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Research involving the interaction of flow with morphological instability during directional solidifi- 
cation of binary alloys is reviewed. In general, flow may arise during the solidification process from 
thermal and solutal buoyancy, changes in density upon solidification, thermocapillary forces at free 
boundaries, or external forcing of the system. We focus primarily on the last of these, giving details 
of the influence of various forced flows on the critical conditions for morphological instability. These 
flows include the asymptotic suction profile, stagnation-point flow, and periodically driven shear flows. 
Parallel shear flows are unable to stabilize morphological instabilities in three dimensions but may lead 
to new long-wave, traveling instabilities. Flow-induced, long-wave instabilities are also encountered in 
the presence of both steady and modulated stagnation-point flows. Unsteady, nonparallel shear flows 
may stabilize morphological instability if the flow parameters are adjusted properly. 

I. INTRODUCTION 

SOLID to liquid phase transformation involves a com- 
plex interplay of many physical effects. The solid/liquid 
interface is an active boundary from which latent heat is 
liberated during phase transformation. This heat is con- 
ducted away from the interface through the solid and liquid, 
establishing thermal boundary layers near the interface. If 
the liquid is not pure but contains solute, then preferential 
rejection or incorporation of solute occurs at the interface. 
For example, if there is a single solute present and its sol- 
ubility is smaller in the (crystalline) solid than it is in the 
liquid, the solute will be rejected at the interface. This re- 
jected material is diffused away from the interface through 
the solid and liquid setting up concentration boundary lay- 
ers near the interface. The thermal and concentration 
boundary layer distributions determine, in part, whether 
there exist morphological instabilities of the interface. 

Fluid flow may also have a strong influence on interface 
morphology. In general, there are four different sources of 
flow within the melt. If the solidification process is occur- 
ring in a gravitational field, the thermal and solutal gradi- 
ents induce buoyancy-driven convection that is known to 
greatly affect the interfacial patterns and hence the solidi- 
fication microstructures that are present in the solidified ma- 
terial.m If the solidification process involves fluid-fluid 
interfaces, such as those found in containerless processing 
in a microgravity environment, then variations in surface 
tension along these interfaces may drive convection in the 
melt. Flow normal to the solidifying interface will be cre- 
ated by the expansion or contraction of material upon so- 
lidification. Finally, the presence of external forces may stir 
the melt. Brown[21 gives a broad survey of the processing 
configurations and the types of flows that occur. 
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There are several categories of problems that have re- 
ceived quantitative study. The first area, which we call pro- 
totype flows, involves simple flow geometries that 
correspond to well-studied hydrodynamic instabilities. If 
one (or more) of the rigid boundaries of such a geometry 
is replaced by a crystal interface, and if temperature and / 
or concentration gradients are posed to support this, then 
one can investigate the influence of heat and mass transfer 
on the morphology of the interface(s). Here, it is usually 
supposed that the liquids are "pure" and the interfaces in 
their basic states are supposed stationary. Thus, even 
though morphological changes are important and these 
studies involve morphological instabilities, these should not 
be confused with the morphological instability of moving 
fronts which may occur even in the absence of flow. Pro- 
totype flows have been amply reviewed in Glicksman et 
al.I3I and Davis.  14,51 

The second area involves the morphological instability 
in binary alloys during directional solidification. Here, the 
primary instability is driven by solute rejection and the re- 
sulting solute distribution near the propagating interface. 
Thermo-soluto convection driven by gravity can couple 
strongly with the interface. These interactions have been 
reviewed in Davis. 14,51 

The third area involves the study of imposed flows dur- 
ing directional solidification. These flows have the potential 
of homogenizing the solute distribution and hence delaying 
the onset of morphological change. However, the interac- 
tion of flows with interfaces can also generate new insta- 
bilities that promote morphological changes. Such flows are 
the principle subject of this review. 

There are several surveys that would be useful to consult: 
Carruthers, t6,7's~ Hurle, 191 Solan and Ostrach,[~Ol Pimputkar 
and Ostrach, t~q Kobayashi,tt21 Azouni,t~31 Rosenberger,[~41 
Ostrach,VSJ Langlois,t ~6,171 Coriell et al.,[~8~ Glicksman et 
al.,I3~ and DavisJ 4,5J 

II. DIRECTIONAL SOLIDIFICATION 
OF BINARY LIQUIDS 

Directional solidification is concerned with a front mov- 
ing at constant speed. A typical experimental configuration 
has two constant-temperature sources which are fixed in a 
laboratory frame. A binary liquid fills the region between 
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Fig. l--Directional solidification without flow: Configuration for 
directional solidification in a Hele-Shaw cell. The mean position of  the 
interface is z = 0, and the temperature T is linear in the frozen-temperature 
approximation; 7'1 > T 2. 

closely spaced parallel plates forming a Hele-Shaw cell. 
When the plates are laid across the heat sources, the ma- 
terial solidifies at a position where the local temperature 
equals the melting (or solidification) temperature Tin; the 
interface is planar in this static configuration. The plates are 
now pulled through the temperature gradient, at constant 
speed V, so that the liquid is continuously solidified. After 
transients have disappeared, the solid/liquid interface re- 
mains stationary in the laboratory frame, since it is 
"pinned" at T = T,, which now differs somewhat from the 
T,, in the static state since it depends on the local concen- 
tration (constitutional undercooling) and the velocity of the 
interface (kinetic undercooling). This configuration is 
widely used for detailed experiments with organic binary 
liquids, since the material is transparent and the thin-do- 
main geometry allows in situ, optical viewing of the inter- 
face. To be sure, the growth of single crystals commercially 
or in natural contexts involves the growth in fully three- 
dimensional geometries of opaque metallic or semiconduc- 
tor materials. 

It is known on the bases of t h e o r y  [tgl and of experi- 
mentt20.2~.22] that the interface remains planar during solidi- 
fication of binary liquids at nonzero values of the pulling 
speed V until a first critical value V c is attained. Near Vc, 
nearly two-dimensional steady cells will appear, and these 
deepen as V is increased. As V is increased further, there 
is a dendritic transition in which deep cells develop side- 
branches. Finally, there is a second critical value of V, V 
= V~, the absolute stability limit; as V ~ V~, these dendritic 
structures fade to cells, and the cells fade further until the 
planar interface regains stability. Langer {231 gives an over- 
view of these events and also discusses solidification phe- 
nomena that occur in other contexts. 

The pure morphological instability in unidirectional so- 
lidification is diffusive in nature, being driven by the ad- 
verse gradient of solute concentration C at the interface. 
The onset of cellular structure creates lateral variations in 
C in the liquid, and when solute is rejected, the concentra- 
tion is elevated in the troughs of the cells. When the 
grooves between cells are deep, the solute is trapped there; 
the large path lengths from the root to the bulk liquid above 
make longitudinal diffusion very slow compared to the rate 
of growth at the tip. The solidified material will inherit 
these nonuniformities, a set of high-concentration stripes 
parallel to the growth direction. The stripes extend down- 
ward until a new phase is encountered. 

When the liquid is flowing, the solute distribution is al- 
tered. It may be homogenized and so delay the morpholog- 
ical instability. If the flow is unsteady, say, time periodic, 
both temperature and concentration oscillations will be 
present. These oscillations cause the modulation of the 
boundary-layer thicknesses and of the growth speed V. 
These, in turn, will create variations in concentration in the 
solid, resulting in bands of material varying in concentra- 
tion which are referred to as "striations," perpendicular to 
the growth direction. Oscillatory motion in the liquid is one 
of the most frequent causes of crystalline inhomogenei- 
tiesYJ 

In the present article, we investigate the effects of hy- 
drodynamics in directional solidification. We find that the 
flow can alter the critical conditions for the onset of mor- 
phological instability. It can create scale and pattern 
changes in the morphology. It can create, through coupling, 
new instabilities that pre-empt the old and give new criteria 
for morphological changes. In Section III, we outline the 
pure morphological-instability problem. In Section IV, we 
examine forced flows imposed on interfaces and highlight 
flow-induced morphological instabilities. Section V gives a 
closing discussion. 

III. MORPHOLOGICAL INSTABILITIES 

Figure 1 shows a directional-solidification cell in which 
a binary liquid undergoes phase transformation at melting 
temperature T~. Fluid motion is absent and, for simplicity 
of presentation, the system is taken to be two-dimensional. 
We consider the case of solute rejection so that the distri- 
bution coefficient k satisfies 0 _< k < 1. We further invoketZ31 
the "frozen-temperature approximation" which gives the 
temperature T in the solid and liquid permanently by 

r = r o + Cz [1] 

where G is the (imposed) temperature gradient, z is the 
coordinate along the temperature gradient, and T O is a ref- 
erence temperature. 

Eq. [1] is a good approximation when (1) the latent heat 
liberated at the interface is conducted away much faster 
than the interface advances (small Stefan number), (2) the 
solute diffusion is much slower than the thermal conduction 
(so that on small length scales solute effects are rate limi- 
ting), and (3) the thermal conductivities are taken to be 
equal. The details of the thermal field are usually, but not 
always, unimportant in directional solidification. For ex- 
ample, in rapid solidification, the frozen-temperature ap- 
proximation is often a poor one. 
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Fig. 2--Directional solidification without flow: M -~ vs  ot for S = 81.0, k 
= 0.3, and F = 0.6. The region above the curve corresponds to a stable 
(S) interface, and the region below the curve corresponds to an unstable 
(U) interface. 

Given that the temperature field is passive, it is only the 
solute concentration C in the liquid that can be perturbed. 
We consider the problem in the frame of reference moving 
with the planar interface. The instability is driven at the 
interface z -- h(x,t), where jump conditions are obtained 
using the assumption of local thermodynamic equilibrium. 
The temperature T / on the interface is given by the Gibbs- 
Thomson equation. The other boundary conditions are a 
balance of  solute across the interface and an appropriate 
far-field condition. 

There is a steady basic state that consists of a planar 
interface h = 0, a constant concentration in the solid Cs = 
C~, and a concentration boundary layer in the liquid 

- -  1 - k  z 

C = Ca[1 + - - e - ~ , ]  [2] 
k 

where 6c = D/V,  the ratio of the solute diffusivity to the 
pulling speed. 

In actuality, the basic state has exponential structure in 
both C and T, with the concentration and thermal boundary 
layers having thicknesses ~c and 6r = KL/V, respectively. 
Here, KL is the thermal diffusivity in the liquid. However, 
usually KL > >  D and the thermal profile near the interface 
becomes linear. 

The instability of the planar basic state was explained 
first by Tiller et al., L241 and a full linear-stability theory, 
including the effects of surface energy, was first given by 
Mullins and SekerkaY 9] Coriell and McFadden psi give a 
survey of past results. 

The mechanism can be explained vg] by examining an in- 
itially corrugated interface in a background basic state C. 
A bump of solid pushes its front into a higher temperature 
environment and thus tends to melt back; the temperature 
distribution is stabilizing. A bump of solid is concave to- 

ward the solid and so, by the Gibbs-Thomson effect, has 
its local melting point decreased; surface energy is stabiliz- 
ing. A bump of solid will protrude into a region of  reduced 
solute concentration due to the effect of solute rejection. 
Thus, the local melting temperature near a bump will be 
reduced due to constitutional undercooling and continued 
growth will be favored. This last effect can be related to 
the (negative) concentration gradient at the interface G o  
with larger values of LGcl indicating a greater tendency for 
interfacial instability. 

It is know that Gc is given by 

t - k C ~ V  
Gc - [3] 

k D 

We see that [GcI increases with increasing pulling rate V 
and with increased concentrations Ca of solute present. It 
decreases the faster the diffusion removes the rejected sol- 
ute from the interfacial region. When k --~ O, all of the 
solute is rejected from the solid and IGcl is large. When k 
--) 1, and hence G c --) O, there is no rejection, Cs = CL, 
and hence no morphological instability. 

The stability index can be expressed as the ratio M: 

m G c  
M - [41 

G 

which we refer to as the morphological number. Here, G 
is the thermal gradient and m is the liquidus slope in the 
phase diagram. The morphological number is then essen- 
tially a ratio of the destabilizing concentration gradient to 
the stabilizing thermal gradient. The liquid is constitution- 
ally undercooled i f M  > 1. When surface energy is present, 
the condition for instabilityV9] is M > Me, where M~ > 1 
and the value of Mc depends on a surface energy parameter 
F and the segregation coefficient k. Here, 

F = TMzV2 [5] 
L v m G D  2 

where 3' is the surface energy per unit area on the interface. 
In Figure 2, we present a typical neutral curve, plotting 

M-'  as a function of the disturbance wavenumber a for 
parameter values characteristic of a lead-tin alloy. For a 
given wavenumber a, if M ~ is above (below) this curve, 
disturbances with that wavenumber will decay (grow). For 
the system to be linearly stable, M-' must be above this 
curve for all wavenumbers. As one decreases M -1, the in- 
stability will set in at the critical wavelength, a C. 

With k fixed, the neutral curve depends only on the sur- 
face-energy parameter F. In Figure 2, we use the value F 
= 0.6. In Figure 3, we plot the critical value of M -j as a 
function of F. The nondimensional critical wavenumber ap- 
proaches infinity as F ---) 0 along these curves and ap- 
proaches zero as F is increased. The system is absolutely 
stable for F > 1/k, referred to as the absolute stability limit, 

In Figure 4, we reproduce the information in the M -~ vs 
F plot from Figure 3 but in terms of the dimensional quan- 
tities V, the pulling speed, and C=, the far-field concentra- 
tion, for fixed temperature gradient, G. When experiments 
are performed, the pulling speed is the most readily con- 
trolled parameter. As seen from this diagram, the interface 
will always be stable for sufficiently low concentrations of 
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Fig. 4--Directional solidification without flow: V vs C~ with k = 0.3 and 
G = 200 K/cm. Stable (S) and unstable (U) regions lie to the left and 
right of the curve, respectively. 

solute, but when the concentration is above some critical 
value, instability can set in for a range of pulling speeds. 

There have been numerous studies of nonlinear cellular 
behavior: Wollkind and Segel, IzS] Caroli e t  al. [26] and Al- 
exander e t  al. 127] For a review of these and other articles on 
solidification without flow, see Coriell and McFadden.Pro 

IV. FORCED FLOWS 

The study of forced flows over solidifying interfaces 
aims at understanding how the solute redistribution by the 
flow alters morphological instabilities or creates new insta- 
bilities. Further, forced flows serve as a surrogate, allowing 
one to isolate certain effects of convection in the melt and 
focusing on one-way couplings. 

There are many examples of forced flows. The crystal 
may be rotated to erase nonaxially symmetric thermal ef- 
fects, but it creates a yon Karman swirl flow. The use of 
microgravity environments for the growth of crystals sup- 
presses major buoyancy effects, but vibrations of the space- 
craft creates transient accelerations, called g-jitter, that stir 
the liquid. All of the previously mentioned flows are in a 
sense accidental or at any rate unintentional. They cannot 
be prevented or else are present, as in the case of the swirl, 
because the rotation is necessary for other reasons. There 
can also be intentionally imposed flows. In the mid-1960s, 
Hurle suggested that rather than crystal growers bemoaning 
the presence of convection as a source of crystal nonuni- 
formities, they should try to "design" natural convection 
(or forced flows) that will homogenize the solute boundary 
layer at the interface. In effect, this would decrease the local 
gradient IGc} enough to eliminate the possibility of mor- 
phological instabilities. This attractive possibility has mo- 
tivated a good deal of work on the coupling of flow and 
morphology. 

A .  S t e a d y  P a r a l l e l  F l o w s  

The first studies of forced flows were those of 
Delves, 129.3m who imposed a Blasius boundary layer on the 
interface; but by examining wave lengths short compared 
to the development length of the boundary layer, he really 
focused on locally parallel flow. Arguments of local par- 
allelism led Coriell e t  al. pu  to impose plane Couette flow 
upon the interface. 

If one pictures an imposed flow at "infinity" across an 
interface and allows the solidification to proceed, the inter- 
face acts as a porous boundary and the forced flow has what 
is known as the asymptotic-suction profile, a boundary- 
layer flow on the scale 6~, the viscous boundary-layer thick- 
ness: 

3 ,  = ~,/V [6] 

The velocity component along the interface has the form 

u o~ 1 - e - z / ~  [7] 

The linear-stability theory was examined by Forth and 
Wheeler.t32] 

Given that the concentration and thermal boundary layers 
scale on 6 c and 6 ,  there are three lengths involved in such 
problems. When one has an organic mixture, then 

6c < <  6r  < <  6 ,  [8] 

since 6 J 6  r = Pr, and the Prandtl number Pr is large. How- 
ever, if one has a small Prandtl number metallic alloy, then 

6c < <  6~ < <  6r [9] 

These inequalities are relevant when one considers distur- 
bances of various wave lengths A. The "normal"  situation 
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Fig. 6~Directional solidification into stagnation-point flow: Two- 
dimensional stagnation-point (Hiemenz) flow impressed upon a solidifying 
interface. The waves on the interface propagate toward the stagnation 
point according to Brattkus and Davis. t4~ 

described in Section II has A < 6c so that the thermal field 
and the velocity field can be represented in locally linear 
form 

T =  T o + Gz  [lOa] 

u ~ Vz /u  [10b] 

the latter being the plane Couette flow considered by Cor- 
iell et  al. r3u However, when A becomes large enough, these 
localizations are no longer valid since the disturbances are 
affected by the curvatures of the profiles. Note that the dis- 
tance L § from the interface to the upper heat source is a 
relevant length scale as well. 

Coriell et  aL t31) and Forth and Wheeler I321 examined two- 
dimensional disturbances (periodic in the flow direction) 
and found that the flow stabilizes the interface in that the 
presence of the flow increases M c. However, if one consid- 
ers longitudinal-roll disturbances (periodic cross stream and 
independent of the flow direction), the flow decouples from 
the problem and M~ is unchanged. Thus, under normal cir- 

cumstances, the flow leaves M c unchanged but selects the 
cellular state (longitudinal rolls) that appears. 

Forth and Wheeler E33I have examined the weakly nonlin- 
ear development of  two-dimensional waves and found that 
the flow promotes supercritical bifurcation and narrows the 
bandwidth of two-dimensional structures allowable in the 
nonlinear regime. Forth and Wheeler ~32] have looked at a 
wider range of conditions and found for long waves that 
the flow destabilizes the interface for two-dimensional dis- 
turbances that propagate against the flow. However, they 
did not determine when this mode is preferred. 

Hobbs and Metzener ~34~ have examined the effect of the 
asymptotic suction profile on the interface near the absolute 
stability boundary V ~ VA. Here, the wave lengths are long 
compared to 8 c. Two-dimensional waves lower Mc and 
hence are preferred. Using the linear-stability theory, they 
establish conditions that determine neutral stability of the 
interface. Figure 5 shows that the neutral curve is somewhat 
stabilized along its lower branch and linear the nose but is 
substantially destabilized along the upper branch. Hobbs 
and Metzener ~3sj have extended their work into the nonlin- 
ear regime by examining parallel flow over an interface 
moving at V ~ V A. Here, the long-wave structure of the 
solution induces a flow correction to the equation of Bratt- 
kus and Davis. t361 The resulting interface equation contains 
an extra linear term that accounts for the destabilization, 
but otherwise, the equation is left unchanged. When they 
specialize their equation to the weakly nonlinear regime, 
they obtain a modified Newell-Whitehead-Segel equa- 
tion. E37.3sl Further, when this equation is examined for phase 
evolution, a modified Kuramoto-Sivashinsky equation[39] is 
obtained, showing the presence of various sequences of 
normal, as well as chaotic, solutions. 

B. N o n p a r a l l e l  F l o w s  

Most flows, whether they occur naturally or as a result 
of stirring, are not parallel. These may include, for example, 
flow generated by rotation of the crystal or locally hyper- 
bolic flows present when cellular convection exists at the 
interface. 

Brattkus and Davis E4~ studied two flows with hyper- 
bolic streamlines directed upon a solidifying interface. 
These were, respectively, a von Karman swirl flow and 
stagnation-point flow. We discuss here the simplest of 
these, two-dimensional stagnation-point flow. Figure 6 
shows the Hiemenz flow which, as z ~ % has the form 

u ~ ( K v ) V z x Y ' ( z ) ,  w ~ - (Kp)  t/2 F ( z )  [111 

where F is a function that is obtained numerically and K 
measures the strength of the flow. The linear-stability prob- 
lem is made tractable by assuming that the viscous-bound- 
ary-layer thickness 6~ is much larger than the 
concentration-boundary-layer thickness 6 c and that the 
Schmidt number S is very large. Explicitly, it is assumed 
that 

ac/6 ~ =-- ,,~., = O(S -'/3) [12] 

as S + ~. Note that 6, here is different from that defined 
earlier. Given the smallness of 6 o the interface senses only 
the local forms of the imposed flow and the flow senses a 
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flat interface; thus, 

u ~ f l x~  [13a] 

1 
w - - ~/3ff 2 [13b] 

where ~" = z /6  c and/3 measures F"(0), the local shear. Fi- 
nally, Brattkus and Davis considered waves long compared 
to 6c though smaller than 6~. They solved the modified 
diffusion problem 

1 
Ccc + (1 + ~ [3~2)Cc - flx~Cx = C., 0 _< ~" < 0o [14a] 

C c +  (1 - M *)C~+ [k(l - M l)-~ 

+ (1 - k ) ]C= 0 ( =  0 [14b l 

C = 0, r__~ m [14c] 

where r is a scaled (slow) time. Note that the long-wave 
approximation leads to the neglect of the lateral diffusion 
term C,~. This neglect is justified only far away from the 
stagnation point at x = 0 but makes tractable the solution 
of the linear-stability problem. 

The nonparallel flow gives rise to the term xC ,  that is 
scale invariant and so survives the long-wave approxima- 
tion. The system can be solved by employing quasinormal 
modes as follows: 

C(x,~'O') = e~ [15] 

These modes convert the system into a constant-coefficient 
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Fig. 8--Directional solidification into stagnation-point flow: Disturbance 
angular frequency vs  lal on the neutral curve for long two-dimensional 
disturbances on a Hiemenz flow against a solidifying interface according 
to Brattkus and Davis t4~ for k = 0.3. Here, /3 is a nondimensional 
measure of the shear stress exerted by the Hiemenz flow on the interface. 

eigenvalue problem for the growth rate or -= o(k, M; a). 
The system is solved numerically and Figures 7 and 8 show 
the neutral curves and the imaginary part of o" on the neutral 
c u r v e .  

The flow produces a long-wave instability that creates 
waves that travel inward, toward the stagnation point. It is 
locally periodic in x but, by the structure of the normal 
modes, is not globally so. The instability exists for long 
waves, in a region where the Mullins and Sekerka condition 
gives only stability. Thus, it is called flow-induced mor- 
phological instability. The largest growth rate (the real part 
of (r) occurs for a a ---) 0% where the long-wave theory is 
invalid and where surface energy should help stabilize the 
interface. Thus, "longish" waves would be preferred and 
these would grow for M just above unity, i.e., for any de- 
gree of constitutional undercooling; thus, it is a morpho- 
logical instability. The conjectured neutral stability curve, 
valid for all wave numbers, would be as shown in Figure 
9. When the wave numbers are large, the disturbances see 
only the local velocities and the flow appears to be locally 
parallel. The dashed curve of Figure 9 shows the analog of 
the results of Coriell et aL [3t] appropriate to locally parallel 
flows. When the wave numbers are small, the disturbances 
see the curvature of the streamlines and hence the non- 
parallel-flow effects found by Brattkus and Davis,[40] as 
shown in the solid curve of Figure 9. The connection be- 
tween the small [a I loop and the ordinary M I  loop is con- 
jectured. 

The destabilization by nonparallel flow depends on both 
velocity components. The component normal to the mean 
position of the interface is directed inward. Its presence 
causes boundary-layer alteration. The concentration bound- 
ary layer is compressed, steepening the local gradient IGcl. 
The lateral component of velocity (linear in x) varies with 
distance from the stagnation point and produces horizontal 
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concentration gradients that drive the traveling cells that 
propagate into the oncoming flow. Brattkus and Davis t4~ 
argue that these instabilities may be responsible for the 
"rotational striations" present in crystals produced in de- 
vices using crystal rotation. 

The destabilization of long waves in the x direction may 
be negated by "end"  effects that disallow the "fitting" of 
such long waves in the system. In this case, the results of 
Coriell et al. [311 would be regained. One could then allow 
disturbances of the form 

C(y,z, t)  = e'rt+ihyC(z) [16] 

for cross-stream periodic waves that are x independent (a 
= 0). The full stagnation-point flow linear-stability problem 
has been examined in this case by McFadden et al. ~121 They 
find that the flow would then slightly delay morphological 
instability. 

Merchant and Davist43j considered temporally modulated 
stagnation-point flow. Here, the strength K of the stagna- 
tion-point flow is replaced by a time-periodic function as 
follows: 

K ~ K~9(wt) = K[1 + 6 cos (cot)] [17] 

They again considered long-wave two-dimensional distur- 
bances and found that system (14) is replaced by the fol- 
lowing: 

1 

- /3| = TC,, 0 < ( < w [18a] 

c~ + ~,(t - g - ' ) C .  

+ [k(1 - M - ' )  -1 + (1 - k ) ]C  = 0, ( = 0 [18b] 

C = 0, ~" ~ ~o [18c] 

where y = wD/V 2 is the scaled forcing frequency. They 
found that modulation at low frequency stabilizes the in- 
terface against flow-induced morphological instabilities 
while high frequency promotes the instabilities. The re- 
sponse of the system to instability is quite complex, with a 
disturbance being composed of two independent frequen- 
cies, the imposed frequency and the traveling-wave fre- 
quency modified by the modulation. 

C. Unsteady Parallel Flows 

While the studies described so far have added insight into 
the interplay between forced flows and morphological in- 
stability, they have not added significantly to one's ability 
to control interfacial morphology. The flows described so 
far have one or more of the following shortcomings when 
it comes to stabilizing the interface: (1) stabilization is 
achieved only for a restricted range of wavenumbers and 
there is subsequent introduction of new longwave, flow- 
induced instabilities; (2) stabilization is found in only two 
dimensions, with only pattern-selection capability in three 
dimensions; and (3) the stabilization is only of small mag- 
nitude. In this section, we describe the work of Schulze and 
Davis I44,45] on directional solidification into Stokes boundary 
layers and related flows. It turns out that each of these con- 
cerns can be alleviated by choosing an appropriate oscil- 
latory flow parallel to the interface. 

\ 

M 

1 

0 ac 
lal 

Fig. 9--Directional solidification into stagnation-point flow: Conjectured 
neutral curve, M vs lal, shown as the solid curve for general two- 
dimensional disturbances on a Hiemenz flow against a solidifying interface 
according to Brattkus and Davis. t4~ For small a, nonparallel effects 
dominate; for other a, the curve coincides with the locally parallel theory 
of Coriell et al., [3q as shown by the dashed curve. 

We begin by considering the directional solidification 
into a Stokes boundary layer. This flow can be generated 
by zero-mean unidirectional oscillations of the crystal back 
and forth, parallel to the interface, during the solidification 
process. The Stokes boundary layer will be compressed due 
to the flow normal to the interface generated by the pulling 
velocity. We refer to this flow configuration as the com- 
pressed Stokes layer (CSL). 

The equations governing the system in the fluid region 
are the Navier-Stokes, continuity, and solute diffusion 
equations. To simplify the analysis, we once again make 
use of the frozen-temperature approximation. In nondimen- 
sional form, these equations are 

12u, + eu -  Vu - u~ = _~rp + SV2u [19a] 

V �9 u = 0 [19b] 

~C, + eu �9 VC - C~ = V2C [19c] 

T = z [19d] 

We have nondimensionalized the equations using the fol- 
lowing scalings: 

x --> (D/V)x,  u --> Uu, t ---> t /w  [20a] 

p --> pUVp, T--> (GD/V)T  + To, 

C --> (Ca - Cdk)C + C d k  [20b] 

where D is the solute diffusivity, V is the crystal pulling 
speed, U is the amplitude of the velocity oscillations, p is 
the material density, C= is the far-field concentration, w is 
the angular frequency of the elliptical oscillations of the 
crystal, G is the thermal gradient, T O is the temperature of 
the interface in the basic state, and k is the segregation 
coefficient. 
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Fig. 10~Directional solidification into CSL: Regions of the a - ~  plane 
where the flow stabilizes (S) or destabilizes (D) the interface relative to 
the case without flow. S = 81.0, k = 0.3, and g < <  1, according to 
Schulze and Davis, t44,451 results are independent of F. 

The nondimensional parameters that appear in the equa- 
tions and boundary conditions are the morphological num- 
ber M, the surface energy parameter F, the Schmidt number 
S, the nondimensional angular frequency ~,  the segregation 
coefficient k, and a parameter e measuring the amplitude of 
the lateral oscillations in units of  pulling speed: 

M = mVC~(1 - 1/k:,] F = T, ,yV [21a] 
GD DLvmC~(1 - 1/k) 

S = D' f~ = __~ 2' e = _Uv [2 1 b] 

The interfacial conditions, evaluated at the interface z = 
h(x, y, t), are mass balance and no slip, a nondimensional 
version of the Gibbs-Thomson equation, and a balance of 
solute flux across the interface. We also assume appropriate 
far-field conditions. 

The basic state for this system takes the form 

~- = e -e-" cos (t - Az) [22a] 

= ~-- = h- = 0 [22b] 

C = 1 - e -~ [22c] 

where A and B are known constants whose values depend 
on S and fl. 

To analyze the response of this state to infinitesimal per- 
turbations, one disturbs each of these quantities and sepa- 
rates the disturbances into normal modes of the form 

_ _  ^ 

49 = 49 + 49(z,t)e i('x+~2y) e"' + cc [23] 

where a = ~/a~ + a22 is the overall wavenumber. Here, we 
are seeking time-periodic eigenfunctions with the same pe- 
riod as the basic state, and o- is the Floquet exponent. I f  
the real part of or is not zero, then the disturbances will 
experience a net growth or decay over one period. 

Routine algebraic manipulations result in two linearized 

disturbance equations for the solute concentration and ver- 
tical component of  the velocity. 

Figure 10 maps out the regions of the a- l )  plane where 
the flow has a stabilizing influence on the interface for a 
small-amplitude flow e < <  1. Notice that there is a range 
of frequencies for which all finite wavenumbers are stabi- 
lized. This is a window o f  stabilization. 

It turns out that the CSL, like the parallel flows men- 
tioned previously, is only able to stabilize in two dimen- 
sions. In three dimensions, only disturbances with 
wavevectors aligned with the parallel flow will be stabi- 
lized, while those with wavevectors perpendicular to the 
flow are unaffected; thus, the flow acts as a pattern selection 
mechanism only. Note, however, that the stabilization can 
be achieved for all wavenumbers, eliminating the potential 
introduction of new flow-induced morphological instabili- 
ties. 

Motivated by the work of Kelly and HH [46] on B6nard 
convection, Schulze and Davistas] extend the stabilizing in- 
fluence of the CSL to three dimensions by considering the 
influence of nonplanar oscillations. Specifically, they con- 
sider the effect of adding a second oscillation perpendicular 
to the first which has the same frequency but may differ in 
amplitude and phase. The boundary conditions at the inter- 
face then read 

u = cos t [24a] 

v = h cos (t + y) [24b] 

where h is the ratio of  the amplitudes of  the two oscillations 
and y is the phase difference between them. This corre- 
sponds to translating the crystal in elliptical orbits parallel 
to the interface. Circular orbits are optimal for stabilization 
purposes, and all of the results reported here are for that 
case. 

It turns out that if the two oscillations are either perfectly 
in or out of  phase, the resulting flow is equivalent to a 
Stokes layer. This means that within the window of stabi- 
lization found previously, the flow acts only as a pattern 
selection mechanism, with cells oriented along the flow di- 
rection. 

When the phase between the oscillations is not a multiple 
of  ~', it is possible to stabilize an arbitrary three-dimen- 
sional disturbance within the window of stabilization found 
previously. Thus, the ability of  the nonplanar oscillations 
to stabilize the interface is predicted by the results for the 
CSL, and the window of stabilization is the same for both 
cases. The stability results that we have discussed to this 
point are for a weak flow, and subsequently, only a small 
amount of  stabilization is achieved. 

Having shown that a small amount of  stabilization can 
be achieved in three dimensions for arbitrary disturbances, 
Schulze and Davis f451 demonstrate that the interface can be 
completely stabilized in many instances by increasing the 
strength of the flow and, hence, the value of e. Following 
the method used by Hallt47] for the Stokes layer, they find 
an exact solution for the system in the form of an infinite 
Fourier series in time. They then truncate this series to pro- 
duce numerical results. 

Guided by the results for weak oscillations, they choose 
the value 1) = 10 for the nondimensional forcing fre- 
quency. This lies within the window of stabilization found 
previously and is close to the optimal frequency for stabi- 

590~VOLUME 27A, MARCH 1996 METALLURGICAL AND MATERIALS TRANSACTIONS A 



M-1  

0.3 S 

0.2 

0.1 

0.o 

-o,1 \ r 

-0.2 r 

~ r  -0.3 U \ 
~=60 

-0.4 

--0.5 I l l l l i l i l l l l l l l l l l l l l l = l  l l l l l l l l l l l  
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 

0~ 

Fig. 1 l - -D i rec t iona l  sol idif ication into CSL: Plot o f  M -  ] as a funct ion o f  
for  k = 0.3, S = 81.0, F = 0.6, ~ = 10.0, and e = {0, 20, 40, 60},  

according to Schulze and Davis. [4s] The region above each curve 
corresponds to a linearly stable (S) interface, and the region below each 
curve corresponds to a linearly unstable (U) interface. As e increases, the 
critical value of  M -~ decreases. Notice that for e ~ 60, the interface is 
absolutely stable. 

M-1 
0 .30  

0 . 2 0  

0.10 

-0.00 

- 0 . 1 0  

-0.2O i i i  i i i i i l l  i ii i ii ii i l l  i i i i i  I l l l  I ii i i i Ii I I l l l l l l  II I j 
0.0 20.0 40.0 60.0 80.0 100.0 

8 

Fig. 12--Directional solidification into CSL: Plot of  M -~ vs  e with c~ = 
a,, (the critical value for the no-flow case), according to Schulze and 
Davis. t45] k = 0.3, S = 81.0, and f l  = 10.0. This plot shows that the 
stabilizing trend eventually reverses as e is increased. 

lization purposes. Figure 11 is a plot of  M -  ~ v s  a for speed 
ratios e = {0, 20, 40, 60}. Recall that when e = 0, we 
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Fig. 13--Directional solidification into CSL: Plot of  the critical value of  
M -L as a function of  F for k = 0.3, S = 81.0, f~ = 10.0, and e = {0, 
20, 40, 60}, according to Schulze and Davis.t45] The arrow indicates the 
direction in which e increases. The interface is linearly stable (S) when 
the inverse morphological number is above the neutral curve. All of  the 
curves terminate at the point (F = 0, h// ~ = 1). Notice that the range of  
parameter values for which the interface is stable increases with e. 

recover the no-flow results o f  Mullins and Sekerka, as 
shown in Figure 2. Notice that for e = 60, the neutral curve 
lies entirely beneath the horizontal axis, indicating that the 
instability has been eliminated for all physical ly realizable 
morphological  numbers. Also notice that as the neutral 
curve drops below the horizontal axis, there is an abrupt 
shift in the critical wavenumber from a finite value to zero. 

These calculations were done for the two-dimensional 
case (CSL). Schulze and Davis verified that the instability 
may be entirely suppressed in three dimensions by  using an 
amplitude ratio A = 1 and a phase difference o f  7r/2. In 
this case, the suppression of  disturbances is independent of  
their orientation 0, and the dependence on wavenumber is 
identical to that o f  the two-dimensional  case. 

I f  one continues to increase e past the value necessary to 
stabilize the interface, one finds, for these material para- 
meters and operating conditions, that the stabilization trend 
is reversed. This is demonstrated in Figure 12, which is a 
plot o f  M ~ v s  e with a = ~c, the critical value in the 
absence o f  flow. This may indicate that there is an ampli-  
tude window as well as a frequency window for stabiliza- 
tion. Calculations for larger values o f  e were not made due 
to the increasing difficulty o f  performing these computa- 
tions, which results from the large number o f  modes needed 
for convergence. 

Figure 13 is a plot o f  the critical value o f M  ' as a func- 
tion o f  F for e = {0, 20, 40}. When e > 0, this result 
depends on the segregation coefficient, Schmidt number, 
and forcing frequency. This figure again uses the values k 
= 0.3, S = 81.0, and f l  = 10.0. As mentioned earlier, the 
nondimensional critical wavenumber approaches infinity as 
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Fig. 14~Directional solidification into CSL: Plot of  the neutral curve in 
dimensional form--V vs C~ for k = 0.3, S = 81.0, II = 10.0, and e = 
{0, 20, 40, 60}, according to Schulze and Davis.t451 The arrow indicates 
the direction in which e increases. The temperature gradient G is 200 
K/cm. All of  the curves extend infinitely along tangents to the portions 
shown. The interface is linearly stable (S) when the far-field concentration 
is to the left of  the neutral curve. Notice that the stability of  the interface 
increases with e. 

F ---) 0 along these curves and, for small values of e, ap- 
proaches zero as F is increased. Notice that the flow has a 
diminishing effect on stability as F approaches zero and 
that the neutral curve always passes through ?r = 1 when 
F = 0. As e is increased, the absolute stability limit F s 
decreases, and for larger values of e, the critical waven- 
umber no longer approaches zero as F approaches the ab- 
solute stability limit. 

In Figure 14, we reproduce the information from Figure 
13 in terms of dimensional variables, plotting the pulling 
speed V as a function of the far-field concentration C~ with 
the temperature gradient G fixed at 200 K/cm. From this 
figure, we see that if the far-field concentration C= is suf- 
ficiently large, the interface will be unstable for a range of 
pulling speeds. The critical wavenumber, in units of D / V ,  

approaches infinity along the lower branch of this curve and 
zero along the top branch. The stable regime lies to the left 
of the curve. We have previously noted that as s is in- 
creased, the interface becomes more stable. This result is 
evident in Figure 14; for as e is increased, the nose of the 
neutral curve is shifted downward and to the right, and the 
upper branch of the curve is lowered. The lower branch of 
this curve is relatively unaffected, however. 

In general, the interface becomes increasingly difficult to 
stabilize as the surface energy parameter F is reduced. The 
necessary values of e and ~ needed to achieve stabilization 
for all morphological numbers for small F may not be ob- 
tainable in practice. Formulas for determining the dimen- 
sional radius r and angular frequency o~ of the circular 
motion in terms of the nondimensional quantities and the 

pulling speed V are 

r = U/o9 = e D / V I 2  [25a] 

o9 = V 2 I ] / D  [25b] 

Murray e t  al.t48,49i and Wheeler e t  aLtSO] have looked at 
the effect of gravity modulation (g-jitter) on the onset of 
solutal convection during directional solidification. While 
these articles do not address morphological instability, they 
are closely related to the articles discussed in this section. 

V. SUMMARY 

In this article, we have discussed the directional solidi- 
fication of binary alloys. We have seen that morphological 
instability can be promoted or retarded by flow and that 
new instabilities, generating complex morphologies, can be 
created by flow in situations where the Mullins and Sekerka 
criterion predicts that planar fronts are stable. 

In the case of steady, parallel shear flows, we saw that 
disturbances periodic in the direction of the flow are sta- 
bilized if they have a short wavelength but are destabilized 
if they have a long wavelength. Thus, if the instability in 
the absence of flow is characterized by a long wavelength, 
the flow will destabilize the interface. These long-wave in- 
stabilities are not seen unless one properly accounts for the 
boundary layer structure of the flow. If the instability in the 
absence of flow has a short wavelength, then disturbances 
in the flow direction will be stabilized; however, the cross- 
stream disturbances will be unaffected. Thus, the flow acts 
as a pattern selection mechanism in this case. 

Flow-induced, longwave, morphological instabilities 
were also seen in the presence of a stagnation-point flow. 
Low-frequency modulation of the stagnation-point flow 
was seen to stabilize the interface against this instability, 
while high-frequency modulation was seen to promote the 
instability. 

When an unsteady, parallel shear flow is generated by 
oscillating the crystal back and forth, one finds that distur- 
bances periodic in the flow direction are stabilized for both 
long and short wavelength disturbances. As with the steady 
shear flows, however, disturbances in the cross-stream di- 
rection are unaffected. 

One can extend the stabilizing influence of the unsteady 
shear flow to three dimensions by adding a second oscil- 
lation of the crystal perpendicular to, and out of phase with, 
the first. This corresponds to translating the crystal in ellip- 
tical orbits parallel to the interface. In this case, one finds 
that the critical morphological number for the Mullins and 
Sekerka instability is always higher than in the case without 
flow. If surface energy is not too weak, one may eliminate 
the instability, on a linear theory basis, for all morpholog- 
ical numbers by using oscillations with sufficiently large 
forcing amplitude. 
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