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The manufacturing of single crystals of multi-component materials with uniform material properties
is frequently hampered by the presence of morphological instabilities during the solidification. In
this paper we extend into the nonlinear regime our previous work on the influence of shear flows on
the linear stability of the solid/liquid interface during the directional solidification of binary alloys.
The flows are generated by unidirectional or nonplanar harmonic oscillations of the crystal parallel
to the mean interface position, and oscillations with physically realizable amplitudes and
frequencies are found to be useful for stabilization purposes. A strongly nonlinear equation which
governs the evolution of the interface in the limit of high surface energy, a weak flow and
thermodynamic equilibrium is derived, and a weakly nonlinear analysis of this equation is
performed. For the unidirectional case, it is found that oscillations with sufficiently large amplitude
will change the initial bifurcation from super- to subcritical. For the nonplanar case, it is found that
subcritical instability of roll, square and hexagonal cells is favored as the amplitude of the flow is
increased. Thus, some of the stabilization due to the flow may be lost at finite amplitude, but
substantial stabilization can be retained. 1896 American Institute of Physics.
[S1070-663(196)01509-1
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Phase changes are intimately involved in the manufac-
turing and processing of nearly all materials. The control ofwhich gives the interfacial temperatug as a function of
fluid motion and interfaces during these processes is essethe concentration of the allag and the mean curvatuté of
tial to the production of quality materials. Among the greaterthe interface. The other symbols in this equation represent
threats to material quality are hydrodynamic and interfaciathe melting temperature of the pure matefiigl, the surface
instabilities, which may lead to nonuniform material proper-energy per unit areg, the liquidus slope in the phase dia-
ties. Here, we shall focus on the liquid-to-solid phase transgram of the binary alloyn, and the latent heat per unit vol-
formation of two-component alloys. The study of crystalline ume released upon solidificatidr, . In applying this equa-
solids with binary composition is of particular interest, sincetion we assume that the interface is moving slowly enough
many technologically significant materials—including metal-that the system remains in thermodynamic equilibrium.
lic alloys, semiconductor materials and crystals for opticalThus, the effects of kinetic undercooling, which would lower
devices—fall into this category. the interface temperature as the pulling speed is increased,
Directional solidificationis a processing configura- are ignored.
tion which lends itself to experimental observation and math-  The instability of the planar front was first explained by
ematical analysis, and is a good local model for other comTiller et al® and a full linear-stability analysis, including the
plex solidification configurations, such as laser annealing. Ireffects of surface energy, was first done by Mullins and
a directional solidification experiment, a liquid may be con-Sekerké& They found that the interface is stable for suffi-
fined to a Hele-Shaw cellFigure ) or to a fully three- ciently low solute concentrations. For higher concentrations,
dimensional regior{inside a cylindrical tube, for example the interface is unstable for a finite range of pulling speeds.
The confined material, along with its container, is then pulled\ear the critical values of the pulling speed, the linear theory
through a temperature gradient, so that the fluid solidifies apredicts the formation of sinusoidal cells.
it moves from a heated region into a cooler one. If the ma- The mechanism can be explained by examining the fate
terial is pulled at constant speed, the solid-liquid interfaceof a small perturbation to the interface. A bump of solid will
will establish itself at a fixed position relative to the heatput the front in a higher temperature environment, and tends
source and/or sink. to be melted back; thus, the temperature distribution is sta-
The melting temperature of the fluid, and hence the in-bilizing. A bump of solid has its local melting temperature
terfacial temperature, is related to the concentration of thelecreased by the Gibbs-Thompson effémpillary under-
alloy and to the curvature of the interface. These two effectgooling); surface energy is stabilizing. A bump of solid will
are governed by the Gibbs-Thompson equation: protrude into a region of reduced solute concentration due to
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ZAXIS pulling speeds for which the interface remains flaee
1 Davis® for a summary of thege Schulze and Davis have
investigated the effects of translating the crystal in elliptical
orbits parallel to the interface, following the example of
Kelly and Hu® who had found that a similar modulation has
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—Interface || a stabilizing influence on Berd convection. This nonplanar
l forcing will generate a three-dimensional version of a Stokes
v boundary layer in the fluid above the interface. Because the

boundary layer will be compressed due to the flow normal to

the interface generated by the pulling of the crystal, we refer

to this flow configuration as a three-dimensional Compressed
Front View Side View Stokes LayeX3D CSL), or CSL for short.

FG. 1. Confiauration for directional solidification in & Hele-Sh Th Schulze and Davisfound that this flow can, on a linear

confined material is pulled through a temperature aradient, so that the i €0 basis, stabilize the interface, provided the pulling

solidifies as it moves from a heated region into a cooler one. If the materiaPP€€d is sufficiently high. The success of this method re-
is pulled at constant speed, the solid-liquid interface will establish itself at aquires that the frequency of the flow lie within a calculated

fixed position relative to the heat source and/or sink. range. The outermost curve in Figure 2 is a typical neutral
curve for the no-flow systerhshowing the critical pulling

the effects of solute rejection, which elevates the concentrs3P€€d as a function of the alloy concentration for a fixed
tion of solute in a layer near the interface. Thus, the locatemperature gradient. Also shown in this figure are neutral
melting temperature near a bump will be reduced due t&urves for the system when it is forced through the boundary
constitutional undercooling and continued growth will be fa-to generate a CSL. As the amplitude of the forcing is in-
vored. This last effect can be related to megative con- creased, the upper branch of the neutral curve is lowered
centration gradient at the interfaGg. , with larger values of ~ considerably and the nose of the curve moves to the right, so
|G| indicating a greater tendency for interfacial instability. that, according to linear theory, the system is stabilized rela-
When the instability is present, variations in the concendive to the no-flow case. While it is true that most practical
tration along the interface are frozen into the solid, resultingsolidification occurs at low speeds.e., along the lower
in stripes of elevated solute concentration. Frequently, theseranch of the neutral curyesome applications make use of
inhomogeneities are undesirable, and crystal growers woultkapid” directional solidification.[An example of this is la-
prefer to suppress the instability. A number of authors haveser annealing, in which a high-powered laser is scanned
attempted to use a forced fluid flow to extend the range ofcross a solid substrate. This causes the local melting of the
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FIG. 2. Plot of a typical neutral curve in dimensional formv—versusC., with a fixed temperature gradient. All of the curves extend infinitely along tangents

to the portions shown. The interface is linearly stal8gwhen the far-field concentration is to the left of the neutral curve. The no{fboermosk curve is
divided into a portion corresponding to subcritical instabilidashed portionand a portion corresponding to supercritical instabilgglid portion).
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solid and rapid resolidificatioril—-10 m/$ after the laser shown in Figure 2. In this limit, which is called the absolute
passes? At such high speeds one’s model should allow de-stability limit, they found that bifurcations to two-
partures from local thermodynamic equilibrittn'®though  dimensional, parallel cells are always supercritical, and that,
in the present analysis such effects are not consideFen:  in some cases, there are linearly stable, three-dimensional
thermore, the stabilization produced by the CSL may allowhexagonal solutions. The last result is possible because their
more applications to operate above the neutral curve. In gerequation features both quadratic and cubic nonlinearities:
eral, it is desirable to solidify as quickly as possible to limit
laboratory noise, such as fluctuations in the temperature orgy —
dient, and to enhance production rates in industrial applica-
tions. Finally, even low-speed applications will benefit by 1
moving the nose of the neutral curve to the right. This shiftis ~ =h,v?h+ |Vh|$—V2|Vh|2— —V-(V?hVh)
a factor of two for the case shown in Figure 2, which corre- k
sponds to a lead tin alloy. Materials which reject more solute 1
will have larger shifts. — EV-(Vh|Vh|2), 2
For a pulling speed near the nose of the neutral curve,
typical values for the frequency and amplitude of the lateralvherez=h(X,Y,T) gives the leading-order interface deflec-
velocity oscillations which lead to stabilization of the inter- tion, the extent to which solute is rejected is measured by the
face are 16 Hz and 103 cm, respectively. Such scales segregation coefficienk, .7 is a rescaled morphological
would lend themselves well to an acoustic forcing. The prenumber,V is the Laplacian and the dependent variabtes
cise value of these parameters can vary over several orders ¥fand T are all on long or slow scales. In order to simplify
magnitude, but, as a rule, vary with the solute-diffusionthe presentation of modified versions of this equation we
length and time scales and are physically realizable for &hall abbreviate the linear and nonlinear operators shown
sizable range of operating conditions. above byL andN, respectively, so that the equation may be
A weakly nonlinear analysis of the no-flow, two- written symbolically as
dimensional system was first done by Wollkind and Ségel.
Their analysis revealed that bifurcations are generally sub- L{h]=NCh]. )

critical for low pulllng velocities, and SUperCfitical at hlgher Equation(Z) has been the Starting point for several re-
velocities, as shown in Figure 2. Notice that the bifurcationscent studies. Hobbs and MetzeHederived a linear correc-
for the no-flow system are supercritical precisely where thejon to the equation for solidification into a flow with the
CSL flow provides effective stabilization. asymptotic suction profiléASP). They found that the inter-

In this paper the effect of the CSL on the bifurcation face is given by a traveling wave whose amplitude depends
structure for morphological instability will be investigated. on slower scales in time and space. In Sections Il and Ill we
Our principal aim is to discover under what conditions thegive the derivation of an analogous equation for the case of
flow may provide effective control of interfacial instability. solidification into a 3D CSL.

Of particular concern is the possibility that subcritical insta-  Using both numerical and analytic techniques, Kassner
bilities could reduce, or even eliminate, the stabilization in-et al1? studied a two-dimensional version ¢?), including
dicated by the linear theory. When the interface is unstablegiffusion in the solid as well as the liquid. They examined
there are the usual variety of potential patterns for the instasecondary bifurcations, including the Eckhaus instability,
bility to take, including square, hexagonal and two- parity-breaking, vacillating-breathing and period-halving bi-
dimensional(roll) cells, and we shall discuss the use of thisfurcations. In a second paper they examined the transition to
flow as a pattern-selection mechanism. chaos via quasiperiodic statts.

Our focus will be the upper branch of the curve shownin  Skeldonet al?® have done a numerical study of the en-
Figure 2, for it is in this region that the CSL has a strongtire class of long-wave equations identified by Riley and
influence on the interfacial morphology. Along this portion Davis? including the Brattkus-Davis equation. They find
of the neutral curve the critical wavelength of interfacial dis-new bifurcation points, new solution branches and the exist-
turbances is long compared to the solutal boundary-layegnce of inverted hexagonal nodes and cells.
thickness, and an analysis which exploits this fact will be  Hoyle, McFadden and DaVi$ derived corrections to
used. The principal advantage of a long-wave limit is that itequation(2) when the surface tension is anisotropic. Depend-
greatly simplifies the governing equations, allowing one toing on the direction of the growth with respect to the crystal
solve for the interface shape without knowing the details oflattice, they find that the anisotropy may affect the linear,
the bulk fields. quadratic or cubic terms in the evolution equation. Using

Considering the limit of the small segregation coeffi- their modified equation, they derive amplitude equations
cient, Sivashinsi§was the first to derive a long-wave evo- governing the weakly nonlinear growth and competition of
lution equation for a directionally solidifying interface. Other two-dimensional, rectangular and hexagonal cells.
distinguished limits leading to long-wave evolution equa- In Section Il the governing equations are presented and
tions in the absence of flow were discussed by Riley andnanipulated into a form that is convenient for the subsequent
Davis? Here we shall follow the work of Brattkus and analysis. In Section Il a correction to equati@ is derived
Davis'® (BD), who derived and analyzed a long-wave evolu-for solidification into a CSL. In Sections IV and V amplitude
tion equation valid near the upper branch of the neutral curvequations are derived from the evolution equation

1 1 ,
2+ Vth+(1+ ” V4h+kV2h+k 7 h
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that governs the development(@D) cells and cells, squares T—(GD/V)T+T,, C—(C.—C./k)C+C./k,
and hexagons in three dimensions. In Section VI our results (8b)
are summarized. t—t/ow,

whereD is the solute diffusivity in the liquidy is the crystal
pulling speedU is the amplitude of the velocity oscillations
Il. GOVERNING EQUATIONS in the X-direction,p is the material denSityCoo is the far-
field concentratione is the angular frequency of the ellipti-
We consider the directional solidification of a dilute bi- cal translation of the crysta6 is the thermal gradient, is
nary mixture at constant spe& We choose a coordinate the temperature of the interface in the basic statekaisdhe
system with thex-y-plane located at the mean position of the segregation coefficient.
crystal interface. Our frame of reference moves with the  The nondimensional parameters that appear in the equa-
crystal, so that the solidified crystal appears stationary to &#ions and boundary conditions are the morphological number
viewer in this frame, and the fluid in the far-field appears toM, which gives the ratio of the solutal and thermal gradients
undergo elliptical oscillations parallel to the interface. at the interface, the surface energy paramEtghe Schmidt
The equations governing the system in the fluid regiomumberS, the nondimensional angular frequer@y the seg-
are the Navier-Stokes, continuity and solute-diffusion equaregation coefficienk and a ratioR measuring the amplitude
tions. The Navier-Stokes equations contain a time-periodiof the lateral oscillations in units of pulling speed:
forcing term due to the non-Galilean transformation that

moves us into the frame of reference of the crystal. The M:M' - Tm¥V . (93
system is assumed to be in thermodynamic equilibrium at all GD DLymC.(1-1k)

times. To further simplify the analysis, we neglect latent heat v wD U

and density changes, and assume equal densities and thermal S= D 0= vz R= v (9b)
properties between the two phases. We also assume that heat

diffuses much faster than the solute, and, in this limit, the  The far-field boundary conditions are, as-«,
temperature field is fixed and depends linearly on the coor- U——U, (103

dinate normal to the interfacdthe frozen-temperature
approximatioR®). We find it convenient to write separate  w,p— O, (10b)
equations for the tangential velocity componeuatsui+v]

and the normal componemt. Note that gravity is absent in C—1, (109
this model. In nondimensional form, the equations are and the interfacial conditions, evaluated at the interface
Qug+R(u-Vu+wu,) —u,= —Vp+SVau+QU,, (4 2=hOoyD), are
=w=0, 11
Qw;+R(u- Vw+ww,) —w,= — p,+ Sw,,, (4b) u=w (113
C=M"'h—2I'H, (11b)
V-u+w,=0, (40
) [1+Qh][1+(k—1)C]=C,—Vh-VC, (119
QOC+R(u-vC+wC,) —C,=V-C, (4d)
where mean curvature of the interfat¢g, is given by
T=z, 4
z (49 SH=V.[Vh(1+|Vh|2)~22]. (12)
where . .
Equations(113 represent no-slip and a mass balance. Equa-
U=costi+ B cogt— y)j (5) tion (11b is a nondimensional version of the Gibbs-

Thomson equatiorfl), and equation(110 is a balance of
%olute across the interface.
The linear stability theory for this systémis tacitly

_ summarized by Figures 2 and 3. The first of these has al-
U=re'"+c.c., (6) ready been discussed. Figure 3 maps out the regions of the
nondimensional frequency versus disturbance wavenumber
plane where a weak CSL will stabilize or destabilize the

1 iy interface relative to the case without flow. Notice that there
r=5(+pe ), (7 is a finite range of frequencies for which a weak CSL stabi-
lizes disturbances with arbitrary wavenumbers.

is the velocity of the crystal with respect to the far-field, and
the Laplacian, gradient and divergence operators act in th
horizontal plane only. For convenience we rewtiteas

where

and c.c. indicates the complex conjugate. The vectoon-
tains the information on the orientation, size and eccentricity
of the elliptical motion of the crystal in terms of the phaselll. THE DERIVATION OF THE EVOLUTION EQUATION

v and amplitude ratig of the two perpendicular oscillations We wish to derive a correction to the long-wave evolu-

indicated by(5). . . . . . tion equation(2), which is valid in the same limit as that
We have nondimensionalized the equations using the ; e
. L used by BD. Figure 4 shows how this limit fits into the
following scalings: .
general linear theory. Here, the no-flow neutral curve shown

x—(D/V)x, u—Uu, w—Uw, p—pUVp, (83 in Figure 2 is recast in terms of nondimensional variables,

2322 Phys. Fluids, Vol. 8, No. 9, September 1996 T. P. Schulze and S. H. Davis

Downloaded-14-Aug-2007-t0-160.36.50.88.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



10000

1000

100

Q=D 10 S -

0.1

0.01 [

FIG. 3. Regions of ther-Q plane where the flow stabilizé$) or destabilize$D) the interface relative to the case without fi&\8=81.0 anck=0.3; result
is independent of .

the inverse morphological numb&t ~ versus the surface curve and infinity near the bottom. The system is stable for
energy parametdr. The system is stabl@instable for pa-  all '>T';=1/k. We introduce the small parameteras a
rameter values abovébelow) this curve, with the wave- measure of closeness to this point, which is known as the
length of the instability approaching zero near the top of theypselute stability limit:

3.5

FIG. 4. The critical valuémaximized over wavenumbérsf M~ and the critical wavenumber as a functionlbfor k=0.3. Stable and unstable regions lie
above and below th#_ *-versusF curve, respectively. The absolute stability limitlig= 1/k.
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er=1k-T. (13 If all of the changes outlined above are taken into ac-

S ) count, the governing equations become
In this limit, the system becomes linearly unstable to long-

wave disturbances when the morphological number become3[u,+U,—h.u,+ e*(ur— hru,) ]+ e#[(u-Vyu
very large. In terms of physical variables, this limit can be

thought of as large pulling speed or small far-field concen- ~ —(U-Vh)u ] +ez2wu, + €*(Vp—Vhp,)

tration. _ 4 2
The linear stability theory suggests the following slow =Sug+u e Vu—2(Vh-Vyu,

space and time scales: —V?hu +|Vh|2ug], (183
X=¢e’x, Y=¢€%y, T=¢€". (14

Q[w,—h,w,+ e*(wr—hw,) ]+ %[ (u- V)w
Near the absolute stability limit, the morphological num-

ber scales like —(u-Vh)w,] + ezZww,+ p,

M~ €M, (15) =Sw,+w, + €' V2w—2(Vh-V)w,
with .Z~0(1). —V2hw,+|Vh[?w,,], (18b

These are equivalent to the scalings employed by both 2 B
BD and Hobbs and Metzen&rOur definition ofe is related ~ We™+ € (V-U=Vh-u)=0, (180
tltjzthroei%;gﬂt/he?;e previous authors by a power of 1/4 an?)[cf—hTCfr 54(CT—hTC§)]+e3%[(u-V)C

Hobbs and Metzener examined the lin8t-O(e™ %), —(u-Vh)C/ + e2wC;
R~0O(1), andnote that, for their problem, the results are
similar to the limitS~0O(1), R~O(e*). We refer to these as =C +C +€*'YV2C—2(Vh-V)C,

the large Schmidt number and weak-flow limits, respec-
tively. We expect that the two limits produce qualitatively

similar results for our problem as well, and we choose to
consider the weak-flow case. In order to obtain a distin-t
guished limit where we can derive &(1) correction to

—V?hC,+|Vh[*C,]. (180

The far-field boundary conditions remain the same, and
he interfacial conditions are now appliedt O:

equation(2), we find that we have to take a finer scaling of u=w= 0, (199
the velocity ratioR than was necessary for the steady shear
flow. The appropriate scaling turns out to be C=€® 77 *h—(1k—€*)€*V - [Vh(1+ €*|Vh|?) 22,
(19b
R=¢e%, (16)

= 4 —
with .2~0(1). C=[1+Q(h,+€"hy)][1+(k—1)C]

The analogous scaling for the ASP = e2%. This +€e*Vh-VC—|Vh|?C)). (199
scaling produces no correction to equati@ at leading or- ) i )
der when used for the CSL, indicating that the CSL has, in 10 derive the evolution equation, we expand each de-
some sense, a weaker influence on the interface for a givdiEdent variables in powers of the small parameter
flow amplitude. If the ASP-scaling were used with the CSL

u=upteu+t..., (203
flow, the flow terms that appear at the same order as the
evolution equation would be time-periodic, and their effect  \w=w,+ew,+ .. ., (20b)
would average out of the equation when a solvability condi-
tion was applied. By making the flow somewhat stronger h=hy+eh;+ ..., (200
these unsteady terms appear earlier in the analysis and steady
terms ultimately emerge from products of the lower-order C=Cy+€eCy+ ..., (200

time-periodic terms. If the flow wer®(1), however, the | h " ) h he |
need for a solvability condition would arise too early, result-a"d Solve the resulting equations at each order. The lower-

ing in a flow-dominated evolution equation with the result of °rder solutions are gi\éen in the Appendsee SchulZ€ for
BD as a weak correction. further detail$. At O(€®) only the steady portion of the sol-

For the CSL, it is necessary to retain a fast time scale iff'té diffusion equation is required:
addition to the slow scale presented earlier. We denote thi -~ 2 2
new scale ag=t, and employ a multiple-scale analysis in IE_SQJFC%_Q(C”_hOTC“)_V CatVhoCa;
time. —|Vho|zc4g£+ 2Vhg-VCy,

In order to simplify the derivation of the evolution equa-
tion, we use the standard technigue of changing variables so + 7
that the interfacial conditions may be applied at zero rather
than at the interface positian=h(X,Y,T,7):

_ [
(Uo‘V)CS_COZJOV'Ust 5 (21)

where the overbars indicate averages over one period in the
{=z—h(X)Y,T,7). (17 fast time 7. The boundary conditions are
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_ 1 second order, indicating a correction to the linear no-flow
Ce=./"tho+ ﬂv'(Vho|Vho|2)+V2ho, at {=0, theory that is proportional to the cube, instead of the square,
(229 of the wavenumber. The right-hand sides of both evolution
equations contain quadratic and cubic nonlinear terms, and

C_8{+(1_k)c_8:Q(k_ 1)C4hgr—CyVhol? are identical to the terms found in equatit®).
+VC,-Vhy, at =0, (22b)
Cg=0, asi—w. (220 |v. TWO-DIMENSIONAL BIFURCATION THEORY

Here, the third boundary condition on the second-order
equation(21) plays the roll of a solvability condition, and
this determines the evolution equation fgy(X,Y,T):

ho
N
The operatord. andN are defined by equatiof8) and the

symbol.7 ! indicates the inverse of a double Fourier trans-
form in the slow scaleX andY:

Consider they-independent form of the evolution equa-
tion, omitting the zero subscript dm

l g2 1 h

L[h]+ ZQ%B fo7 xxx m
We expand the functiol(X,T) (previouslyhg) as an
asymptotic series in powers of a new small parameter

which is related to the amplitude of an interfacial distur-

=N[h]. 27)

L[ho]+.722foV?|r- V|27 = |= N[ hg]. 23

R bance:
'ﬂ¢(X1Y1TaT1 7])]:¢’(k1,k2,T,7', 7]) h(X,Y):5h1(X,T)+52h2(X,T)+ . (28)
= ifx - sk Xdxdy, (24 At leading order, we get the linearized form of the evo-
2m) w) o lution equation. If we seek a solution in terms of normal

where k= (k; k) and X=(X,Y). The coefficientf, is a  M°des:
function of S and (), and its explicit form may be found in hy(X,T)=Ae T+aX, (29

the Appendix. ) ) , -
The left-hand side of the evolution equation is a fourth-We obtain a long-wave version of the linear stability thebry,

order spatial, second-order temporal linear operator that difvith the characteristic equation

fers from the operator in equatid) by the presence of the 1 1 1 ,
flow term, which is proportional to the square of the velocity o> — ( 24 o] 1+ a’—ka?+ Zﬂfﬁzfoa3Jr k.z~t=0,
ratio .72. Note that the correction due to the flow is linear. (30)

For the purpose of performing a weakly nonlinear analysis

the form of this term may therefore be obtained from thefor @=>0. Here the symbol for the wav_enumljeqtlkl has
characteristic equation of the linear stability theory. How-P&en replaced by to avoid confusion with the segregation
ever, equation(23) is also valid for strongly nonlinear dis- Coefficientk.

turbances and, in general, can not be arrived at in this man- Setting the real part of equal to zero reveals that the
ner due to the non-local behavior implied by the Fouriercharacteristic equation can only be satisfied if

transform that appears in the correction term. When solving 1
the equation, it is necessary to invert this transform. For the 2+ K
weakly nonlinear analysis one need only work with functions

of the form ho=Aeko'X which transform to This implies thato; must also be zero on the neutral curve,
ho=A\2m8(k—ko). The inverse transform appearing in the because the coefficient+21/k is positive for all physically

O'i:O. (31)

evolution equation is then given by relevantk. This feature, which is sometimes referred to as
~ the “principal of exchange of stabilities,” was first proven
71 @ _ ieiko.x (25) for the directional solidification of a binary alloy in the ab-
kl]  [kol ’ sence of flow by Wollkind and Segél.

and one finds that the resulting flow term is consistent with 1€ _critical wavenumber, based on the long-wave

the linear stability theory. We shall not pursue strongly non-N€0Y. IS given by

linear solutions here, but give the full equation for future — 12f k. 772+ \/128<2(1+k)+9f3k2.%24
reference. = 1281+K) (32
For comparison, the evolution equation from Hobbs and
Metzenet! for the asymptotic suction profile is reproduced: The critical morphological number is then given by
g1 —
H[o] = R 7 klho] =N (o, X.Y. T)), (29 k2 ka2 | 14 2| ad— 22 gad. (33
wheres is a rescaled Schmidt number. The flow term for the k 4

flow term for the CSL is a more complicated function and

depends on the additional flow paramefer Second, the o= k? (349
flow term for the CSL is third order in space instead of ¢ 2(k+1)’
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FIG. 5. The curvefy=0 in the Q-S plane. If the frequency and Schmidt

length disturbancetsee Figure B Hence, it is unlikely that
extremely small frequencies would prove effective in prac-
tice, and we shall choose for examples frequencies for which
arbitrary wavelength disturbances are stabilized by the CSL
according to the full linear stability analysls.

According to the long-wave evolution equation, the
magnitude of the stabilizing effect will increase monotoni-
cally with .22, providedfy>0. If the other parameters are
held fixed, the flow will eventually dominate and the inter-
face will be stabilized. We see from equati(@8), however,
that the critical inverse morphological number can never be
made equal to or less than zero; for the dominant term in
equation(33) for small « is always positive. Thus, there is
always some region near=0 Where.,//Zc_1>0. There is no
finite value of % that can change this because the flow terms
are proportional tae®. This differs from the case where a

number are such that they lie below this curve, then the flow will have afinjte amplitude velocity is imposed on the crystal interface.

stabilizing (S) influence on the interface for long-wave disturbances for all
k and.7.

k2
T4k+1)

If one takes the long-wave limit of the full linear-

Y (34b)

stability theory? one recovers the result derived above after

rescaling to the long-wave variables.

The flow term appearing in the characteristic equation i
F%afolk. Thus, we shall look at the sign df, to deter-
mine whether the flow term has a stabilizinfy ¥ 0) or de-
stabilizing (f,<0) effect on the no-flow linear stability. Our

previous work has shown that, in general, the influence o

the flow is a complicated function of Schmidt numk®gr
segregation coefficierit, surface energy parametgr, fre-

quencyQ and amplitudeR of the forcing® A significant

advantage of the long-wave limit is thg§ depends only on
SandQ.

In Figure 5 we plot the curvé,=0 in the S-Q plane.
Below this curve, the flow will have a stabilizing influence
on long-wave disturbances for &lland.72. All combinations
of S and() that lie on a giverf, level curve give the same
results, because these parameters do not enter into the an

sis in any other way. Notice that the curve shown is almost

linear for S>1. Since the Schmidt number of most alloys

its largeS asymptote for practical considerations:
0~0.735+4.7,

In that case, the numerical results indicate that the neutral
curve can be bounded below the horizontal at ¢=0)
for a sufficiently strong flow. For the present case, one can
certainly make the critical morphological number very large,
and from a practical point of view that is all that matters.
When the system is near marginal stability, the exponen-
tial growth or decay indicated by the characteristic equation
(30) is approximately correct for only a short time before
nonlinear terms conspire to either dampen or accelerate this

growth. To determine the weakly nonlinear evolution of a

disturbance near marginal stability, we fix the wavenumber
and morphological number at there critical values, and pro-
ceed to higher order in the small parameferTo this end,
e identify_# 1 as our bifurcation parameter, and expand it
In a series for smalb:

T = = 2hlk+ . (36)
The parametem measures the degree of sub- or supercriti-
cality.

For h; we write

h,=A(7)e'**+c.c., (37

whereA is a slowly varying amplitude that evolves on a time
cale,7= 6°T, even slower than the one previously identi-
¥6d for T= €.

In order for the equation @(5°%) to have periodic so-
lutions, one must suppress secular terms which lead to un-

Younded growth. Equating the coefficients of such terms to

zero gives the following Landau equation:

a2(2+ 1K)A =mA— y|A|?A, (38)
asS—x, - .
The Schmidt number is a function of the materials beingWhere the Landau coefficient, is given by
processed. The frequency, however, is a control parameter 3 4
which can be adjusted, within practical limits, to achieve a Y1~ — §+2P) Ae» (39
stabilizing flow. One can optimize the stabilization by choos-
ing O to maximizef,. Surprisingly, the optimal condition 2nd
for long-wave disturbances is to make the frequency as small —(4+2K)a?
as possible(the quasisteady limit This contrasts with the P (40)

= T_ 2 92§ _3°
results for the ASP which has a destabilizing influence on 151+ 1) e —3kag + 7147 oerg
long-wave disturbances. Also, the results of the full linear  In the absence of flow.£=0), it is known from the
stability analysis show that the stabilizing influence of thework of Wollkind and Segél that long-wave, two-
CSL in the quasisteady limit does not hold ©(1) wave-  dimensional bifurcations are supercritical, and short-wave bi-
T. P. Schulze and S. H. Davis
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FIG. 6. The three dark curves indicate values/fabove Which%;l is reduced by a fixed percentage from its no-flow value, with the bottom, middle and
top curves corresponding to a 50%, 75% and 99% reduction in the valwégdf, respectively. The curves are plotted as a functiok,affhich may range
between zero and one for alloys that reject solute, and the remaining parameter val(¥es larand S=100. The shaded region indicates a supercritical
bifurcation and the unshaded region indicates a subcritical bifurcation.

furcations are subcritical. It turns out, however, that the adand S=100. The shaded region indicates a supercritical bi-
dition of the flow can change the long-wave bifurcation fromfurcation and the unshaded region indicates a subcritical bi-
super- to subcritical as? is increased. These flow-induced furcation. When a dark curve passes through the shaded re-
subcritical bifurcations are a threat to our efforts to stabilizegion, the shaded area above the curve indicates values of
the interface because they lower the critical morphologicalZz for which the bifurcation is supercritical according to the
number from the value indicated by linear theory. Whe&n  weakly nonlinear theory and the flow has been stabilized by
is just beyond this transition point, it is likely that there will the indicated percentage according to linear theory. Exami-
be a turning point fairly close to the critical morphological nation of these figures reveals that a significant reduction in
number predicted by the linear theory, but.@sincreases ,/Zc‘l while maintaining a supercritical bifurcation can be
further, it is conceivable that the system could be unstable taccomplished provided the value .&f is adjusted carefully.
finite amplitude disturbances at morphological numbers for  There is very little qualitative change in this picture as
which the no-flow system is stable. We would like to deter-one variesS and/or (), provided the value of, remains
mine the conditions for which the CSL method of stabilizing positive (i.e., the parameter regime below the cufye=0 in
may prove useful, taking into account both the linear andrigure 5. Larger values ofy, which changes more dramati-
weakly nonlinear theory. To this end, we wish to identify cally with the value of) thanS, decrease the value of at
regions of the parameter space where the interface is linearlyhich the bifurcation switches from super- to subcritical.
stable and the bifurcation is supercritical; for it is these re-Similarly, smaller values of increase this value. The same
gions that offer the best hope of producing a flat interface. trend is followed by the curves indicating a fixed percentage
In Figure 6 the three dark curves indicate values’f of stabilization, and the relative position of the curves shown
above which/Zc’l is reduced by a fixed percentage from its in Figure 6 does not change much for different values of
no-flow value, with the bottom, middle and top curves cor-f,>0. For example, see Figure 7, which is analogous to
responding to a 50%, 75% and 99% reduction in the value oFigure 6 with a value of)=10 instead ofQ=1. As the
Mg ! respectively. The curves are plotted as a function ofvalue off, approaches zero from above, the curves in these
k, which may range between zero and one for alloys thafigures continue to rise, and disappear entirely fg=0.
reject solute, and the remaining parameter valuedlarel  Whenfy=<O0 the flow destabilizes the interface and bifurca-
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ed by a fixed percentage from its no-flow value, with the bottom, middle and
of, respectively. The shaded region indicates a supercritical bifurcation and

the unshaded region indicates a subcritical bifurcation. The curves are plotted as a funktierhiwh may range between zero and one for alloys that reject

solute, and the remaining parameter values(are1l0 andS=100. Notice that
the scale of7.

this figure is essentially the same as the previous one except for a change in

tions are always supercritical. The magnitude of destabilizathe same amplitude equation minus the flow terms. In this

tion is very small, however, and very large values.@f
would be necessary to produce a significant effect.

V. THREE-DIMENSIONAL PATTERN SELECTION

While results in two dimensions may apply to experi-

ments in which the alloy is placed in a Hele-Shaw cell, the

majority of applications must be considered as three

dimensional. In three dimensions we consider the influenc

of two perpendicular crystal oscillations, producing a three
dimensional version of the CSL. When the phase differenc
v between the two oscillations is an integral multiplemf

case, the linear theory predicts that the only effect of the flow
is to choose cell orientation.

For y#nm, the motion of the crystal is in elliptical or-
bits, and according to the linear theory, it is possible for a
sufficiently strong flow to eliminate the instability for a large
range of parameter valuésVhen the motion of the crystal is
in a noncircular ellipse, the symmetry of the system is bro-
ken, and two-dimensional cells are again the preferred pat-
tern at onset. When the instability persists, but the flow is
stabilizing(i.e., the flow increases the critical morphological
br,lumbeif, the cells will orient themselves along the minor
axis of the ellipse, which is the direction least stabilized by

we have the special case of a planar oscillation, and thg‘e flow. When the flow is destabilizing, the cells will orient

results are the same as for the two-dimensional case di

cussed in the previous section. This type of flow does not
stabilize the three-dimensional system. When destabilizing?

two-dimensional cells will form of the flow and the bifurca-

{hemselves along the major axis of the ellipse.
We examine the linear stability of a single oblique roll
olution by assuming normal modes of the form

h(X,Y)=Ae®*+c.c., (41)

tions will be governed by the amplitude equation derived in

the previous section. We shall refer to this pattern as “rolls”

in equation(23). Here we have once again omitted the sub-

in analogy to the more familiar pattern observed in convecscript zero orh, and we have already set the growth rate and

tion experiments. When stabilizing, cells will form in the
direction parallel to the flow, the critical morphological num-

wave speed to zero, so that we are seeking neutrally stable,
stationary solutions which have the physical form of an infi-

ber will be unchanged and bifurcations will be governed bynite sheet of parallel cells with a wavevectfa ori-
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ented at an angled=tan Y(a,/a;) with respect to the Wwe must restore the symmetry of the linear operator by con-

X-axis and awavenumbefz|a|:1/a21+a22_ sidering circular orbits of the crystal. To this end, we set
The neutral stability surface is now given by p=1 andy=m/2 in equation(6).
We then derive the amplitude equations by assuming a
k. t=ka?—(1+ 1K) a*— 7*F ya|r - a|? leading-order solution of the form
1 1 h,=A(7)e*+B(7)e“"+c.c. (43
A2 T oA Zp2 3
ka 1+ k| ¢ 4‘/2 foa(cos @ This solution will satisfy the linearized evolution equation
RO i provided the morphological number lies on the neutral curve
+ B cosy sin 6)%+ B2sirf osirt y]. (42)

identified by equation33). Note that, due to the circular
symmetry, the orientation of the square lattices can be fixed
thout loss of generality.
Secular terms again appear@(5®) and their elimina-
tion leads to two coupled Landau equations:

The dependence on the phase difference between the t
oscillation y and the amplitude rati@ is analogous to that
found by Kelly and H@ in their study of the influence of
nonplanar oscillations on Beard convection. From equation
(42) we see that the critical morphological number is a func-  @2(2+ 1/K)A = MA— (1] A|?+ v, B[D)A, (449
tion of the disturbance orientation. As a result, the flow will

2 — MR — 2 2
select a preferred orientation for developing cells, as de- “c(2+1/K)B=mB (72lAl*+ 71[B[%)B, (44D
scribed above. where
When considering the weakly nonlinear analysis in _ 4
the elliptical case, we shall look only at the most un- "1~ ¢ [3/2+2(2+1K)P4], (453
stable cell orientation. The weakly nonlinear develop-  y,=—a*1+2(2—1/k)P,], (45b)
ment of these cells will be governed by the same amplitud(?de

equation found in the two-dimensional case with the flow
amplitude.7 replaced by.72' = %[ (cos 6.+ B cosy sin 6,)? —2a*(2+1/K)

+ B2sirfésirty]Y?, whered, is the angle that the wavevec- P1= 4 2. 7.2¢ 3’ (463
tor/i)f theccritiglll disturbancce makesgwith tieaxis. With 11+ 1) "= 3ka™+ 577 oa
this new interpretation of72 the results in the figures of —24%
Section 1V still apply. P,= .

As it turns out, elliptical oscillations may provide the K[3(1+ 1K) a*—ka?+ (22— 1)/4].72F ya®]
best hope for suppressing morphological instability in three (46b)

dimensions because of their symmetry breaking feature. In  Equations(44) have four types of stationary solutions:
the case of circular oscillations, the critical morphological

number is the same for cells oriented in every direction. This |Al=[B|=0, (479
lack of a preferred orientation makes it possible for a super-  |A|=\/m/y;>0;|B|=0, (47b
position of cells with the same wavenumber to grow at onset.

Some of these superposition patterns bifurcate transcritically, |A|=0;|B[=ym/y,;>0, (479
and therefore always pose the threat of a subcritical instabil- |A|=|B|= VM (y,+ v2)>0. (479

ity that will reduce the stabilization indicated by the linear
theory. These more complicated three-dimensional patternkhe first of these solutions corresponds to the basic state.
are likely to emerge in the case of elliptical oscillations asThe second and third solutions correspond to two-
well, but only as secondary bifurcations for larger amplitudedimensional cells aligned with th¥- and Y-axis, respec-
disturbances or for small amplitude disturbances when thévely. These solutions bifurcate supercritically fgg>0
motion of the crystal is nearly circular. and subcritically fory;<<0. The third solution corresponds
When the amplitudes of the two oscillations are the saméo a square pattern aligned with the axes. This solution bi-
and the phase difference 152 we have the special case of furcates supercritically foty, +y,>0 and subcritically for
circular orbits. In this case, as in the no-flow case, there is ng/; + v><<0. These results, along with the eigenvalues for the
preferred direction for cells to orient themselves, and mordinearized system are summarized in Table I. Using these
complicated patterns are possible at onset. Because these #@éults, one may predict when stable squares or two-
both laterally isotropic cases, squares and hexagons are tdénensional cells are the preferred pattern.
likely patterns. When the crystal motion is in a circular pat-  In Figure 8 we interpret these results in terms of the
tern, we shall be interested in both when instability occurgparameters in the governing equations. The plot is once
and what type of pattern emerges as a result. again in thek-7 plane, and the curve indicating transition
from super- to subcritical instability for rolls is the same as
shown in Figures 6 and 7. The other solid curve in this pic-
ture separates the regions where square solutions bifurcate
sub- or supercritically. When bifurcations are subcritical
Square patterns are the result of the simultaneous growtfm<0), none of the bifurcating solutions are stable. How-
of two perpendicular roll patterns. In order to consider theever, wherm>0 the supercritical region of the figure can be
instability of two perpendicular cellular solutions near onset,subdivided. Stable two-dimensional cells are the preferred

A. Squares
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TABLE |. The steady solutions of the two-mode amplitude equations, the eigenvalues of the linearized system
and the range of coefficients for which the solution exists and is stable.

Cell type Solution Eigenvalues Stable solution range
None |A|=|B|=0 m, m,m m<0
2D |Al=+m/y,>0,B|=0 —2m,M(1— y,/yy) m>0,y,>v;>0
|B|=Vm/y,>0]A|=0
Square |A|=|B|= VA (71 + 72) -2, m>0,y,>| v,

—2M(y1— ¥ (y1t+ 72)

pattern for a range of segregation coefficients. Just outsidmagnitude off; increase the influence of the flow and lower
this range there is a region where stable squares are the pt&e curves in the figure. Changes that decrefasdecrease
ferred pattern. The other regions correspond to unstable sghe influence of the flow and raise the curves. Once again,
lutions, some of which may be supercritical bifurcations. In-there are no qualitative changes urftil is reduced below
creasing the flow amplitude reduces the range of segregati%ro, at which point the flow becomes very weak, slightly

coefficients corresponding to stable square solutions. If th@egtapilizing and the no-flow bifurcation structure is essen-
flow-amplitude is increased sufficiently, all bifurcations be'tially unaltered

come subcritical. For extreme values of the segregation co- These equations cannot tell us if the svstem eventuall
efficient squares always bifurcate subcritically and are un- q . y y
stable; thus it is impossible to identify regions with saturates at some superposition state other than rolls or

significant flow-stabilization and supercritical bifurcations, Sduares. Furthermore, we cannot say how these other states
Unstable supercritical squares, which are impossible withoufould compete with the squares even when the squares exist

flow, exist in the region bounded by the two solid curves. and are linearly stable according to equatio#d). In fact,
As with the two-dimensional results, the scale of thebased on experimental eviderfcet is known that hexagonal

J2-axis in Figure 8 is augmented by adjusting the value ofsolutions are a likely alternative to square solutions, and we
S or (). Changes in these parameter values that increase tishall discuss this possibility next.

]-4 i T I I T I T I T

12 n

10 1

FIG. 8. A map in the&k-. plane showing regions where rollSR) or squaresSS are the preferred stable state. The unmarked regions correspond to unstable
solutions. Rolls bifurcate subcriticallisupercritically above (below) the darker solid curve which spans all valueskofSquares bifurcate subcritically
(supercritically above(below) the lighter solid curve which spans a limited range of segregation coefficients. The other parameter vaBse$0@rend

O =1. Recall that solute is preferentially incorporated into the solickferl.
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B. Hexagons 3a?C ,=MC+ yoB* A* — (1y,|A|?+ y,|B|?

_ For the case o_f hexqgonal cells, con3|der the superposi- +y,Cl?)C, (510
tion of three two-dimensional cell patterns oriented at'2
rad with respect to one another. The leading-order solution i¥here

then of the form Yo= o, (523
hle(L;/‘)eianl-X_l_ B(‘rg/‘)eianz'x-l-C(y\)eian3'X+C.((:4,8) 71:_a4(3/2+6pl)! (52[))
yo=—a*(3/2+3P,), (529

where then; are normal vectors in th¥-Y plane separated
by 27/3 rad. The orientation of the three vectors with respectand
to the axis is arbitrary, with all orientations leading to the

. . —6a*
same amplitude equations. =
At 0(52) we have Pl 30a4—3a2+(7/4).%2f0a3' (536)
e 1o P —6a” (53b)
& = — — —V. = - .
Zhp==VHVh|*={ V- (V*h;Vhy) 27 160 — 207 [(1— 3v3)/4] 2fga®
= —2(2+ 1/k) o[ A2 ani-X 4 B2g2iany: X Notice thatP, is the same as for the case of a square pattern
5 iamex if k~1. This is not the case fdP,, however.
+Coe” ] In the case of rolls and squares, only the moduli of the
—3(1+ 1K) @[ AB* @M 2 X 4 A CH glanyng)-X cell amplitudes are important for classifying solutions. This
_ is because a change in the sign of the amplitude results in
+BC*e'@n2mng)-X] another solution which is distinguishable only by a transla-

tion in the X-Y plane. Changing the sign of a solution to

— 4 ja(ng+ny)-X . . . . .
X(1-1k)a*[ABe M2 equationg51) will still result in a solution; however, the new

+ACdxMtny) X gedanztng Xy ], (49) solution may or may not be physically distinguishable from
) ) ) the original.
where.# is the same linear operator found in equat{@6) In general, the amplitudes determined by equati@iis
with .7 replaced by #-critical and|r- V|?= V2, are complex. To determine the steady solutions and analyze

Some of the terms appearing on the right-hand side ofheir behavior, it is convenient to represent each of the am-
this equation have wavevectors whose moduli are unityplitudes in complex-polar notation:
making them secular. If one suppresses these terms in the , N o
usual way, time must be scaled @rather thans?. The A=pae',  B=pgel’s,  C=pce'’c, (54)
resulting evolution equation will only have quadratic nonlin- and separate the amplitude equations into real and imaginary
earities, and all bifurcations will be to transcritical hexagons.parts:
This means that the potential for subcritical instabilities al- 2 2
ways exists for this flow configuration, and will negate at Mpat Y0PePcCOS hat dut de) = (v1PaT 7205
least some of the stabilization predicted by the linear theory. + yzp%)pAZO' (553
The extent to which this is true depends on the location of
the turning point for the bifurcating solution which, in gen- Mpg+ YopapcCOS da+ dg+ dc) = (V1PA+ Y205
eral, may not be determined by a weakly nonlinear analysis. +92p2)pg=0 (55b)
When the coefficients of the secular terms &g5), how- YaPc)PB=E
ever, the need to suppress these terms is delayed to highrﬁrchr YoPePACOS Pa+ g+ ¢c)‘(71p/§+ 72P§
order, where the resulting amplitude equation will have cubic
as well as quadratic nonlinearities. When this is the case, the  + ¥2pa)pc=0, (550
location of the turning point may be determined by a weakly .
nonlinear analysis. In the present problem, the terms in quess—'r‘(d”*Jr bt bc)=0. (559
tion may be made small by assuming that the segregation These equations are underdetermined due to translational
coefficientk lies within O() of unity. symmetry in theX-Y plane. Thus the fourth equation may be

In order to proceed to higher order we shall then assumsatisfied by any tota,+ ¢g+ ¢ equal to an integral mul-
tiple of 7. The even and odd multiples af separate the

K=1+Zo%..., (50 remaining equations into two cases which differ in the sign
for 72~0(1). of the quadratic terms. It is convenient for illustrative pur-
At O(6°% suppressing secular terms leads to thregposes to choose two of the phase angles,é&apnd ¢, to
coupled amplitude equations of the form be zero. The third phase angle will then be an integral mul-

tiple of 7= and all of the amplitudes will be real.
A bifurcation diagram, such as the one shown in Figure
9, is a convenient way to sort out the possible solutions to
3a”B =MB+ y,A* C* — (y,|A|?+ y1|B|?>+ 7,|C|?)B,  these equations. This figure is for no flow, and is valid for
(51b  k sufficiently close to unity. As the flow amplitude is in-

3a?A = MA+ yoB* C* — (y1| A|*+ y,|B|?+ 72|C|(25)1A6;)
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are more pronounced than the local minima, while in the
other case, the local minimums are more pronounced. Note
that, for k<1, the solute distribution will be out of phase
with the interface height, as the solute concentration is lower
away from the interface. Whek<<1 the upper hexagonal
branch in Figure 9 corresponds to hexagonal nodes, and the
lower branch to hexagonal cells.

Finally, when two of the amplitudes are equal but non-
zero, we have what are called “class V,” or mixed mode

%

solutions:
~— Yo
PA= , (5839
A
" S 2
- \/m(h_?’z)z_)’l?’o (58b)
FIG. 9. Bifurcation diagram for the system whe#i=0. Stable solutions Ps=pc= (y1+ v2) (y1— ¥2)%

(unstable are indicated with solid(dotted curves. The curves marked _ _ ) )
“H1” and “H2” correspond to hexagonal nodes and cells respectively. The The amplitudes may be permuted to give still other solutions,

curves marked “"M1” and “M2” correspond to two distinct mixed-mode \whjch are identical in form. In total there are six different

solutions. The diagram is presented without scales because its qualitativ: . . .

features are representative for a wide rangezotalues. §9Iutlo_ns if one accounts for thesg permutations and the pos
sible sign change of the quadratic terms. Note that the two
mixed-mode branches in the diagram actually correspond to

creased the structure of this diagram is compressed into different sollutllonsa.Lhe e|gen\;]al_ues Lc')lr' the rrlléxsd .mode
narrower range of values, but remains qualitatively similar V€'® not calculated; however, their stability would be incon-

until .7 exceeds a critical value. The diagram is symmetricSiStem with the structure of the bifurcation diagram, so we
shall assume they are unstable.

with respect to theA-axis, and only the upper portion is i X .
shown. The diagrams for the amplitudsand C versusm There are no solutions with all of thedistinct from one
' another.

are identical to that foA. . —_ . .
As .72 is increased for a stabilizing flow, the bifurcation

When two of the three amplitudes are zero, two-d_ h SOV ) din the hori |
dimensional cells are once again solutions with, saydidgram shown in Figure 9 is compressed in the horizonta

p2=1n/y,. These solutions are unstable when they bifurcatdlirection; the bifurcation structure remains unchanged until a
sGbcritic;ily (which does not occur when there is no flow critical value of.7 is reached. This structure features two

These solutions are initially unstable when they bifurcatehyStereSIS loops: one is due to the very shallow turning point

supercritically, but become stable when they intersect a seé)—f the hexagonal solutions, and the other occurs because of

ondary bifurcation at= y;2/(y1— 72)? the changes in stability when the mixed mode solutions are
- O . . . .

When all three of the amplitudes are equal, the solution%nterseCted by th? roll and hexagon solutions. Beyond this
are hexagonal with either critical value of.7, the roll solutions become subcritical.
This is the same transition which occurs for the two-

Yo Vya+4m(y1+27,) dimensional cells, and is determined by the value./8f

PA=PB=PC™ 2(71+272) (56)  which makesy; =0. At a second value of2, which tends to
be numerically close to this first transition, there is a singu-
or larity that causes the turning point of the hexagonal solutions
— Yo Y2+ Am(y1+27,) to approach'negative infirjity. The location of the ;econd

PA=PB=PC= 21t 2v,) , (57)  transition point is determined by the value of which

makes y,=—2v,. Beyond the immediate vicinity of this
depending on the sign of the quadratic terms. These bifurcasecond critical value af2, which is in the neighborhood of
tions are transcritical and take the form of parabolas in theZ2=6 whenS=100 and()=1, the parabolas in the bifurca-
bifurcation diagram. There are turning points located ation diagram flip so that they open to the left. The mixed-
m= — 73/2(71+2y2), p= = yol2(y1+2y,). For a suffi- mode solutions make a similar transition, so that the entire
ciently weak flow, these parabolas open to the right and théifurcation diagram essentially reflects over the vertical axis
branches with the larger magnitude amplitudes are initiallyas .72 is increased. An example of a bifurcation diagram
unstable, switching to stable at the turning points. Thesevhen the value of72 is beyond these transition points is
branches are then stable from the turning point until theyshown in Figure 10. All of the solutions are unstable. One

intersect secondary bifurcations at structural distinction from the smalf case is that the lower,
m= 7(2)(2')/14- v2)! (y1— v,)?. The branches with the smaller rather than the upper, hexagonal branch is now the one that
magnitude amplitudes are unstable. intersects the mixed-mode branch. The new intersection

The two types of hexagonal solutions differ only in sign. point is give bym=3v2y,/(y1— 72)>.
However, because the solutions are not symmetric about the As .7 is increased, the transition of the bifurcations can
=0 plane, the two solutions result in different patterns ofbe viewed as a change from super- to subcritical solutions, as
solute distribution in the solid. In one case, the local maximahe turning point of the hexagonal branch is very close to the
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VI. CONCLUSION

H2
In this paper, we derived a strongly nonlinear evolution

equation for the shape of a directionally solidifying interface
E&usiiiijjxm in the presence of a three-dimensional compressed Stokes
Hl layer. We used a one-sided model, where diffusion of solute
in the solid is neglected, and we invoked the frozen tempera-
ture approximatio’ The equation is valid whefl) the sur-
face energy parametéris near the absolute stability bound-
ary I'c=1/k; (2) the imposed flow is weak; and3)
equilibrium thermodynamics hold. Under these conditions,
the critical disturbance wavelength is long compared to the
diffusion length scaleD/V and the critical morphological
m number is large. We then presented the results of a weakly
nonlinear analysis of the evolution equation in two and three
FIG. 10. Bifurcation diagram for the system whe#i=5.7, Q=1 and dimensions.
S=100. Stable solutionfunstablg are indicated with soliddotted curves. In previous work we had determined that increasing the
Note that the only stable solution is the flat interface up to the critical point.ﬂOW amplitude% could stabilize the interface, provided the
The curves marked "H1" and "H2" correspond to hexagonal nodes and frequency of the flow oscillations is within a calculated
cells, respectively. The curves marked “M1” and “M2” correspond to two
distinct mixed-mode solutions. The diagram is presented without scales bdange. The stabilization was particularly effective in the
cause its qualitative features are representative for a wide range \Gil- long-wave regime. The two-dimensional bifurcation analysis
ues. showed that increasing the amplitude of the CSL will even-
tually change bifurcations from super- to subcritical when
the flow is in the stabilizing parameter regime. Thus, at least
origin compared to the other structure in the diagram. Thussome of the stabilization gained according to the linear
in general, increasing the flow amplitude seems to favor subtheory is lost to subcritical instabilities if the flow amplitude
critical solutions for rolls, squares and hexagons. is made too large; yet it is still possible to stabilize within a
These results are summarized in Table Il. We have notange of.72 values for which the bifurcation is supercritical
calculated the eigenvalues for the mixed modes as they aind, presumably, one could increage at least somewhat
complicated solutions to a nontrivial cubic polynomial. beyond this range before the subcritical instability would ne-
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TABLE II. The steady solutions of the three-mode amplitude equations and the eigenvalues of the linearized
system. The table is forZz™>1. For.7Zz<1 the hexagonal nodes and cells are reversed.

Description Solutions Eigenvalues

Planar pa=pg=pc=0 m,m,m

2D cells pa= M/ y;,pp=pc=0 A —2m,
pe=\M/y3,pp=pc=0 M(1—=y2/y1) = yoym/ v;
pc=VM/y1,pp=pe=0

Hexagonal _ =+'yo+\/'yoz+4ﬁ1(’y1+272) T yopa—3p2yi—ply

nodes PA=PB=PCT = 2(v1+272) 0PAT SPAYLT PAY2:

MF Yopa—3PAY1— PaY2:
M= 2y5pa—3paY1—4p272

Hexagonal Yo Nvo+4am(y,+2y,) . 2 2

cells pPA=pPB=pPc== 2(y1+275) M= yopa—3PaY1— PaY2,
M yopa=3pAy1PAY2
M+ 2y0pa~3paY1=4P7Y2

Mixed modes oa=E ¥/ (v1— v2), see the text

M(y1— ¥2)°— 71%

=pe=\/———p 170
pe=pc (1= 72 (v1t72)

pe==vo/(y1— 72),
My~ v2)°— Y170

=pe=\| ————p 1170
PATPET N =) Xt 72)
Pc=i2’0/(71_72)v

N LG 7 2 e 25 1)
=pp=\| ——— L0
Pe=pa (1= 72 (v1tv2)
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supercritically bifurcating square solutions are possible for a
small range of72 values.

Next we examined the competition between roll and
hexagonal solutions. For values kfaway from unity, un-
stable hexagons bifurcate transcritically and are the only bi-
furcating solution in the weakly nonlinear limit. Whénis
sufficiently close to unity, the cubic and quadratic nonlineari-
ties in the evolution equation are balanced, and a compli-
cated bifurcation structure emerges. As with the square and
roll solutions, bifurcations to rolls are supercritical when
. is sufficiently small, but switch to subcritical ag is in-

logC. creased. Hexagons bifurcate transcritically, but with very
shallow subcritical turning points for smal. When.7 is
FIG. 11. Conjectured stability diagram for the strongly stabilized system.mcreased’ the bifurcation TOI‘ the hex_a}gons Cha.nges dlrectlpn,
The curves are given in dimensional foriv-versusC.. with a fixed tem- and they become essentially subcritical. So, in general, in-
perature gradier®. The(solid) neutral curves are based on linear theory for creasing the flow amplitude favors subcritical instability for
the no-flowt (outey and strongly stabilized (innep cases. The dashed gl types of solutions examined.
curves extending from the neutral curves are assumed fo give a qualitative |y ganeral, we found that the flow has little impact on the
description of the manner in which subcritical instabilities lower the critical . .
value of the concentration. For a given case, the interface is assumed statpyStem when the frequency and Schmidt number are in the
(S when the far-field concentration is to the left of both the solid and destabilizing range. Clearly, this is an effect of the weak-
dashed curves. flow limit, as microstructure will be significantly altered by a
stronger version of this flow any time the interface remains
unstable in its presence. The steady rolls, squares and hexa-
gons indicated by the analysis of this chapter are leading-
gate the stabilization indicated by the linear theory. quer approximations for t.he interface shapg in a spe'cific
Emlt. Higher-order corrections to the evolution equation

In light of the nonlinear results presented here, it appear ld indicate ti iodi i ¢ th it
that effective stabilization of the two-dimensional system us-vould Indicate ime-periodic variations ot tnese patterns as

ing the CSL will require careful control of both the ampli- one moves vertically through the crystal, and a large ampli-

tude and frequency of the flow. In Figure 11 we present 6{ude flow would likely render the patterns unrecognizable.

conjectured version of the stability diagram when the system When the flow param_eters are in the stabilizing range,
is optimally stabilized by a CSL. The linear-theory neutral we found that the bifurcation structure for all types of solu-

curves are known exactly, but we have assumed, based &Qns_(rolls, squares, _hexagons anrd.mlxed modesanges
our long-wave results, that a strongly stabilizing flow will O in scale until a critical value of? is surpassed. Beyond
move the transition from sub- to supercritical bifurcationsthese t'ransmpn pomFs, which are distinct for 'e'ach solution
around the nose of the curve and toward the absolute stabilYP®’ blfurgatlons switch from super- to Schm'(,:‘f"l' In gen-
ity limit. In the subcritical regions, we have assumed that theeral' onvermg the frequenc@ lowers these transitions, and
critical value of the concentration is lowered, but by a lim- Increasing the frequency raises them.
ited amount—due either to the presence of a turning point in
the bifurcation diagram or to the finite amplitude of noise in A\ckNOWLEDGMENTS
the system. In particular, we assume that the subcritical in-
stability will become negligible as one approaches the tran-  This work was supported by grants from the National
sition point. Aeronautics and Space Administration through the Graduate
For the three-dimensional system we examined bifurcaStudent Researchers ProgréniS and the Program on Mi-
tions to steady roll, square and hexagonal solutions. Whefrogravity Science and ApplicatioSHD).
the motion of the crystal is in a noncircular elliptical pattern,
r.oII.s are the only primary bifurcation in the weakly nonlinear APPENDIX: DETAILS OF DERIVATION OF EVOLUTION
limit though others may occur as secondary states. EQUATION
When the motion of the crystal is in a circular pattern,
the system is isotropic in the plane of the interface, and su- The nonzero solutions for the lower-order terms appear-
perposition states involving more than one set of obliquelying in the expansion&0) are given below. The solution for
positioned rolls are possible. This flow may be useful foru, requires a boundary layer solution so that it may satisfy
selecting a preferred pattern among these states, allowingthe far-field conditions. The boundary layer equations are
crystal grower more control over crystal microstructure.  rescaled using an outer vertical coordinate €2Z. The re-
We examined the competition between roll and squaresulting boundary layer solution, indicated below with an
solutions, and found that increasing the flow amplitude tend$o” superscript, gives rise to the nonlocal behavior of the
to reduce, and eventually eliminate, the range of segregatiofiow-term in the evolution equation. Other solutions are di-
coefficients for which stable square solutions are possiblevided into portions which are steady with respect to the fast
Increasing the flow amplitude favors subcritical instabilitiestime scale and portions which are periodic in the fast time
for both squares and rolls. Unlike the no-flow case, unstablescale with the same period as the external forcing. In these

logV
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- N .
Us= /’2[ a; e asy a2e750$v+ a3e750 {4 a4e*(so+ s)¢

+agle Sof+c.cl|r-V|?ay, (A2))

cases we decompose each of the dependent variables into a,=—(a,+az+a,+c.c)/2, (A11)
these two types of terms; for examptéX,Y,T,{, ) would .
be given as _So/sp—1+as(2Sg—1)
— - a= 255 ) (A12)
d(XY,T,0,7)=d(X,Y, T,0)+[ (XY, T,0)e'"+c.c], 0 0
(A1) iQhsst —1
where the bar indicates the steady portion and the tilde indi- a3= Sg2-sy (A13)
cates the coefficient of the'” terms. Terms with periods
other than that of the external forcing have been omitted, for B So/sg—1 AL4
they do not play a role in the analysis: a4_so+ St —S(sgt+s5)?" (A14)
Up=[r(e ¢—1)e'"+c.c], (A2a) 1
agz=——2=, Al5
Co=1-e, (A2b) 57 T— 505 (AL5)
w,=Vhg- Uy (A2¢) wherer is given by equatior{7) and.7 ! indicates the in-
. verse of the double Fourier transform in the slow scades
u,=Vay-[r(e %¢—1)e'"+c.c]=Vay- Ug, (A2d)  andY:
kK FLSXY, T, 7, 9)1= (kg Ko, T, 7,
utz) |k| (reIT+CC)e |k|77h0 (AZG) er’( T 77)] ¢( 1,82 T 77)
1 (= (=
_ ik-X
Ca= e V2hy/k+(Qhgr—V2ho— |VholH Ze ¥, wf f _ perTdXdY. (AL6)
(A2f)
_ Herek=(k;,k;) andX=(X,Y).
Cs=7[r(boe % +bse t+hye” (0t Dithyre¢)el” The coefficientf, in equation(23) is given by
+c.c]- Vg, A2 a a a a a
o o 2 =S Tt i1 541 Tl (T 17
hs=.7(rhs€ "+ c.C), (A2h) 0 So S0 So 0
_ 1 boss b,s; . b,s;
hSZSZ_ 1—-iQ (So—=Sp+1)by—bs+(s,—1) So(Sp+sy)  sgt+1l  (spt1)(sy+Se+1)
2 *
b3 | b3(33 +2$O)
i ————+cC.C. (AL17)
X((IQ) SOQ) y (A2|) [53+1]2
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