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Abstract. Heteroepitaxial growth involves depositing one material onto another with a different lat-
tice spacing. This misfit leads to long-range elastic stresses that affect the behavior of the film. Previously,
an Energy Localization Approximation was applied to Kinetic Monte Carlo simulations of two-dimensional
growth in which the elastic field is updated using a sequence of nested domains. We extend the analysis
of this earlier work to a three-dimensional setting and show that while it scales with the increase in di-
mensionality, a more intuitive Energy Truncation Approximation does not.
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1. Introduction. This paper concerns heteroepitaxial thin films—thin
layers of crystalline material that have been deposited on a crystalline sub-
strate. Such films are used in a wide variety of applications, including the
fabrication of semiconductors, which has lead to the production of high-
brightness light-emitting diodes, lasers, and high-frequency transistors [2].
Since the two species will typically have a lattice mismatch, the behavior of
the film is heavily influenced by long-range elastic stresses ([1],[4]).

At the atomistic level, Kinetic Monte Carlo (KMC) is an effective way of
simulating the growth and evolution of such films ([6]-[11]). KMC simulates
both a crystal’s evolution toward equilibrium and the influence of nonequilib-
rium processes, such as deposition. It does this via a Markov Chain model,
where potential configuration changes are assigned rates. The rates them-
selves can be deduced from experiments, calculated from energy landscape
calculations and transition state theory, or given by empirical models. When
elastic forces are absent, a typical model is to assume single-atom moves
to neighboring lattice sites with a rate that scales exponentially with the
number of nearest neighbors. For an atom i, this rate is

ri = ke−(γni)/kbT ,

where ni is the total number of nearest neighbor bonds with atom i, γ is the
bond energy, kbT is the thermal energy, and k is a scaling factor. While far
from the most accurate approach, these “bond counting” models offer heuris-
tic insight into a system’s behavior while being significantly faster and easier
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to implement than more fundamental approaches. The introduction of elas-
tic interactions into these models substantially increases the complexity of
KMC, however, and until recently it was not possible to do three-dimensional
simulations on practical length and time scales. One of the key ideas that
made these simulations possible was the use of an Energy Localization Ap-
proximation. This paper is specifically concerned with characterizing the
accuracy of this approximation, extending the work of Schulze and Smereka
[9] to a three-dimensional setting.

The model that is used for the rates in the particular KMC simulations
just mentioned is a hybrid model that combines a nearest-, next-nearest, and
third-nearest neighbor bond-counting scheme with an elastic model based on
a network of springs obeying Hooke’s law. In terms of the hopping rate, this
amounts to an additional term, ∆W , that measures the elastic contribution
to the energy barrier when atom i hops:

ri = ke−(γni+∆W )/kbT ).

The elastic contribution to the energy barrier is modeled as the difference
in the total elastic energy with and without the atom for which the rate
is being calculated. If one were to fully implement this model, it would
involve a prohibitively high computational complexity. The essence of the
Energy Localization Approximation is to do a local calculation centered on
the atom in question. Intuitively, it seems that this might be promising, as
we are only changing the network of interacting springs at a single lattice
site. Nevertheless, elastic forces are notoriously long-ranged, with Green’s
tensors that decay like one over distance. So it is somewhat surprising that
the accuracy of this method turns out to scale significantly better than this.
This is due to a fortunate cancellation of boundary terms in what would
otherwise be the largest contributor to the error. This assessment is made
by analyzing the analogous problem in the context of linear elasticity.

2. Analysis of Energy Localization in a Three-Dimensional Set-
ting. For the theorems that follow, we consider a system in which a sub-
strate occupying the entire half-space z < 0 is completely covered by a small-
amplitude film 0 ≤ z ≤ h(x, y) of uniform height H for x2 + y2 > R2 (see
Figure 1 in Section 2.1). The displacement of the film, u, is measured relative
to a reference configuration where a flat film sitting atop the substrate is in
mechanical equilibrium. With this choice, it can be shown that the vertical
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lattice spacing, aL, of the film in equilibrium is

aL = af + asα1
2λ

λ+ 2µ
, (1)

where af is the natural lattice spacing of the film, as is the lattice spacing of
the substrate, α1 is the scaled misfit given below, and λ and µ are the Lamé
constants [8].

Appealing to linear elasticity theory, the elastic energy density of an
isotropic material is given by

w =
1

2

(
λ+

2

3
µ

)( 3∑
k=1

Ekk

)2

+ µ
3∑

i,j=1

(
Eij −

1

3
δij

3∑
k=1

Ekk

)2

,

where E is the strain tensor defined as the difference1 of a relative strain Ẽ
and an intrinsic, or stress-free, strain E [3]. Here, we have

Eij = Ẽij − Eij,

where

Ẽij =
1

2
(∂iuj + ∂jui), and E =

 α1 0 0
0 α1 0
0 0 α2

 θ(z);

and we use the strain parameters

α1 =
af − as
as

and α2 =
af − aL
as

,

and the Heaviside function

θ(z) =

{
0 if z < 0,
1 if z > 0.

1It is noted to the reader that the authors have modified the convention from [9], in
which the strain tensor was defined as the sum of a relative and intrinsic strain, to adhere
to the more traditional convention in [3]. Likewise for the stress tensor.

3



Then, expanded out, the energy density is

w =

(
λ

2
+ µ

)[
(∂1u1)2 + (∂2u2)2 + (∂3u3)2

]
+ λ [(∂1u1)(∂2u2) + (∂1u1)(∂3u3) + (∂2u2)(∂3u3)]

+
µ

2

[
(∂1u2)2 + (∂2u1)2 + (∂1u3)2 + (∂3u1)2 + (∂2u3)2 + (∂3u2)2

]
+µ [(∂1u2)(∂2u1) + (∂1u3)(∂3u1) + (∂2u3)(∂3u2)]

−λ (2α1 + α2) [∂1u1 + ∂2u2 + ∂3u3] θ(z)− 2µ [α1(∂1u1 + ∂2u2) + α2∂3u3] θ(z)

+

[
λ

2
(2α1 + α2)2 + µ(2α2

1 + α2
2)

]
θ(z).

We note that the stress tensor, T, is defined through

Tij =
∂w

∂jui
.

Like the strain tensor, the stress tensor can be written as the difference of a
relative stress T̃ and an intrinsic stress T. Namely,

Tij = T̃ij − T ij,

where
T̃ij = 2µẼij + λδijẼkk (2)

and

T =

 σ1 0 0
0 σ1 0
0 0 σ2

 θ(z), (3)

σ1 = 2 (λ+ µ)α1 + λα2,

σ2 = (λ+ 2µ)α2 + 2λα1. (4)

The energy density can then be written as

w =
3∑

i,j=1

[
µ

2
(∂iuj)(∂iuj + ∂jui) +

λ

2
(∂iui)(∂juj)− T ij∂iuj

]
+
[
α1σ1 +

α2

2
σ2

]
θ(z). (5)

Noting that
Tij = 2µEij + λδijEkk,
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the energy density can be compactly written as

w =
1

2

3∑
i,j=1

EijTij.

The equations of equilibrium maintain that for i ∈ {1, 2, 3},
3∑
j=1

∂jTij = 0 for x ∈ Ω,

3∑
j=1

Tijnj = 0 for x ∈ ∂Ω.

As Schulze and Smereka [9] originally pointed out, the film/substrate inter-
face may introduce a singularity in the first equation due to the stress-free
strain. However, it follows from (4), the strain parameters, and (1) that
σ2 = 0. Written more conveniently in vector notation, we then obtain

µ∆u + (λ+ µ)∇(∇ · u) = 0 for x ∈ Ω, (6)

T̃n = Tn for x ∈ ∂Ω, (7)

u → 0 as |x| → ∞. (8)

2.1. Energy Localization Approximation. We recall that in Schulze
and Smereka [9], the focus was on the ability to efficiently approximate the
elastic correction to the energy barrier, denoted ∆W , when transitioning
from one state to another. Their model (adopted from [6]) for this was

∆W = W (with atom i)−W (without atom i),

where W is the total elastic energy stored in the configuration. Here, we
extend their results by showing that the Energy Localization Approximation
scales with the increase in dimension. While the model is applied to discrete
simulations in practice, the utility of this approximation is shown using the
continuum limit of the discrete model.

The total elastic energy stored in an arbitrary configuration is the integral
of the energy density over the domain. Namely, for a displacement field u
satisfying (6)-(8),

W (u; Ω) =

∫
Ω

w dx. (9)
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(a) Original Domain (b) Modified Domain

Figure 1. (a) Cross section of the union of the film and substrate (gray), with
the truncated domain highlighted in a darker shade of gray. (b) Cross section
after the removal of a chunk of material meant to characterize removing an
atom in the continuum analogue.

In practice, this is not feasible to calculate. Rather, we consider approxi-
mations to the total elastic energy over finite regions Ωρ ⊂ Ω. Let Ωρ =
{Ω ∩ {|x| < ρ}}. Then, the elastic correction over an unbounded domain is

∆W = lim
ρ→∞

[
W (u; Ωρ)−W (um; Ωm

ρ )
]
, (10)

where Ωm
ρ is the same domain except that it has been modified locally and

um is the corresponding displacement field (see Figure 1). We remind the
reader that while the KMC simulations are carried out on a discrete lattice,
we consider the continuum analogue for the theorems that follow.

For the Energy Localization Approximation, we constrain the solution on
the modified domain to agree with the solution on the original domain along
the boundary of the truncated domain below the surface. Namely,

umρ = u for x ∈ Γρ.

Then, the approximation to the displacement field on the modified domain
is

umρ =

{
umρ if |x| < ρ,
u if |x| = ρ.

The corresponding Energy Localization Approximation to the elastic correc-
tion to the energy barrier is

∆WL = W (u; Ωρ)−W (umρ ; Ωm
ρ ), (11)
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which leads us to our first theorem.

Theorem 1 - Energy Localization Approximation. Suppose that h(x, y) is a
compactly supported function whose support includes (0, 0). Further, suppose
that h(x, y) is modified by a localized change centered at (0, 0). Then,

∆W −∆WL = O(ε/ρ3) as ρ→∞,

where ∆W and ∆WL are defined by (10) and (11) respectively.

As we see, the error scales by an additional factor of 1/ρ when compared
to the original two-dimensional result. To gain more appreciation for the
Energy Localization Approximation, Schulze and Smereka compared this re-
sult with that of an Energy Truncation Approximation. For the truncated
approximation, they integrated the exact displacement field on the modi-
fied domain over the same truncated domain. Then, the Energy Truncation
Approximation to the elastic correction to the energy barrier is

∆WT = W (u; Ωρ)−W (um; Ωm
ρ ). (12)

While this may intuitively seem like a better approximation, they showed
that this was not the case. Furthermore, in contrast to Theorem 1, the result
for the Energy Truncation Approximation does not scale with dimension.
Namely,

Theorem 2 - Nonlocality of the Energy Density. Under the same hypotheses
of Theorem 1,

∆W −∆WT = O(εH/ρ) as ρ→∞,

where ∆W and ∆WT are defined by (10) and (12) respectively.

This result further demonstrates the utility of the Energy Localization Ap-
proximation as a means of computing the elastic correction to the energy
barrier.

2.2. Proof of Theorems. Let u be a displacement field satisfying (6)-
(8). We begin by noting that (5) can be written in vector notation as

w = µ
(
∇ · Ẽu− u ·

(
∇ · Ẽ

))
+
λ

2
(∇ · u)2 −∇ ·Tu + α1σ1θ(z).
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Furthermore,

∇ · Ẽ =
1

2
(∆u +∇(∇ · u))

and
(∇ · u)2 = ∇ · (∇ · u)u− u · ∇(∇ · u).

Then, recalling (2) and (6), the elastic energy density can be written in
divergence form as

w = ∇ ·
(
µẼu +

λ

2
(∇ · u)u−Tu

)
− 1

2
u · (µ∆u + (λ+ µ)∇(∇ · u)) + α1σ1θ(z)

= ∇ ·
(
µẼu +

λ

2
(∇ · u)u−Tu

)
+ α1σ1θ(z)

= ∇ ·
(

1

2
T̃u−Tu

)
+ α1σ1θ(z).

Inserting the above divergence form into (9) on a finite subdomain Ωρ ⊆
Ω, the total elastic energy can be written as a boundary integral:

W (u; Ωρ) =

∫
∂Ωρ

(
1

2
T̃u−Tu

)
· n dS + α1σ1|Ωf ∩ Ωρ|,

where Ωf denotes the film. Similarly,

W (um; Ωm
ρ ) =

∫
∂Ωmρ

(
1

2
T̃mum −Tum

)
· n dS + α1σ1|Ωm

f ∩ Ωm
ρ |.

Recalling (7) and taking the limit as ρ→∞, (10) gives the exact correction
to the energy barrier:

∆W =
1

2

∫
∂Ωm

um ·Tn dS − 1

2

∫
∂Ω

u ·Tn dS + α1σ1|Ω\Ωm|.

Likewise, using (11) and (12), we find the Energy Localization Approxi-
mation and Energy Truncation Approximation, respectively, of the correction
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to the energy barrier:

∆WL =
1

2

∫
Γm

umρ ·Tn dS − 1

2

∫
Γ

u ·Tn dS + α1σ1|Ω\Ωm|+

1

2

∫
Γρ

u ·
(
T̃− T̃m

ρ

)
n dS,

∆WT =
1

2

∫
Γm

um ·Tn dS − 1

2

∫
Γ

u ·Tn dS + α1σ1|Ω\Ωm|+

1

2

∫
Γρ

(
u · T̃− um · T̃m

)
n dS +

∫
Γρ

(um − u) ·Tn dS,

where the boundaries ∂Ωρ = Γ∪Γρ and ∂Ωm
ρ = Γm∪Γρ have been decomposed

into surface and subsurface components (see Figure 1). The corresponding
errors of each approximation are then:

EL =
1

2

∫
∂Ωm\Γm

um ·Tn dS − 1

2

∫
∂Ω\Γ

u ·Tn dS

−1

2

∫
Γρ

u ·
(
T̃− T̃m

ρ

)
n dS +

1

2

∫
Γm

(um − umρ ) ·Tn dS, (13)

and

ET =
1

2

∫
∂Ωm\Γm

um ·Tn dS − 1

2

∫
∂Ω\Γ

u ·Tn dS

−1

2

∫
Γρ

(
u · T̃− um · T̃m

)
n dS −

∫
Γρ

(um − u) ·Tn dS. (14)

2.2.1. Approximate Evaluation of Error Formulas. In order to
compare the two approximations, we aim to find asymptotic expressions for
the errors given by (13) and (14) in terms of 1/ρ. As a reminder, we take a
film profile H + h(x, y), where h(x, y) = 0 for x2 + y2 > R2. In addition, we
take h, hx, and hy to be O(ε) for x2 + y2 < R2. We note that the normal
along the surface of the film is

n =
(−hx(x, y),−hy(x, y), 1)T√

1 + h2
x(x, y) + h2

y(x, y)
∼ e3 − hx(x, y)e1 − hy(x, y)e2.

Then, to leading order, n ∼ e3. Hence, we approximate the film/vacuum
interface as flat when applying the boundary conditions given in (7). At this
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point, it is convenient to translate the film/substrate medium such that the
film/vacuum interface is at z = 0. Then, it follows from (3) that

T =

 σ1 0 0
0 σ1 0
0 0 0

 θ(z +H). (15)

Furthermore, it follows from the boundary condition (7) that

T̃e3 = −σ1 (hx(x, y)e1 + hy(x, y)e2) at z = 0.

The resulting problem for the half-space is then

µ∆u + (λ+ µ)∇ (∇ · u) = 0 for z < 0,

T̃e3 = −σ1 (hx(x, y)e1 + hy(x, y)e2) at z = 0,

u → 0 as |x| → ∞. (16)

The solution to the above half-space problem can be obtained by following
the derivation by Landau and Lifshitz [5]:

u = −σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)h(x′, y′) dx′dy′ (17)

where

f =
1

4πµ


x
r3

(
λ+2µ
λ+µ
− 3z2

r2

)
y
r3

(
λ+2µ
λ+µ
− 3z2

r2

)
z
r3

(
λ

λ+µ
− 3z2

r2

)

 =
∂

∂x
Ge1 +

∂

∂y
Ge2,

G is the Green’s tensor for

µ∆u + (λ+ µ)∇ (∇ · u) = 0 for z < 0,

T̃e3 = −σ1(hx(x, y)δ(x, y)e1 + hy(x, y)δ(x, y)e2) at z = 0,

u → 0 as |x| → ∞,

and r =
√
x2 + y2 + z2. Similarly, we obtain um with h(x, y) replaced by

hm(x, y).
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At this point, we aim to derive asymptotic expressions for each of the
integrals appearing in (13) and (14). Namely, we show that

I1 =
1

2

∫
∂Ωm\Γm

um ·Tn dS = 0,

I2 =
1

2

∫
∂Ω\Γ

u ·Tn dS = 0,

I3 =
1

2

∫
Γρ

(u · T̃− um · T̃m)n dS = O(ε2/ρ3), (18)

I4 =

∫
Γρ

(um − u) ·Tn dS = O(εH/ρ), (19)

I5 =
1

2

∫
Γρ

u · (T̃− T̃m
ρ )n dS = O(ε2/ρ3). (20)

and

I6 =
1

2

∫
Γm

(um − umρ ) ·Tn dS = O(ε/ρ3), (21)

We recall that the film/vacuum interface is flat for |x| > R. Hence, for
ρ > R, I1 = I2 = 0 since Tn = 0 (owing to σ2 = 0). Using this fact, and
equations (18) and (19), we establish Theorem 2:

ET = O(εH/ρ).

It follows from equations (20) and (21) that

EL = O(ε/ρ3),

which establishes Theorem 1.

2.2.2. Derivation of Error Estimates. In this section, we establish
the estimates provided in the previous section.

Proof of Eq. 18. Recall that

I3 =
1

2

∫
Γρ

(u · T̃− um · T̃m)n dS.
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Furthermore, we recall (17) and its analogue

um = −σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)hm(x′, y′) dx′dy′.

We need to evaluate u and T̃ on the lower hemisphere of radius ρ centered
at x = (0, 0, 0). We begin by converting each of the integrals to polar coor-
dinates:

u = −σ1

∫ 2π

0

∫ R

0

f(x− s cos β, y − s sin β, z)h(s cos β, s sin β)s dsdβ

and

um = −σ1

∫ 2π

0

∫ R

0

f(x− s cos β, y − s sin β, z)hm(s cos β, s sin β)s dsdβ.

Let (x, y, z) = ρ(sinϕ cos θ, sinϕ sin θ, cosϕ) and substitute this into the in-
tegrals above. Then, by writing the integrand as a Taylor series in s and
expanding in terms of 1/ρ, we obtain

u
∣∣|x|=ρ = O(ε/ρ2) and um

∣∣|x|=ρ = O(ε/ρ2), (22)

where we have used the fact that h(x, y) = O(ε). Similarly, we obtain

T̃
∣∣|x|=ρ = O(ε/ρ3) and T̃m

∣∣|x|=ρ = O(ε/ρ3). (23)

Since the area of Γρ is proportional to ρ2, combining (22) and (23) in the
expression for I3 yields (18).

Proof of Eq. 19. Recall that

I4 =

∫
Γρ

(um − u) ·Tn dS.

We note that Tn = 0 in the substrate. So, the only contribution to I4 is
when Γρ coincides with the film. Furthermore, for ρ � H, the area of Γρ
coinciding with the film is proportional to ρH. Combining this with (22)
yields (19).

Proof of Eq. 20. Recall that

I5 =
1

2

∫
Γρ

u · (T̃− T̃m
ρ )n dS.
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Let v = u− umρ . Then, the integral can be rewritten as

1

2

∫
Γρ

u · (T̂v)n dS, (24)

where the operator T̂ is defined through

(T̂ v)ij = µ(∂ivj + ∂jvi) + λδij∂kvk.

We now need to estimate T̂v. We note that v satisfies the system

µ∆v + (λ+ µ)∇ (∇ · v) = 0 for z < 0 and |x| < ρ,

(T̂v)e3 = −σ1(h̃x(x, y)e1 + h̃y(x, y)e2) at z = 0 and x2 + y2 < ρ2,

v = 0 for z < 0 and |x| = ρ. (25)

Let x = ρx′, v′ = v(ρx′) and h̃′(x′, y′) = h̃(ρx′, ρy′). Then, the system given
by (25) can be transformed into the following system:

µ∆′v′ + (λ+ µ)∇′(∇′ · v′) = 0 for z′ < 0 and |x′| < 1,

(T̂′v′)e3 = −σ1(h̃′x′(x
′, y′)e1 + h̃′y′(x

′, y′)e2) at z′ = 0 and x′2 + y′2 < 1,

v′ = 0 for z′ < 0 and |x′| = 1. (26)

For ρ > R, the solution to this problem can be written as

v′ = −σ1

∫ ∫
s2+t2≤(R/ρ)2

f1(x′ − s, y′ − t, z′)h̃′(s, t) dsdt,

where

f1 =
∂

∂x
G1e1 +

∂

∂y
G1e2,

G1 is the Green’s tensor for (26), and we have used the fact that h̃ is sup-
ported on the disc of radius R.

Since
T̂v = ρ−1 T̂′v′,

we have

T̂v = −σ1

ρ

∫ ∫
s2+t2≤(R/ρ)2

T̂′f1(x′ − s, y′ − t, z)h̃′(s, t) dsdt = O(ε/ρ3).
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We note that T̂′f1(x′ − s, y′ − t, z) = O(1) and h̃′(s, t) = O(ε). Hence, the
integrand is O(ε). Combining this with (22) and (24) gives (20).

Proof of Eq. 21. Recall that

I6 =
1

2

∫
Γm

(um − umρ ) ·Tn dS.

For ρ > R, we can use (15) and the leading order approximation of the
normal to rewrite I6 as

I6 =
σ1

2

∫ ∫
x2+y2≤R2

(umρ (x, y, 0)−um(x, y, 0))·(hmx (x, y)e1+hmy (x, y)e2) dxdy.

(27)

Let w = umρ − um, ũ = u − um and h̃ = h − hm. We recall that
umρ (|x| = ρ) = u(|x| = ρ). Then, since umρ and um satisfy the first two
equations of (16) on Ωρ, with h replaced by hm, w satisfies the following
system:

µ∆w + (λ+ µ)∇ (∇ ·w) = 0 for z < 0 and |x| < ρ,

(T̂w)e3 = 0 at z = 0 and |x| ≤ ρ,

w = ũ at z < 0 and |x| = ρ. (28)

We note that ũ satisfies (16) with h replaced by h̃. Then, appealing to
(17), we find

ũ = −σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)h̃(x′, y′) dx′dy′.

We need to evaluate ũ on the lower hemisphere of radius ρ centered at
(0, 0, 0). We begin by converting the above integral to polar coordinates:

ũ = −σ1

∫ 2π

0

∫ R

0

f(x− s cos β, y − s sin β, z)h̃(s cos β, s sin β)s dsdβ.

Then,

ũ
∣∣∣|x|=ρ = −σ1

∫ 2π

0

∞∑
n=0

an(β)

(∑dn+1
2
e−1

i=0

(∑n−2i
j=0

(
n−2i
j

)
(cos β)j(sin β)n−2i−jbnij(ϕ, θ)

))
ρn+2

dβ

− σ1
∫ 2π

0

∞∑
n=0

an(β)

(∑dn2 e−1

i=0

(∑n−1−2i
j=0

(
n−1−2i

j

)
(cos β)j(sin β)n−1−2i−j (cos βcnij(ϕ, θ) + sin βdnij(ϕ, θ)

)))
ρn+2

dβ
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where an(β) =
∫ R

0
h̃(s cos β, s sin β)sn+1 ds,

bnij(ϕ, θ) =
(−1)i+1

∏2i−1
k=0 (n− k)

4πn!µ(λ+ µ)



(cos θ)j+1(sin θ)n−2i−j(sinϕ)n+1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n+1−i
k=0 (1 + 2k)− (λ+ 2µ)

∏n−i
k=0(1 + 2k)

)
(cos θ)j(sin θ)n−2i−j+1(sinϕ)n+1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n+1−i
k=0 (1 + 2k)− (λ+ 2µ)

∏n−i
k=0(1 + 2k)

)
(cos θ)j(sin θ)n−2i−j(sinϕ)n−2i cosϕ

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n+1−i
k=0 (1 + 2k)− λ

∏n−i
k=0(1 + 2k)

)


for n ∈ [0,∞), i ∈ [0, dn+1

2
e − 1] and j ∈ [0, n− 2i],

cnij(ϕ, θ) =
(−1)i

∏2i−1
k=0 (n− 1− k)

4π(n− 1)!µ(λ+ µ)



(cos θ)j(sin θ)n−1−2i−j(sinϕ)n−1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n−i
k=0(1 + 2k)− λ

∏n−1−i
k=0 (1 + 2k)

)
0

0


for n ∈ [0,∞), i ∈ [0, dn

2
e − 1] and j ∈ [0, n− 1− 2i],

dnij(ϕ, θ) =
(−1)i

∏2i−1
k=0 (n− 1− k)

4π(n− 1)!µ(λ+ µ)



0

(cos θ)j(sin θ)n−1−2i−j(sinϕ)n−1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n−i
k=0(1 + 2k)− λ

∏n−1−i
k=0 (1 + 2k)

)
0


for n ∈ [0,∞), i ∈ [0, dn

2
e − 1] and j ∈ [0, n− 1− 2i].

We can now write the solution of (28) as

w = −σ1
∫ 2π

0

∞∑
n=0

an(β)

(∑dn+1
2
e−1

i=0

(∑n−2i
j=0

(
n−2i
j

)
(cos β)j(sin β)n−2i−jw1

nij

(
|x|
ρ

)))
ρn+2

dβ

− σ1
∫ 2π

0

∞∑
n=0

an(β)

(∑dn2 e−1

i=0

(∑n−1−2i
j=0

(
n−1−2i

j

)
(cos β)j(sin β)n−1−2i−j

(
cos βw2

nij

(
|x|
ρ

)
+ sin βw3

nij

(
|x|
ρ

))))
ρn+2

dβ,

(29)

where wk
nij satisfies (28) except that the subsurface boundary condition is
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replaced by

wk
nij =


bnij if k = 1

cnij if k = 2

dnij if k = 3

for |x| = 1 and z < 0.

We note that for n = 0, the only term is b000. Since b000 · e1 is antisym-
metric about θ = π/2 and b000 · e2 is antisymmetric about θ = 0, we infer
that e1 ·w1

000(0, 0, 0) = 0 and e2 ·w1
000(0, 0, 0) = 0. It follows then from (29)

that
e1 ·w(0, 0, 0) = O(1/ρ3)

and
e2 ·w(0, 0, 0) = O(1/ρ3).

Furthermore, differentiating (29), we find that

∂x((e1 + e2) ·w)(0, 0, 0) = O(1/ρ3)

and
∂y((e1 + e2) ·w)(0, 0, 0) = O(1/ρ3).

Therefore, we conclude that

(e1 + e2) ·w(x, y, 0) = O(1/ρ3) provided x2 + y2 = O(1).

Substituting this last result into (27) and using the fact that both hx = O(ε)
and hy = O(ε), we obtain (21).

3. Summary. A common issue one must deal with in the simulation
of heteroepitaxial growth using KMC is the long range nature of the elastic
interactions. Schulze and Smereka previously considered a local approxima-
tion technique that was observed to yield highly accurate approximations
of the energy barrier for adatom diffusion in numerical computations on a
two-dimensional lattice. Using a continuum analogue of the discrete model,
they were able to explain these results and derive estimates for the error as
a function of the size of the local region.

In this current work, we have extended those previous results to a three-
dimensional lattice. As one may expect, we have shown that the error scales
by a factor of one over the size of the box in the localized approximation

16



when transitioning from a two-dimensional to a three-dimensional lattice. By
comparing this result to a more intuitive Energy Truncation Approximation,
we have further demonstrated the high accuracy of the Energy Localization
Approximation and its utility in KMC simulations of heteroepitaxial growth.
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