
Abstract

For the most part, the study of dendritic crystal growth has focused on continuum

models featuring surface energies that yield six pointed dendrites. In such models,

the growth shape is a function of the surface energy anisotropy, and recent work has

shown that considering a broader class of anisotropies yields a correspondingly richer

set of growth morphologies. Motivated by this work, we generalize nanoscale models of

dendritic growth based on kinetic Monte Carlo simulation. In particular, we examine

the effects of extending the truncation radius for atomic interactions in a bond-counting

model. This is done by calculating the model’s corresponding surface energy and

equilibrium shape, as well as by running KMC simulations to obtain nanodendritic

growth shapes. Additionally, we compare the effects of extending the interaction radius

in bond-counting models to that of extending the number of terms retained in the cubic

harmonic expansion of surface energy anisotropy in the context of continuum models.
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1 Introduction

Dendritic growth has been studied extensively from both an experimental and theoretical

point of view. This intense study is due to fundamental scientific interest as well as the

importance of this striking phenomenon from a technological point of view. The vast ma-

jority of dendrite simulations have used continuum models aimed at macroscale solid-liquid

interfaces, e.g. a pure solid growing into its melt. In this paper, we seek to build upon the

smaller body of work that has examined dendritic growth on atomistic length scales using

kinetic Monte Carlo (KMC) simulation. These models are best suited to growth from vapor

with low concentrations of the growth species. Interfaces where a solid is in equilibrium with

its melt tend to be at much higher temperature and pressure than interfaces where a vapor

is in equilibrium with a solid. Thus, our simulations correspond to lower temperatures, with

a correspondingly lower entropic contribution to the surface free energy and crystal surfaces

that tend to be more faceted.

While the growth of a snowflake is a familiar example of this regime, KMC studies have

tended to focus on more idealized systems, most often the growth of simple cubic crystals.

These studies include the work of Witten and Sander on diffusion limited aggregation [1]. To

simulate more structured dendritic growth one must include a surface diffusion mechanism.

For simple cubic growth, this has been examined in a number of two-dimensional studies

[2, 3, 4, 5], and at least one study of three-dimensional growth [6].

More recently, Schulze [7] has examined KMC simulation of FCC dendrites. This model

aims to examine the growth of a dendrite into an under-cooled melt using a hybrid KMC-

continuum model where the thermal diffusion was simulated using the heat equation dis-

cretized on the FCC lattice. From the nanoscale perspective, this has the disadvantage of

removing thermal fluctuations from the model. In contrast, our present work will consider

instead the growth of a dendrite from a super-saturated vapor, modeled as a lattice gas at

constant temperature. The bulk diffusion of the precipitating species is then readily sim-

ulated with a random walk, so that the fluctuations in the growth process can be more

consistently modeled.

Our aim here is to examine a broader class of KMC models capable of capturing a wider

range of dendrite morphology. We were initially motivated by the work of Haxhimali et.

al. [8] who have pointed out that the vast majority of work using continuum models has
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been aimed at the growth of FCC and other cubic dendrites with primary growth occurring

along the six faces of the cubic unit cell. In particular, their work emphasizes the potential

for moving continuously from 〈100〉- to 〈110〉-oriented growth as one varies composition-

dependent surface energy parameters. According to their model, this would result in a

transition from six- to twelve-armed dendrites with a variety of complicated and fascinating

hybrid structures in between.

Haxhimali et al. [8] base their conclusions on phase field simulations of a continuum

model with a truncated expansion of the anisotropy in the interfacial free-energy, γ(θ, φ), in

terms of “cubic harmonics” [9], K1 and K2, which are formed from linear combinations of

spherical harmonics Ylm(θ, φ) to reflect the symmetry of cubic crystals:

γ(θ, φ) ≈ γ0[1 + ε1K1(θ, φ) + ε2K2(θ, φ)]. (1)

The coefficients, ε1 and ε2, are material-dependent anisotropy parameters. The authors note

that essentially all prior studies retain only the ε1K1-term that favors the ubiquitous 〈100〉
dendrite, and point to an earlier Molecular Dynamics (MD) study of Asta et. al. [9] that

suggests the ε2K2-term, which favors 〈110〉-oriented growth, is significant for a wide range

of FCC metals. They support their theory with both simulations of the continuum model

for dendritic growth into an under-cooled melt and directional solidification experiments of

Al−Zn alloys. The experiments study the surface energy anisotropy by considering varying

amounts of Zn, and support the numerical study. We seek a similar generalization for KMC

studies of crystal growth aimed at the nanoscale.

In the next section we start with a broad introduction to KMC before turning to the

specific model used for the present study. In Section 3 we derive the surface energy for

our model, and in Section 4 we examine the corresponding equilibrium shapes as well as

the growth shapes that emerge as the result of simulation. In Section 5 we discuss the

relationship with the work of Haxhimali et al. and some important distinctions between the

continuum and KMC models.

2 Kinetic Monte-Carlo

KMC models usually take the form of discrete-space, continuous-time Markov processes,

where the system passes through a sequence of states {xαn ∈ X} drawn from a model

dependent state-space X = {xα = {xijk ∈ {0, 1}}} at transition times {tn}. Here α is

a discrete index used to enumerate the possible states. The states themselves, xα, take

the form of an occupation array for some set of lattice points, with 1 signifying occupied

and 0 unoccupied. In this paper, for example, we consider an arbitrary Bravais lattice

{ia1 + ja2 + ka3} defined by a set of primitive vectors {a1, a2, a3}.
In KMC, the transition matrix for the Markov process is typically sparse, with rates

Rαβ = 0 except for certain local transitions. In this paper, we consider models that are

mostly limited to the exchange of neighboring occupied and unoccupied lattice sites. In

other words, every transition on the interior of the domain consists of a single atom moving

to an unoccupied site. The transition rates Rαβ are chosen so that an equilibrium simulation
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will achieve the Boltzmann distribution:

ρ(x) = Z−1 exp

(
−E(x)

kbT

)
, Z =

∑
x∈X

exp

(
−E(x)

kbT

)
, (2)

where ρ(x) is the probability of finding the system in state x, E(x) is a discrete Hamiltonian

associating an energy with each possible state, Z is the canonical partition function, kb is

the Boltzmann constant, and T is the temperature, which we take to be uniform across the

system.

A simple and conventional way of enforcing the correct equilibrium distribution in (2) is

to impose a condition of detailed balance:

ρ(xα)Rαβ = ρ(xβ)Rβα, (3)

which matches the flux between any two states. A common choice for the rates Rαβ that

satisfies (3) and that is motivated by Transition State Theory [10] is

Rαβ = K exp

(
−E(xα)− Eαβ

kbT

)
, (4)

where the prefactor K is normally taken to be a constant and Eαβ is the energy of the

“transition state”. In a model based on an empirical potential, where particles can occupy

an arbitrary point in configuration space, the transition state is identified with the energy

at saddle points on the energy landscape. In a lattice-based model, there are no such

points and we simply define Eαβ to play an analogous role. In many bond-counting models,

including those considered here, Eαβ can be thought of as the energy of the system with the

transitioning atom removed. Equivalently, the energy barrier E(xα) − Eαβ is defined to be

the interaction energy between the atom being moved and the rest of the system.

2.1 KMC Simulation of Dendritic Growth

For our present simulations, we imagine a vapor solution initially at a uniform concentration

and a temperature that will remain constant. The domain is a sphere of fixed radius, large

enough that this concentration may be assumed fixed at the boundary of the sphere. The

precipitate is nucleated in a much smaller sphere at the center of the domain (see Fig. 1).

Growth occurs as particles precipitate and diffuse along the surface of the crystal, which

depletes the concentration of the solidifying species in a boundary layer that conforms to

the crystal surface. This depletion of the precipitating species provides the driving force for

a Mullins-Sekerka-type morphological instability [11], as protruding portions of the surface

have access to a richer concentration of the growth species in the far-field.

More specifically, our simulations use a large FCC lattice within a spherical domain with

a radius of approximately 200 lattice spacings. An occupied lattice site represents an atom

of the growth species, whereas an empty site represents the medium from which the dendrite

is growing. The diffusion of the growth species from the far-field to the crystal surface

is modeled as a random walk on an FCC lattice with subsequent attachment and surface

diffusion. An alternative model with an off-lattice random walk was also considered, but

rejected in favor of the more readily implemented discrete model. Initially, all nodes within

4



Figure 1: An illustration of the simulation domain, nucleated growth species in the center,

and adatoms diffusing through the far-field.

five lattice spacings from the center are considered occupied, constructing a small cluster

with about 600 atoms.

In principle, each atom shares interactions with all other atoms in the system. However,

in our simulations, interactions are limited to a finite number of pairwise “bonds.” Since

every node in a Bravais lattice has neighbors in the same directions, each bond can be

represented by a vector between nodes of the lattice: v = v1a1 + v2a2 + v3a3 with vi ∈ Z.

Without loss of generality, we will arbitrarily associate these bonds with one of the two

interacting atoms by choosing an orientation for v, and denote the set of bonds for a given

model as {vj}.
The energy E(x) is given by

E(x) = −1

2

na∑
i=1

nb∑
j=1

wjNj(i), (5)

where na is the number of atoms, nb is the number of bond types {vj}, wj is the weight

corresponding to vj or the energy value of a vj bond, and Nj ∈ {0, 1, 2} is the number of

bonds an atom shares with its neighbors with either vj or −vj orientation.

The transition rate Rαβ for the surface diffusion process depends solely on how many

bonds it shares with neighbors. The rate for an atom moving to an open site is given by

R = K exp

(
− 1

kbT

nb∑
j=1

wjNj

)
.

In the models we will consider, many of the bonds share the same weight.

The KMC simulation is implemented using the inverted list algorithm described in [12].

At each iteration of the simulation either a single atom moves to an adjacent site on the

lattice or a new atom is generated on the domain boundary. The rates for atom movement

events, denoted Rn1n2 , are a function of the number of occupied nearest- and next-nearest-

neighbor sites which are n1 and n2 respectively. Additionally, we need a counter an1n2 telling
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us the number of events with rate Rn1n2 in the current configuration. Finally, there is one

additional rate g representing the uniform flux of the growth species from the far-field.

Our simulations are performed with two different boundary conditions. When growing a

dendrite, atoms are deposited onto boundary sites at a uniform rate and annihilated upon

moving onto a boundary site, so that a uniform far-field concentration is maintained. When

finding equilibrium shapes, all flux at the boundary is removed by setting g = 0 and reflecting

atoms that move onto a boundary site, so that the number of atoms na is conserved.

3 Surface Energy in Bond-Counting Models

To gain insight into the equilibrium behavior of the bond-counting model just described, we

first derive the corresponding surface energy function, γb(n̂), which we define as the number

of broken bonds per unit area along a surface with normal n̂. Note that, in contrast to (1)

this is a zero-temperature surface energy rather than a free-energy. In the KMC simulations,

the entropic effects due to finite temperature are controlled via the rates (4), whereas in

a continuum model they are modeled through the choice of γ, e.g. (1). Derivation of the

surface energy function of bond-counting models for FCC metals has been demonstrated in

previous studies for bonds up to a specified truncation radius [13, 14, ?]. Here we adopt an

approach advocated in a footnote in Mackenzie et al. [13], providing details for any set of

bonds on any Bravais lattice.

We calculate the total surface energy for a facet with normal n̂ by computing the con-

tribution of each v ∈ {vj} individually. A 2D example of this is shown in Fig. 2, along

with a facet cutting bonds associated with the same vector v. It is important to note that,

depending on the length of v, bonds between atoms may overlap. This happens if and only

if z ≡ gcd(v1, v2, v3) > 1 where gcd denotes the greatest common divisor. Note that z is the

density of overlapping v bonds.

Figure 2: An illustration in two dimensions of a Bravais lattice, its two primitive vectors, a

bond vector v, a facet with normal n̂, and the collection of bond-facet intersections. The

latter forms a Bravais lattice in one fewer dimensions along the facet.

6



First, we show that on a 3D Bravais lattice, the intersections of bonds corresponding to

a vector v with a planar facet form a 2D Bravais lattice on the facet. Choose vectors ã1, ã2

such that the set {v, ã1, ã2} spans the crystal lattice. Each of the bonds corresponding to v

lies on a line of the form {tv + k1ã1 + k2ã2 + kv | k, ki ∈ Z, t ∈ R} as shown in Fig. 2. To

find the intersections of these lines and the facet given by {x | n̂ · (x− x0) = 0} we solve the

equation

n̂ · (tv +
2∑
i=1

kiãi + kv − x0) = 0.

Solving for t gives

t =
n̂ · x0

n̂ · v
+ k −

2∑
i=1

ki
(n̂ · ãi)
n̂ · v

.

Then the set of intersections can be written{
2∑
i=1

ki
(n̂ · v)ãi − (n̂ · ãi)v

n̂ · v
+

n̂ · x0

n̂ · v
v

∣∣∣∣∣ ki ∈ Z

}
.

Therefore, the set of intersections is generated by integer combinations of the two vectors{
(n̂·v)ãi−(n̂·ãi)v

n̂·v

∣∣∣ i = 1, 2
}

and is then a 2D Bravais lattice.

Now, consider a bond-counting model on a Bravais lattice with bonds corresponding to

a vector v. In the case z = 1, bonds do not overlap. From above, we know that the bond

intersections on the facet form a Bravais lattice so the area on the facet per intersection

equals the area of a Voronoi cell of this lattice. Construct a prism centered on each v bond

with the 2D Voronoi cell as its base and spanning the length of the bond. This is illustrated

in a 2D analog for easier viewing in Fig. 3. These prisms tile R3 and correspond to exactly

one atom of the 3D lattice and are therefore primitive cells and have volume V = | detA|
where A = [a1, a2, a3]. The height of each cell in the direction of n̂ is h = projn̂ v = |n̂ · v|.
Therefore, the area per bond intersection on the facet is given by h−1V = | detA|

|n̂·v| .

When bonds do overlap, z = gcd(v1, v2, v3) > 1. Following the construction above yields

prisms that overlap with density z. By dividing these cells into z disjoint prisms each with

height h = z−1|n̂ · v|, we arrive at a cell that tiles R3 without overlapping and contains

one node of the lattice. This cell is then a primitive cell with volume V = | detA|, which

determines the area of a Voronoi cell on the facet: h−1V = z detA
|n̂·v| . Then, since there are z

bonds cut at each intersection, the number of bonds cut per unit area on a facet with normal

n̂ is z |n̂·v|
z|detA| = |n̂·v|

| detA| . Therefore, for z ≥ 1, the bonds cut per unit area by a planar facet

with normal n̂ is given by

γb(n̂) =
|n̂ · v|
| detA|

. (6)

In a model with multiple types of bonds, we can superimpose the contribution of each

bond vj using the corresponding weight wj. Then the total surface energy for a facet with

normal n̂ is

γb(n̂) =

nb∑
j=1

wj|n̂ · vj|

| detA|
. (7)
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Figure 3: A 2D illustration of an arbitrary bond and a prismatic primitive cell with base

parallel to a facet with normal n̂. In this case the Voronoi cell of facet intersections consists

of a line segment and is shaded in the figure.

In the FCC examples that follow, the nearest-neighbor bonds share the weight w1 and

the next-nearest-neighbor bonds share the weight w2. Surface energies for these examples

take the form

γb(n̂) =
1

| detA|

(
w1

6∑
i=1

|n̂ · v1i|+ w2

3∑
i=1

|n̂ · v2i|

)
, (8)

where {v1i} represent the bonds between FCC nearest-neighbors and {v2i} the bonds be-

tween FCC next-nearest neighbors.

Fig. 4 contains examples of three-dimensional surface energies. Fig. 4a is the surface

energy for a model counting nearest-neighbor bonds on a cubic lattice, each with weight

w = 1. Fig. 4b counts nearest-neighbor bonds on a FCC lattice with weights w1 = 1, w2 = 0.

Fig. 4b counts nearest- and next-nearest-neighbor on a FCC lattice with equal weights

w1 = 1, w2 = 1.

4 Equilibrium and Growth Shape

A crystal in equilibrium is not subject to conditions that will drive its growth. The equilib-

rium shape minimizes the total surface energy among competitors with fixed volume:

min
|Ω|=V

∫
x∈∂Ω

γ(n̂(x))dS. (9)

The minimizer is also known as the Wulff shape and is given by the well-known formula [15]

W = {x ∈ R3|x · n̂ ≤ γ(n̂) ∀n̂}. (10)

The surface of the Wulff shape can be described with the function

w(d̂) = min
d̂·n̂>0

[
γ(n̂)

d̂ · n̂

]
(11)
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(a) γb(n̂) for nearest-neighbor

bonds on a cubic lattice
(b) γb(n̂) for nearest-neighbor

bonds on a FCC lattice

(c) γb(n̂) for nearest- and next-

nearest-neighbor bonds on a

FCC lattice

Figure 4: Examples of Surface Energies

where
{
d̂
}

is the set of all unit vectors. This shape is constructed by drawing planes which

are orthogonal to the radius vector at each point on the spherical plot of γ(n̂) and taking

the inner envelope of those planes.

As noted previously, the surface energy γb that we have derived for our bond-counting

model is the zero-temperature surface energy. One result of this is that surface energies of

the form (7) have several cusps. These cusps are local minima of the surface energies and

lead to the faceted Wulff shapes seen in Fig. 6a & b. At nonzero temperatures, these cusps

and the corresponding edges of the facets in equilibrium shapes become rounded. While we

cannot directly compute this entropic contribution to the surface energy, we can simulate

its effect on the equilibrium shape, as illustrated in Fig. 5. Calculating the Wulff shape is a

useful tool for exploring the range of morphologies attainable within a given bond-counting

model, as such calculations can be done with little effort compared to the lengthy simulations

needed to generate the shapes shown in Fig. 5.

When a growing crystal is sufficiently small, surface diffusion will dominate the diffusive

effects driving growth, so that the crystal evolves toward its equilibrium shape. The subse-

quent growth shape is more difficult to predict, but is heavily influenced by the equilibrium

shape. For example, some crystals may have growth directions that correspond to faces of

the Wulff shape while others may grow in directions corresponding to edges or vertices. One

might think that if the growth directions correspond to faces, they would be the faces fur-

thest from the center of the shape. Fig. 6 demonstrates that this is not always the case. The

dendrite in Fig. 6c has six arms corresponding to square 〈100〉 facets of Fig. 6a, which are

the furthest facets from the center of the Wulff shape. In Fig. 6d the eight arms correspond

to the hexagonal 〈111〉 facets seen in Fig. 6b, but here we start to see that there are more

complex mechanisms at play since the rectangular 〈110〉 facets are further away from the

center and do not correspond to growth directions.
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(a) Equilibrium Shape for T = 351.7 K (b) Equilibrium Shape for T = 580.2 K

Figure 5: KMC simulations of an FCC crystal’s equilibrium shape counting only nearest-

neighbor bonds under two different temperatures, with energy scaled such that w1 = 0.1 eV.

Higher temperatures lead to softer edges as seen in b. The corresponding surface energy for

both of these models is shown in Fig. 4b.

5 Comparison with Continuum Models

Our aim here is to explore the role of anisotropic surface energy in our KMC model, denoted

γb, guided by what is known about the influence of surface energy in the context of continuum

models, which we now will denote γc. Due to significant differences between the two models

and the physical scenarios they represent, no direct comparison is intended here. Rather,

our focus is on the class of morphologies that can be exhibited within each model at a given

level of approximation.

We start by reiterating the differences between the two models. For the most part, the

dendritic growth of a pure material into its own melt is modeled using the heat equation

along with appropriate boundary conditions. With some approximation, this can also be

viewed as a model where the growth is occurring from a supersaturated vapor, a scenario

that is more directly analogous to the KMC simulations described in the previous section.

There is an extensive literature that examines the effects of both solute and heat diffusion

on such processes [16]. More significantly, we have already commented on the important

distinction that γb is a zero-temperature surface energy, while γc represents the free energy

at the melting temperature. Another important distinction between the KMC simulations

and simulations based on the continuum model, is that the former are necessarily restricted

to atomistic length scales due to computational requirements, whereas the latter are largely

aimed at the macroscale. While most studies of dendritic growth are done on scales larger

than can be simulated with KMC, there are experimental results that exhibit nanodendrites

with highly developed branches with length scales similar to our simulations [17, 18].

Despite these differences, it is natural to wonder whether or not similar growth shapes

can be exhibited in both models and, if not, why? Of particular interest is the possibility

of 12-armed and 24-armed dendrites. While we were able to find evidence for the latter, we

were not able to exhibit 12-armed dendrites using a nearest- and next-nearest-neighbor bond-
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(a) Weights w1 = 1, w2 = 0 (b) Weights w1 = w2 = 1

(c) Six-armed dendrite (d) Eight-armed dendrite

Figure 6: FCC Wulff shapes and the corresponding results of a KMC simulation on an FCC

lattice. The Wulff shapes in a & b correspond to the surface energies in Fig. 4b and c, which

are both on an FCC lattice. The dendrite shown in c & d use the same parameters as the

Wulff shapes in a & b respectively. These crystals each contain approximately 5×106 atoms,

with the inset showing an atomic resolution close-up.

counting model, i.e. longer range or multi-body interactions would appear to be necessary.

Recall that Haxhimali et al. [8] examined the effects of anisotropy in the solid-liquid

interfacial free-energy for a class of functions given by a truncated expansion in terms of

cubic harmonics:

γc(θ, φ) = γ0[1 + ε1K1(θ, φ) + ε2K2(θ, φ)], (12)

where Ki is the ith cubic harmonic function [9]. One of the more intriguing shapes uncovered

in these simulations, was a twelve armed dendrite that occurred when the K1 contribution

was absent, specifically for γc(n̂) = 1− 0.02K2(n̂).

In an attempt to grow a crystal with a similar morphology using a KMC model, we

first sought parameters that would give a similar functional form for γb. Like the spherical

harmonics, cubic harmonics are orthonormal with respect to the inner product 〈f, g〉 =
1

4π

∫
∂B(0,1)

f · g dS. This means any γ-plot, including γb of a bond-counting model, can be

projected onto the set of all cubic harmonics Ki by:

γb(n̂) = γ0(1 + ε1K1(n̂) + ε2K2(n̂) + · · · ), (13)

where γ0 = 〈γ, 1〉 is the average value of γb and εi = 1
γ0
〈γ,Ki〉. Thus, we computed ε1 and ε2

for energies of the form (7) as a function of the next-nearest-neighbor bond strength (with
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(a) (b)

Figure 7: The Wulff shape and resulting growth shape for a bond-counting model with

w1 = 1 and w2 = 0.353553. These values been chosen to eliminate ε1 in the cubic harmonic

expansion of the surface energy (13). The Wulff shape in (a) has octagonal faces in the

〈100〉 directions, rectangular faces in the 〈110〉 directions, and hexagonal faces in the 〈111〉
directions. The dendrite in (b) contains approximately 5 million atoms. Note that there are

24 primary branches (six groups of four) that seem to be merging into six larger branches.

the weight for nearest-neighbor bonds fixed at 1). The bond strength w2 = 0.353553 gives

ε1 = 0 and ε2 = −0.0219097, and therefore seems to be a good candidate for growing a

twelve-armed dendrite.

Next, we consider a KMC simulation using this value of w2. The result shown in Fig.

7b is a dendrite containing approximately 5× 106 atoms. Rather than a 12-armed dendrite,

there are 24 primary branches that eventually merge in groups of four to form six larger

branches. Haxhimali et al. did exhibit some 24-branched structures computed using non-

zero values of ε1, and the 12-armed structure in their model seemed to correlate with small

values of ε1. In fact, the 24-armed dendrites illustrated in their paper have branches that

tighten in groups of four as ε1 approaches 0.15, similar to the branches in our simulation.

To understand why this might be the case, we examine the Wulff shapes corresponding

to the surface energy functions for both models. The first Wulff shape is shown on the far

left in Fig. 8 and corresponds to γc(n̂) = 1 − 0.2K2(n̂), where ε1 = 0 and all harmonics

beyond ε2 are also zero. This surface energy matches that used by Haxhimali et al. [8] for

the 12-armed dendrite shown in their Fig. 2(e). The second Wulff shape is shown in Fig. 7a

and corresponds to γb(n̂) = 1−0.2K2(n̂)+ · · · , which is a surface energy for a bond-counting

model with ε1 = 0 as a result of the choice w2 = 0.353553. Note that the higher order

harmonics are not necessarily zero, which accounts for the significant qualitative change in

shape. In the γc Wulff shape there are twelve corners while the γb shape is faceted with

twelve smaller facets corresponding to the corners in the former.

First we note that, since the first two cubic harmonic terms match in the two energies,

the difference must be in the higher-order terms. Since the continuum model truncates after

the second term, all higher-order coefficients are 0. In the expansion of γb, however, we can
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compute these coefficients directly using (13):

ε3 = −0.0150347, ε4 = 0.00150363, ε5 = −0.00665085. (14)

We have also considered how many terms the expansion of γc would need in order to see

a Wulff shape for a continuum model similar to that of our bond-counting models. Using the

computed coefficients of the cubic harmonic expansion of γb above, we computed the Wulff

shapes for energies of the form
∑n

i=1 εiKi(n̂) for n > 2. It is interesting that just by adding

the third term in the expansion, the Wulff shape is significantly more faceted. However, it

is only when the expansion includes the first five terms that the Wulff shape becomes fully

faceted and a very good approximation of γb as shown in Fig. 8.

(a) n = 2 (b) n = 3 (c) n = 4 (d) n = 5

Figure 8: Wulff shapes corresponding to surface energy γ(n̂) = 1+
∑n

i=1 εiKi for n = 2, 3, 4, 5

using coefficient values in (14). The Wulff shape on the far left corresponds to the surface

energy given by γc(n̂) = 1− 0.02K2(n̂) utilized by Haxhimali et al. [8].

6 Conclusion

Ultimately, we conclude that, at any finite level of approximation, both models exhibit a

type of truncation error that makes them incompatible. In the continuum models, surface

energy is modeled by truncating after one or more cubic harmonic terms. In bond-counting

models, surface energy is the result of interactions between nearest-neighbors lying within

some cutoff radius. It appears that a surface energy function within one of these families may

lead to growth behavior not exhibited by functions in the other family using their respective

models.
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