealized, it captures the essential physical effects
of homoepitaxial growth, such as surface diffusion and nucleation. Furthermore, the
model satisfies detailed balance, which implies that, in the absence of deposition, the
model will approach a Boltzmann distribution. Notice that the rates for this model
are independent of the particle’s destination; there exist many variations on this model
that account for such non-nearest neighbor effects. Finally, it is important to realize
that bond-counting KMC is orders of magnitude faster than off-lattice KMC, a gap
in performance we seek to bridge by introducing intermediate approximations.

1.3. Weakly Off-Lattice Kinetic Monte Carlo. Bond counting models are
inappropriate when the basins of attraction are modified by long-range elastic de-
formation. In particular, the elastic strain due to misfit in heteroepitaxy falls into
this category. Orr et al. [21], Lam et al. [16], and Lung et al. [18] have proposed a
modification of the bond counting model (1.3) where the discrete configurations of the
lattice-based model are supplemented by a ball-and-spring model for elastic interac-
tions. Thus, there is a displacement field associated with each discrete configuration
that determines the elastic contribution to the total energy. The hopping rate is taken
to be

Ri = mK exp[(−niγ + ∆Wi)/(kBT )], (1.4)

where ∆Wi is the elastic correction to the energy barrier. This is given by

∆Wi = W − W (i), (1.5)

where W is the total elastic energy in mechanical equilibrium and W (i) is the total
elastic energy of the configuration in mechanical equilibrium with atom i removed.

In a bid to efficiently implement this model, multigrid methods with artificial
boundary conditions have been developed to quickly solve for the elastic field [22, 23].
A speed up in the implementation of the model has been gained by finding accurate
estimates on the elastic energy change in terms of the current configuration [25, 26].
As a result the elastic field need only be computed for the moving atoms. Additionally,
an energy localization technique has been developed where the change in elastic energy
can be accurately approximated using local computations [25, 26]. The approach of
[25, 26] has been extended to allow for intermixing and used to simulate quantum
dots as well as stacked quantum dots [2, 27].

2. Approximate Off-Lattice Kinetic Monte Carlo. One drawback of the
bond counting models, including the weakly off-lattice model described above, is that
they are based on a lattice and as such they cannot capture some important physi-
cal effects such as surface reconstructions and dislocations. Our model removes the
constraint on the arrangement of the atoms by letting the atoms interact via an em-
pirical potential. Our goal is to extend the weakly off-lattice KMC formulation to an
off-lattice setting in a way that retains the computational advantages of the former
model. Many of these advantages stem from restricting the model to single-particle
moves and specifying the number of allowed destinations for each particle.
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In the approximate two-dimensional model presented below we assume that events
are associated with specific atoms and each atom is associated with exactly two events,
a hop to the left and a hop to the right. After the hop, the system is allowed to
relax, which introduces the possibility for at least some concerted moves, including
the formation of dislocations. This allows the algorithm to satisfy detailed balance
for the vast majority of moves and to handle regions where the lattice may not be
coherent.

To proceed in this manner, we need a formula for the hopping rates. Our model
is based on the observation that (Equation 1.4) can be written in the form

Ri = mK exp[∆Ei/(kBT )], (2.1)

where ∆Ei represents the change in the total energy when removing the ith atom (i.e.
E − E(i)).

The idea behind this formulation is to retain the form of (2.1) but replace the
energy of the weakly off-lattice model, E, with an energy given by an intermolecular
potential, U(x). For surface atom i we then take the hopping to be

Ri = mKexp(∆Ui/kBT ), (2.2)

where

∆Ui = U(xm) − U(x(i)
m ), (2.3)

xm is the current configuration (a local minimizer), and x
(i)
m is the configuration

obtained by first removing atom i and then relaxing the configuration by a monotone
descent method. Notice that, unlike (Equation 1.5), this formula accounts for both
the bond and (nonlinear) elastic energy. This approach retains the assumption that
the hopping rate is independent of the atom’s destination.

We will consider the deposition of type A atoms on a type B substrate, with the
atoms interacting via a Lennard-Jones potential [1, 8]. The equilibrium configurations
are determined by relaxing the system. The total energy, U , of a system of N particles
interacting by the Lennard-Jones potential is given by

U(x) =

N
∑

i<j

φ(rij), where φ(rij) = 4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

, (2.4)

x ∈ R
2N is the current configuration in (1 + 1)-dimension, rij is the distance between

atoms i and j, φ(rij) is the interaction potential, σij is the relaxed bond length and
ǫij is the chemical bond energy. We use the Lorenz-Berthelot mixing rules [1, 8] and
take

σij =







σA if both atoms are type A,
σB if both atoms are type B,
1
2 (σA + σB) if the atoms are different,

and

ǫij =







ǫA if both atoms are type A,
ǫB if both atoms are type B,√

ǫAǫB if the atoms are different.
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We use ǫA = 0.3387 eV for the deposited atoms and ǫB = 0.4 eV and for substrate
atoms. These are chosen to match the relative strengths of a Ge-Ge single bond to
that of a Si-Si single bond respectively. We take the lattice constant of the substrate,
σB , to be 2.7153 Å which matches the bond length of Silicon. The lattice constant
of the deposited material, σA, depends on the misfit η, where

η =
σB − σA

σB
. (2.5)

We truncate the potential at a cutoff radius rc = 4σB, hence a particle at position xi

only interacts with particles that lie in a disk of radius rc = 4σA centered at xi, and
the cost of computing the potential is reduced from O(N2) to O(N). At rc = 4σB,
the potential is approximately 1/1000th of the minimum. The system is modeled with
periodic boundary conditions in the horizontal direction to suppress edge effects and
has a substrate depth of 40 monolayers to approximate an infinitely deep substrate.
Figure 2.1 is a plot of the strain energy per atom versus substrate depth. The strain
energy per atom is approximately constant for substrate depths hs ≥ 30 ML.
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Fig. 2.1. Strain Energy per atom vs Substrate Depth with misfit η = −0.04. The strain energy per
atom is approximately constant for substrates of depth 30 atoms or more.

3. Implementation. Recall that the steps in a rejection-free KMC model with
deposition are:

1. Compute the hopping rates, {Rk}N
k=1, for all N surface atoms, with Rk =

ωe∆U/kBT , where ω = mK = 1012s−1.

2. Compute the partial sums pj =

j
∑

k=1

Rk.

3. Find the total rate for all processes, Rtotal = Rd +

N
∑

k=1

Rk where Rd is the

rate of deposition.
4. Draw a random number r ∈ (0, Rtotal).
5. Hop the first surface atom for which pj > r. If r > pN , deposit an atom.
6. Go to step 1.
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The main processes in KMC are deposition and surface hopping. Each of these
potentially moves the system away from mechanical equilibrium. As a result, the
system is relaxed after each event. We perform this relaxation of the system in two
stages. First, the deposited atom or the adatom is drawn to the surface of the film
by a steepest descent procedure. The atom feels forces from frozen atoms in a disk of
radius 4σB centered at the atom. We use a cell linked-list [1, 8] in order to determine
the atoms in the disk and the boundary atoms in O(N) time. After this, the system
is then relaxed using a nonlinear conjugate gradient method which is detailed in the
next subsection.

In principle, the system needs to be globally relaxed after each event. As a time
saving measure, however, after most events we perform a local relaxation of all atoms
that are at most a distance of rc = 4σB from the deposited or hopping atom. After
a fixed number of events have transpired, we globally relax the system.

3.1. Determining Positions for Atoms. In this section we explain the pro-
cedure for the deposition and hopping of atoms. In our model, only surface atoms
can hop. Surface atoms are defined as atoms with coordination number less than five,
excluding the atoms in the bottom layer. We define the coordination number of an
atom as the number of atoms lying within a radius of 1.2σB, i.e. the nearest neigh-
bor atoms. A fully coordinated atom has a coordination number of six. It is fairly
straightforward to determine the hopping positions in bond counting KMC since the
atoms are restricted to discrete lattice sites. The situation is different in our model
since there is no restriction on the positions of the atom; as such, determining hopping
positions is a challenge. To retain some of the simplicity of lattice based schemes we
are going to define a model where we move the atom to a nearby position on the
surface chosen at random. Ideally one would like to choose randomly from nearby
basins of attraction. In order to simplify this task we assume, as described below, that
a single atom moves to a location determined by the assumption of a nearly coherent
lattice.

The first step of this procedure identifies all surface atoms (those with four or
fewer bonds) that are within 4σB of the hopping atom. One of these surface atoms
is then chosen at random. We then compute U(x) at the six vertices of hexagon
centered on the chosen surface atom. The atom is initially placed at the vertex with
the lowest energy, where it will be relaxed by the procedures described below. Picking
the lowest energy site naturally avoids initially placing the atom too close or too far
from other atoms.

The procedure for depositing an atom starts by generating its initial coordinates,
(xc, yc), with xc sampled from U(0, L) where L is the width of the system. The yc-
coordinate is set to ymax +y0, where ymax is the maximum height of the configuration
and y0 is a fixed constant. Next, one checks whether or not there are any other atoms
in a radius of 2σB centered at (xc, yc). If no atoms are found then yc is reduced by
σB . This is repeated until atoms are present. At this point, the atom is now quite
close to the surface and we apply a local relaxation which will incorporate the atom
into the crystal. The deposition event is complete.
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3.2. Relaxation with Nonlinear Conjugate Gradient. After an atom hop
or deposition event the system is relaxed, either locally or globally, so that the system
is in a new local minimum. To mimic realistic dynamics one wants the system to move
from one local minimum to a neighboring one. Therefore, after choosing one of the
candidate moves outlined above, it is important that the minimization scheme follows
a descent algorithm so that the system stays within the selected basin of attraction.
We now describe the global relaxation scheme.

We use a nonlinear variant of the conjugate gradient method [28] as the relaxation
routine and deem a configuration to be a local minimizer if the maximum norm of
the force,

‖∇U‖∞ = max
i

∣

∣

∣

∣

∂U

∂xi

∣

∣

∣

∣

≤ 10−2, (3.1)

where xi refers to the i-th coordinate.
The conjugate gradient method proceeds iteratively by a series of line searches

to find the minimum along conjugate directions. The method starts at the present
configuration xold and initially proceeds in the steepest descent direction, r = −∇U ,
which is also the first conjugate direction d. The minimum of U(x) along this direction
is located at

xnew = xold + αd, (3.2)

where

α = −∇UT d

dT Hd
, (3.3)

is obtained by a Newton-Raphson line search. Here, H is the 2N×2N Hessian matrix
with components

Hmn
ij =

∂2U

∂xm
i ∂xn

j

, (3.4)

where xm
i is the m-coordinate of the ith atom and m refers to an x or y-coordinate.

For a pair potential of the form in Equation 2.4 ,

∂2U(rij)

∂xm
i ∂xn

j

= δij

N
∑

k=1
k 6=i

{

φ′′(rik)
∂rik

∂xn
k

∂rik

∂xm
i

+ φ′(rik)
∂2rik

∂xn
k∂xm

i

}

+

(1 − δij)

{

φ′′(rij)
∂rij

∂xn
j

∂rij

∂xm
i

+ φ′(rij)
∂2rij

∂xn
j ∂xm

i

}

, (3.5)

where rij is the distance between atom i and atom j.
The new conjugate search direction is computed from the new residual r = −∇U

and the present conjugate direction as

d = −∇U(x) + βd. (3.6)

We use the Polak-Ribière formula [28],

β =
rT
k+1 (rk+1 − rk)

rT
k rk

, (3.7)

to find the step size, β. The algorithm is forced to use the steepest descent direction,
that is set d = r or β = 0, under two conditions:



8 H. A. BOATENG,T. P. SCHULZE and P. SMEREKA

1 When β < 0, which means the new direction is close, but not conjugate, to
the previous direction since the numerator of Equation 3.7 is negative.

2 When rT d ≤ 0, which means that d is not a descent direction and that the
algorithm has lost conjugacy.

With the new conjugate direction found, a new line search, i.e. computing α, is then
performed to determine the new position and the process repeats.

A local relaxation is performed after every hop or deposition. The local region of
relaxation is the adatom or the deposited atom and all the atoms that are at most
a distance of 4σB away from it. The local relaxation algorithm has all the features
of the global nonlinear conjugate gradient algorithm plus a backtracking algorithm.
With backtracking, we check within each line search to ensure that the energy is
decreasing and that none of the atoms in the new local configuration lies outside the
local region of relaxation. Failure to meet these criteria indicates that the Newton
step is too large, so we revert to the previous local configuration, halve the step-size
and repeat the computation. This is repeated until the new configuration lies in the
region of relaxation as well as being lower in energy than the previous configuration.
Finally, the force on the boundary of the local region is monitored after each local
relaxation and if this force is larger than a threshold, a global relaxation is performed.
This condition is triggered more often at higher misfits where the strain in the system
is larger.

3.3. Approximate Rates. A major bottleneck in KMC with elastic effects
is computing the hopping rates for each surface atom for every KMC step. This
involves removing each surface atom and relaxing the full system, or worse, explicitly
finding all the saddle points. In order to overcome this bottleneck, we adopt the
approach of Schulze and Smereka [26], who have shown that the rates in the weakly
off-lattice model can be estimated using a local energy approximation. The idea is to
approximate ∆U (Equation 2.3) using a local quantity. To this end, we establish an
empirical, linear relationship between a local distortion energy, which depends only
on the nearest neighbors of the atom, and a global distortion energy, which depends
on the whole system:

∆U − ∆Uappx = C(η)(∆U loc − ∆U loc
ideal). (3.8)

Table 3.1 explains the terms used to establish the linear relationship. Figure 3.1
is a depiction of a representative system showing the bonds of one surface atom. The
nearest neighbor bonds are solid lines and the other bonds are dotted lines.

A B

Fig. 3.1. A is a relaxed configuration and B is the configuration with the blue colored surface atom
removed. The solid lines are nearest neighbor bonds and the dotted lines are bonds farther away.



APPOXIMATING OFF-LATTICE KINETIC MONTE CARLO 9

Table 3.1

Definitions for ∆U , ∆Uappx, ∆U loc and ∆U loc
ideal

based on Figure 3.1

∆U Energy of A - Energy of B relaxed
∆Uappx Energy in solid and dotted bonds
∆U loc Energy in solid (nearest neighbor) bonds.

∆U loc
ideal Energy in solid bonds in ideal configuration

The definition of ∆U is given in Equation 2.3, and we define ∆Uappx as the energy
due to the interaction of the surface atom that is being moved with every other atom,
i.e. the energy needed to break all the bonds with this atom, but not accounting for
any relaxation. We define ∆U loc as the energy in the bonds that an atom forms with
its nearest neighbors, i.e. the local energy change when the surface atom is removed.
The quantity ∆U loc

ideal is similar to ∆U loc except the atom and its nearest neighbors
are assumed to be in an ideal configuration, i.e. the energy between the atom i and
any of its nearest neighbors j is −ǫij , the minimum of the Lennard-Jones potential
for a pair interaction.

As pointed out in Ref. [26] one can establish an empirical relationship between
the global change in elastic energy when removing an atom and the local elastic energy
density. Following the same procedure, we compute the local and global distortions
for the configuration shown in Figure 3.2 and fit a linear relationship between them
for several values of the misfit as shown in Figure 3.3 (plots I-V). We establish a
quadratic relationship between misfits and the slope of the best fit lines as shown
in plot (VI) of Figure 3.3. Note that in the weakly off-lattice model, the slopes in
the linear relationship between local and global energy differences are independent
of misfit, whereas here the nonlinear nature of the empirical potential results in a
misfit-dependent slope. This allows us to estimate ∆U and hence the rates for all the
surface atoms quickly for any misfit we study.

Fig. 3.2. The configuration used to establish the linear relationship between the local and global
distortions. The red circles are the substrate atoms and the black are the film atoms.

In what follows, we use the approximate relationships established in this section
in place of the computationally expensive global calculations.

3.4. The Algorithm. We now give an overview of the full KMC algorithm.
1. Perform a global relaxation; detect the surface atoms (coordination number

less than five); and compute hopping rates as discussed in subsection 3.3.



10 H. A. BOATENG,T. P. SCHULZE and P. SMEREKA

0 0.01 0.02 0.03 0.04
0

0.05

0.1

∆ 
U

 −
 ∆

 U
ap

px

(I) η = −0.04

0 0.02 0.04 0.06
0

0.1

0.2
(II) η = −0.05

0 0.02 0.04 0.06 0.08
0

0.1

0.2

∆ 
U

 −
 ∆

 U
ap

px

(III) η = −0.06

0 0.05 0.1
0

0.1

0.2

0.3

∆ Uloc − ∆ U
ideal
loc

(IV) η = −0.07

0 0.05 0.1
0

0.2

0.4

∆ Uloc − ∆ U
ideal
loc

∆ 
U

 −
 ∆

 U
ap

px

(V) η = −0.08

−10 −5 0
1

2

3

4

η ⋅ 102

sl
op

e

(VI)

(eV)

(eV)

(e
V

)
(e

V
)

(e
V

)

Fig. 3.3. (I) to (V) are plots of the global distortion vs the local distortion for different misfits. The
data is shown as (o) and the best fitting line is shown as (- -). Plot (VI) fits a quadratic curve to the
relationship between the misfit and the slope of the best fitting line.

2. Compute the partial sums pj =

j
∑

k=1

Rk and the total rate Rtotal = Rd+

N
∑

k=1

Rk.

3. Select a surface atom or deposition event using pj .
4. Move the selected atom (either a hopping or deposition event) using the

method outlined in Section subsection 3.1.
5. Attempt a local relaxation, if this not successful perform a global one.
6. Update the rates of the atoms that were relaxed.
7. Perform a global update every NG steps.
8. Return to Step 2.

4. Results. In this section we present results from our simulations in variety of
situations.

4.1. Bi-Layer Bending. As a check of the nonlinear conjugate gradient algo-
rithm (i.e. the global relaxation scheme), we run tests to capture the predictions of
Stoney’s formula [9]: that the curvature, κ, of a of thin film bi-layer under external
stress is given by

κ = C
η

hs
2 , (4.1)
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where C is a positive constant which depends on the height of the film and the biaxial
elastic moduli of the film and substrate, and hs is the depth of the substrate. The
formula predicts that the curvature will be convex with a compressive misfit, η < 0,
and concave with a tensile misfit, η > 0. We tested the code by relaxing 3ML of
film on substrates with different depths with the system squeezed in order to generate
an external stress. The squeeze was implemented by constraining the width of the
system to a slightly smaller length than was natural. In Figure 4.1, the first column
is for a compressive misfit η = −0.1 and the second column is for a tensile misfit,
η = 0.1. As expected the curvatures in the first column are convex and those in the
second column are concave. In addition, in both the compressive and tensile regimes,
the curvature decreases with increasing substrate depth, hs. Figure 4.2 is a plot
of curvature for different substrate depths for both compressive and tensile strains.
Each graph is scaled by the largest curvature, i.e. the curvature for hs = 10ML and
they each qualitatively follow the 1/h2

s dependence predicted by Stoney’s formula,
Equation 4.1.

η = −0.1 η = 0.1

Depth = 10ML

Depth = 30ML

Fig. 4.1. Stressed elastically strained system after relaxation with η ∈ {−0.1, 0.1}

4.2. Annealing. Consider the situation of a 4 ML flat film of material A on a
substrate of material B. We examine two cases, one with high misfit: η = −0.08, and
one with small misfit: η = −0.02. Both the film and substrate were 256 atoms wide.
In the case with η = −0.08 the film forms an island with no appreciable wetting layer
and several edge dislocations. The resulting configuration is shown in Figure 4.3. The
film atoms are green and the substrate atoms are blue. For the case η = −0.02, the
film also rearranges to form an island, but in this case a wetting layer has also formed
Figure 4.4. In these figures, the atoms are colored by average distance from nearest
neighbors. Dislocations are present at regions where the atoms are colored differently
from neighboring atoms. We further explain our approach for detecting dislocations
in the next section.
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Fig. 4.2. A plot of scaled film curvature for different substrate depths hs.
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Fig. 4.3. The configuration after annealing 4 ML of film on 40 ML of substrate with η = −0.08.
Atoms are colored by their average distance from nearest neighbors.
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Fig. 4.4. The configuration after annealing 4 ML of film on 40 ML of substrate with η = −0.02.
Atoms are colored by their average distance from nearest neighbors.
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4.3. Detection and Characteristics of Edge Dislocations. We detect dis-
locations or vacancies in our configurations in two ways. One way is to color each
atom by the average of its distance from its nearest neighbors that lie within a radius
1.15σA. Atoms at a dislocation will have significantly larger separation from their
nearest neighbors than the surrounding atoms and thus will be colored differently.
The second way is to color each atom by its total energy. Since the atoms at the
dislocation will be higher in energy compared to the atoms around it, they will be
colored differently.

Figure 4.4 shows the annealed system with each atom colored by the average of its
distance from nearest neighbor atoms. Since substrate atoms have a smaller natural
lattice spacing than the film atoms, the sum of their distances from nearest neighbors
is smaller than that of the film atoms. In the figure, the substrate atoms are colored
blue and the film atoms are colored green. The spots of blue in the film indicate the
presence of substrate atoms in the film due to intermixing. The region in the bulk
with a different color (yellow) from the neighboring region indicates the presence of a
dislocation. The island grows over the dislocation because the strain due to mismatch
is most relaxed at the dislocation [9].

In Figure 4.5, the atoms are colored by the absolute value of their energies due
to the other atoms. The energies are all negative, so a high absolute value indicates
a lower energy atom. The figure shows, as expected, that the substrate atoms have
lower bond energies than the film atoms. The atoms on the surface have higher
energies because of their low coordination number. The dislocation is colored yellow
surrounded by orange colored film atoms.

 

 
1.5
2

2.5

Fig. 4.5. The configuration after annealing 4 ML of film on 40 ML of substrate with η = −0.02.
Atoms are colored by the absolute value of their energies.

Figure 4.6 (a) provides a closer view of the dislocation detected by coloring each
atom by its total distance from nearest neighbors. The figure is generated by a 3D
scatter plot where the y-coordinates are set to zero and the x and z coordinates are the
coordinates of the atoms in (1+1)-dimension. The figure is rotated in order to detect
the presence of the extra half plane which is characteristic of an edge dislocation. The
azimuthal rotation is 37.5◦ clockwise at an elevation of 30.0◦, which is the default 3-D
view in MATLAB. From the coloring scheme, we see that the atoms in the region right
below the dislocation, where the extra half plane is present, have smaller separations
from their neighbors, indicating a compressive region. On the other hand, the atoms in
the region above the dislocation, where there is no half-plane, have a larger separation
from their neighbors. This is the tensile region. This observation has been presented
in many texts (e.g. [5, 9]).

Figure 4.6 (b) is a closer look at the edge dislocation, revealing the presence of
the extra half plane and the higher energy of the atoms at the dislocation.
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Edge dislocation: Extra half plane

Tensile region

Compressive region

(a)

Edge dislocation: Extra half plane
Higher energy region

(b)

Fig. 4.6. A close up of the dislocation shown in Figure 4.5 with atoms colored by the sum of their
distance from nearest neighbors (a), and by the absolute value of their energy (b).

4.4. Dependence of Growth Modes on Misfit Strength. To verify that
our method captures the Frank-van der Merwe (FM), Stranski-Krastanov (SK), and
Volmer-Weber (VW) growth modes we performed KMC simulations with misfits
η ∈ {0.00,−0.02,−0.04}, temperature T = 600K and flux F = 0.05 ML/sec. In all the
runs the substrate was 256 atoms wide and 40 monolayers deep. We applied periodic
boundary conditions in the horizontal direction. We note that, unlike [19, 4, 20], we
do not follow our deposition with an annealing run.

Figure 4.7 shows the results of the KMC simulations for all three misfits after
deposition of 6.0 monolayers of the film. The substrate atoms are red and the film
atoms are black. In the figures, (a), (b) and (c) have misfits of 0.00,−0.02 and −0.04
respectively. We see a change in the growth mode from layer-by-layer (FM) in (a), to
island-on-layer (SK) in (b) and finally to island growth (VW) in (c).

The growth mode is governed by the competition between surface energy and
elastic strain due to the size of the misfit. In the no misfit case, (a), there is an absence
of elastic strain and hence the film grows layer-by-layer in order to minimize surface
energy. For η = −0.02, surface energy dominates until a wetting layer forms, then
elastic strain dominates because the film adopts the crystal structure of the substrate
[9]. Then deposition proceeds via island growth on the wetting layer in order to
minimize the strain leading to island-on-layer growth. When η = −0.04, elastic strain
dominates from the onset of deposition and the film forms islands, without wetting
the surface, in order to minimize the strain at the cost of higher surface energy.

A close examination of Figure 4.7 reveals that more dislocations are formed
at higher misfit. To make this more apparent we plot Figure 4.8 which shows no
dislocation for the no misfit case, (a), a single dislocation for case (b), η = −0.02, and
four dislocations for case (c) where η = −0.04.
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(a). (F , η) = (0.05, 0.0)

(b). (F , η) = (0.05,−0.02)

(c). (F , η) = (0.05,−0.04)

Fig. 4.7. 6 ML of film deposited on 40ML of substrate with a deposition flux, F , of 0.05 ML/sec
and at different misfits, η. The substrate atoms are red and the film atoms are black. Plots (a), (b),
and (c) correspond to 0%, 2%, and 4% misfit respectively. They show a change in the growth pattern
from layer-by-layer (FM): η = 0.0, to Stranski-Krastanov (SK): η = −0.02, to Volmer-Weber (VW):
η = −0.04.

4.5. Effect of Flux (Deposition Rate) on Island Formation. Next, we
examine the effect of the deposition rate on island formation by performing simulations
with misfit, η = −0.04 and flux, F ∈ {0.5, 0.125, 0.05} at T = 600K. In Figure 4.9,
(a), (b) and (c) correspond to deposition rates of 0.5, 0.125 and 0.05 monolayers per
second respectively. As pointed out in [21], lower deposition rates promote island
formation. Because of the increase in hopping frequency between depositions, the
adatoms are able to drift and combine with previously nucleated islands to form
larger islands. Multi-layered islands can be energetically preferred over flat films in
the presence of strain since they can more easily reduce their strain energy [21, 3, 10].
Figure 4.9 shows that as the deposition flux is reduced, the number of islands decreases
and the island size gets larger. Additionally, higher deposition flux leads to the
formation of more dislocations.
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(a). (F , η) = (0.05, 0.0)
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(b). (F , η) = (0.05,−0.02)
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(c). (F , η) = (0.05,−0.04)

Fig. 4.8. 6 ML of film deposited on 40ML of substrate with a deposition flux, F , of 0.05 ML/sec
and at different misfits, η. Plots (a), (b), and (c) correspond to 0%, 2%, and 4% misfit respectively.
No dislocations are formed in (a) with η = 0.0, one dislocation is formed in (b), η = −0.02, and four
dislocations are formed in (c), η = −0.04.
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(a). (F , η) = (0.5,−0.04)
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(b). (F , η) = (0.125,−0.04)
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(c). (F , η) = (0.05,−0.04)

Fig. 4.9. 6 ML of film deposited on 40ML of substrate with misfit η = −0.04 and different fluxes,
F . Plots (a), (b) and (c) correspond to 0.5, 0.125 and 0.05 ML/sec respectively. A lower flux leads to
more hopping and fewer but larger islands.

4.6. Anti-Correlation of Quantum Dots on Opposite Sides of a Film.
Finally, we briefly consider the growth of film on both sides of a substrate. Our
approximate off-lattice KMC appears to support experimental findings reported in
[15]. Deposition and annealing simulations analogous to the experiments described
in [15] capture anti-correlation of quantum dots on opposites of the substrate. In the
first example, we deposited film atoms on both sides of 20 monolayers of substrate
at T = 600K with (F , η) = (0.05,−0.04). The result is shown in Figure 4.10 (a). It
is suggested in [15] that when a Ge quantum dot forms on one side of the substrate,
it creates tensile strain in the substrate region right below the quantum dot which
in turn creates a compressive strain in the substrate region at the opposite surface.
The compressive strain on this opposite surface is slight barrier to formation of a
Ge quantum dot. As a result, the Ge atoms on this surface form quantum dots
in a region of tensile strain. This pattern repeats, leading to a periodic array of
anti-correlated quantum dots on opposite sides of the film. However, the story may
be more complicated than this since it is well established both experimentally and
theoretically that elastic interactions are responsible for the alignment of stacked
quantum dots (e.g. [27]).
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Fig. 4.10. The figure shows anti-correlated quantum dots formed as a result of deposition on both
sides of a 20 ML substrate at (F , η) = (0.05,−0.04).

In the second example, we annealed substrates of different depths each sandwiched
by 3 ML of film on both sides, with misfit η = −0.04 at T = 600K. Figure 4.11 shows
the results, with figures (a), (b) and (c) corresponding to substrate depths of 30, 20
and 10 ML respectively. The strength of the anti-correlation of the quantum dots
decreases with increasing depth. Our KMC method captures this dependence, which
was also observed experimentally in [15]. For thicker substrates the effect of the strain
in one side on the opposite side is lower. As such, the kinetics on both sides proceeds
with little to no effect from the opposite side.

5. Conclusion. In this paper, we have introduced an approximate off-lattice
kinetic Monte Carlo method to model heteroepitaxial growth. We have shown that
the method captures the dependence of the growth modes on the misfit strain, the
dependence of island formation on the deposition flux, and the anti-correlation of
quantum dots grown on both sides of a substrate. The method nucleates dislocations,
a feature absent in solid-on-solid models . It naturally incorporates intermixing, it
is relatively easy to implement and offers a fast method for gaining a qualitative
understanding of many physical phenomena in crystal growth.
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