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The manufacturing of single crystals of multi-component materials with uniform material properties
is frequently hampered by the presence of morphological instabilities during the solidification. In
this paper we extend into the nonlinear regime our previous work on the influence of shear flows on
the linear stability of the solid/liquid interface during the directional solidification of binary alloys.
The flows are generated by unidirectional or nonplanar harmonic oscillations of the crystal parallel
to the mean interface position, and oscillations with physically realizable amplitudes and
frequencies are found to be useful for stabilization purposes. A strongly nonlinear equation which
governs the evolution of the interface in the limit of high surface energy, a weak flow and
thermodynamic equilibrium is derived, and a weakly nonlinear analysis of this equation is
performed. For the unidirectional case, it is found that oscillations with sufficiently large amplitude
will change the initial bifurcation from super- to subcritical. For the nonplanar case, it is found that
subcritical instability of roll, square and hexagonal cells is favored as the amplitude of the flow is
increased. Thus, some of the stabilization due to the flow may be lost at finite amplitude, but
substantial stabilization can be retained. ©1996 American Institute of Physics.
@S1070-6631~96!01509-7#

I. INTRODUCTION

Phase changes are intimately involved in the manufac-
turing and processing of nearly all materials. The control of
fluid motion and interfaces during these processes is essen-
tial to the production of quality materials. Among the greater
threats to material quality are hydrodynamic and interfacial
instabilities, which may lead to nonuniform material proper-
ties. Here, we shall focus on the liquid-to-solid phase trans-
formation of two-component alloys. The study of crystalline
solids with binary composition is of particular interest, since
many technologically significant materials—including metal-
lic alloys, semiconductor materials and crystals for optical
devices—fall into this category.

Directional solidi f ication is a processing configura-
tion which lends itself to experimental observation and math-
ematical analysis, and is a good local model for other com-
plex solidification configurations, such as laser annealing. In
a directional solidification experiment, a liquid may be con-
fined to a Hele-Shaw cell~Figure 1! or to a fully three-
dimensional region~inside a cylindrical tube, for example!.
The confined material, along with its container, is then pulled
through a temperature gradient, so that the fluid solidifies as
it moves from a heated region into a cooler one. If the ma-
terial is pulled at constant speed, the solid-liquid interface
will establish itself at a fixed position relative to the heat
source and/or sink.

The melting temperature of the fluid, and hence the in-
terfacial temperature, is related to the concentration of the
alloy and to the curvature of the interface. These two effects
are governed by the Gibbs-Thompson equation:

TI5TM22
TMHg

LV
1mC, ~1!

which gives the interfacial temperatureTI as a function of
the concentration of the alloyC and the mean curvatureH of
the interface. The other symbols in this equation represent
the melting temperature of the pure materialTM , the surface
energy per unit areag, the liquidus slope in the phase dia-
gram of the binary alloym, and the latent heat per unit vol-
ume released upon solidificationLV . In applying this equa-
tion we assume that the interface is moving slowly enough
that the system remains in thermodynamic equilibrium.
Thus, the effects of kinetic undercooling, which would lower
the interface temperature as the pulling speed is increased,
are ignored.

The instability of the planar front was first explained by
Tiller et al.1 and a full linear-stability analysis, including the
effects of surface energy, was first done by Mullins and
Sekerka.2 They found that the interface is stable for suffi-
ciently low solute concentrations. For higher concentrations,
the interface is unstable for a finite range of pulling speeds.
Near the critical values of the pulling speed, the linear theory
predicts the formation of sinusoidal cells.

The mechanism can be explained by examining the fate
of a small perturbation to the interface. A bump of solid will
put the front in a higher temperature environment, and tends
to be melted back; thus, the temperature distribution is sta-
bilizing. A bump of solid has its local melting temperature
decreased by the Gibbs-Thompson effect~capillary under-
cooling!; surface energy is stabilizing. A bump of solid will
protrude into a region of reduced solute concentration due to
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the effects of solute rejection, which elevates the concentra-
tion of solute in a layer near the interface. Thus, the local
melting temperature near a bump will be reduced due to
constitutional undercooling and continued growth will be fa-
vored. This last effect can be related to the~negative! con-
centration gradient at the interfaceGC , with larger values of
uGCu indicating a greater tendency for interfacial instability.

When the instability is present, variations in the concen-
tration along the interface are frozen into the solid, resulting
in stripes of elevated solute concentration. Frequently, these
inhomogeneities are undesirable, and crystal growers would
prefer to suppress the instability. A number of authors have
attempted to use a forced fluid flow to extend the range of

pulling speeds for which the interface remains flat~see
Davis3 for a summary of these!. Schulze and Davis4,5 have
investigated the effects of translating the crystal in elliptical
orbits parallel to the interface, following the example of
Kelly and Hu,6 who had found that a similar modulation has
a stabilizing influence on Be´nard convection. This nonplanar
forcing will generate a three-dimensional version of a Stokes
boundary layer in the fluid above the interface. Because the
boundary layer will be compressed due to the flow normal to
the interface generated by the pulling of the crystal, we refer
to this flow configuration as a three-dimensional Compressed
Stokes Layer~3D CSL!, or CSL for short.

Schulze and Davis5 found that this flow can, on a linear
theory basis, stabilize the interface, provided the pulling
speed is sufficiently high. The success of this method re-
quires that the frequency of the flow lie within a calculated
range. The outermost curve in Figure 2 is a typical neutral
curve for the no-flow system,2 showing the critical pulling
speed as a function of the alloy concentration for a fixed
temperature gradient. Also shown in this figure are neutral
curves for the system when it is forced through the boundary
to generate a CSL. As the amplitude of the forcing is in-
creased, the upper branch of the neutral curve is lowered
considerably and the nose of the curve moves to the right, so
that, according to linear theory, the system is stabilized rela-
tive to the no-flow case. While it is true that most practical
solidification occurs at low speeds~i.e., along the lower
branch of the neutral curve!, some applications make use of
‘‘rapid’’ directional solidification.@An example of this is la-
ser annealing, in which a high-powered laser is scanned
across a solid substrate. This causes the local melting of the

FIG. 1. Configuration for directional solidification in a Hele-Shaw cell. The
confined material is pulled through a temperature gradient, so that the fluid
solidifies as it moves from a heated region into a cooler one. If the material
is pulled at constant speed, the solid-liquid interface will establish itself at a
fixed position relative to the heat source and/or sink.

FIG. 2. Plot of a typical neutral curve in dimensional form—V versusC` with a fixed temperature gradient. All of the curves extend infinitely along tangents
to the portions shown. The interface is linearly stable~S! when the far-field concentration is to the left of the neutral curve. The no-flow~outermost! curve is
divided into a portion corresponding to subcritical instability~dashed portion! and a portion corresponding to supercritical instability~solid portion!.
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solid and rapid resolidification~1–10 m/s! after the laser
passes.14 At such high speeds one’s model should allow de-
partures from local thermodynamic equilibrium15–18 though
in the present analysis such effects are not considered.# Fur-
thermore, the stabilization produced by the CSL may allow
more applications to operate above the neutral curve. In gen-
eral, it is desirable to solidify as quickly as possible to limit
laboratory noise, such as fluctuations in the temperature gra-
dient, and to enhance production rates in industrial applica-
tions. Finally, even low-speed applications will benefit by
moving the nose of the neutral curve to the right. This shift is
a factor of two for the case shown in Figure 2, which corre-
sponds to a lead tin alloy. Materials which reject more solute
will have larger shifts.

For a pulling speed near the nose of the neutral curve,
typical values for the frequency and amplitude of the lateral
velocity oscillations which lead to stabilization of the inter-
face are 104 Hz and 1023 cm, respectively. Such scales
would lend themselves well to an acoustic forcing. The pre-
cise value of these parameters can vary over several orders of
magnitude, but, as a rule, vary with the solute-diffusion
length and time scales and are physically realizable for a
sizable range of operating conditions.

A weakly nonlinear analysis of the no-flow, two-
dimensional system was first done by Wollkind and Segel.7

Their analysis revealed that bifurcations are generally sub-
critical for low pulling velocities, and supercritical at higher
velocities, as shown in Figure 2. Notice that the bifurcations
for the no-flow system are supercritical precisely where the
CSL flow provides effective stabilization.

In this paper the effect of the CSL on the bifurcation
structure for morphological instability will be investigated.
Our principal aim is to discover under what conditions the
flow may provide effective control of interfacial instability.
Of particular concern is the possibility that subcritical insta-
bilities could reduce, or even eliminate, the stabilization in-
dicated by the linear theory. When the interface is unstable,
there are the usual variety of potential patterns for the insta-
bility to take, including square, hexagonal and two-
dimensional~roll! cells, and we shall discuss the use of this
flow as a pattern-selection mechanism.

Our focus will be the upper branch of the curve shown in
Figure 2, for it is in this region that the CSL has a strong
influence on the interfacial morphology. Along this portion
of the neutral curve the critical wavelength of interfacial dis-
turbances is long compared to the solutal boundary-layer
thickness, and an analysis which exploits this fact will be
used. The principal advantage of a long-wave limit is that it
greatly simplifies the governing equations, allowing one to
solve for the interface shape without knowing the details of
the bulk fields.

Considering the limit of the small segregation coeffi-
cient, Sivashinsky8 was the first to derive a long-wave evo-
lution equation for a directionally solidifying interface. Other
distinguished limits leading to long-wave evolution equa-
tions in the absence of flow were discussed by Riley and
Davis.9 Here we shall follow the work of Brattkus and
Davis10 ~BD!, who derived and analyzed a long-wave evolu-
tion equation valid near the upper branch of the neutral curve

shown in Figure 2. In this limit, which is called the absolute
stability limit, they found that bifurcations to two-
dimensional, parallel cells are always supercritical, and that,
in some cases, there are linearly stable, three-dimensional
hexagonal solutions. The last result is possible because their
equation features both quadratic and cubic nonlinearities:

hTT2S 21
1

kD¹2hT1S 11
1

kD¹4h1k¹2h1kM21h

5hT¹
2h1u¹huT

22¹2u¹hu22
1

k
¹•~¹2h¹h!

2
1

2
¹•~¹hu¹hu2!, ~2!

wherez5h(X,Y,T) gives the leading-order interface deflec-
tion, the extent to which solute is rejected is measured by the
segregation coefficientk, M is a rescaled morphological
number,¹ is the Laplacian and the dependent variablesX,
Y andT are all on long or slow scales. In order to simplify
the presentation of modified versions of this equation we
shall abbreviate the linear and nonlinear operators shown
above byL andN, respectively, so that the equation may be
written symbolically as

L@h#5N@h#. ~3!

Equation~2! has been the starting point for several re-
cent studies. Hobbs and Metzener11 derived a linear correc-
tion to the equation for solidification into a flow with the
asymptotic suction profile~ASP!. They found that the inter-
face is given by a traveling wave whose amplitude depends
on slower scales in time and space. In Sections II and III we
give the derivation of an analogous equation for the case of
solidification into a 3D CSL.

Using both numerical and analytic techniques, Kassner
et al.12 studied a two-dimensional version of~2!, including
diffusion in the solid as well as the liquid. They examined
secondary bifurcations, including the Eckhaus instability,
parity-breaking, vacillating-breathing and period-halving bi-
furcations. In a second paper they examined the transition to
chaos via quasiperiodic states.13

Skeldonet al.23 have done a numerical study of the en-
tire class of long-wave equations identified by Riley and
Davis,9 including the Brattkus-Davis equation. They find
new bifurcation points, new solution branches and the exist-
ence of inverted hexagonal nodes and cells.

Hoyle, McFadden and Davis19 derived corrections to
equation~2! when the surface tension is anisotropic. Depend-
ing on the direction of the growth with respect to the crystal
lattice, they find that the anisotropy may affect the linear,
quadratic or cubic terms in the evolution equation. Using
their modified equation, they derive amplitude equations
governing the weakly nonlinear growth and competition of
two-dimensional, rectangular and hexagonal cells.

In Section II the governing equations are presented and
manipulated into a form that is convenient for the subsequent
analysis. In Section III a correction to equation~2! is derived
for solidification into a CSL. In Sections IV and V amplitude
equations are derived from the evolution equation
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that governs the development of~2D! cells and cells, squares
and hexagons in three dimensions. In Section VI our results
are summarized.

II. GOVERNING EQUATIONS

We consider the directional solidification of a dilute bi-
nary mixture at constant speedV. We choose a coordinate
system with thex-y-plane located at the mean position of the
crystal interface. Our frame of reference moves with the
crystal, so that the solidified crystal appears stationary to a
viewer in this frame, and the fluid in the far-field appears to
undergo elliptical oscillations parallel to the interface.

The equations governing the system in the fluid region
are the Navier-Stokes, continuity and solute-diffusion equa-
tions. The Navier-Stokes equations contain a time-periodic
forcing term due to the non-Galilean transformation that
moves us into the frame of reference of the crystal. The
system is assumed to be in thermodynamic equilibrium at all
times. To further simplify the analysis, we neglect latent heat
and density changes, and assume equal densities and thermal
properties between the two phases. We also assume that heat
diffuses much faster than the solute, and, in this limit, the
temperature field is fixed and depends linearly on the coor-
dinate normal to the interface~the frozen-temperature
approximation20!. We find it convenient to write separate
equations for the tangential velocity componentsu5ui1v j
and the normal componentw. Note that gravity is absent in
this model. In nondimensional form, the equations are

Vut1R~u•¹u1wuz!2uz52¹p1S¹2u1VUt , ~4a!

Vwt1R~u•¹w1wwz!2wz52pz1Swzz, ~4b!

¹•u1wz50, ~4c!

VCt1R~u•¹C1wCz!2Cz5¹2C, ~4d!

T5z, ~4e!

where

U5cos t i1b cos~ t2g!j ~5!

is the velocity of the crystal with respect to the far-field, and
the Laplacian, gradient and divergence operators act in the
horizontal plane only. For convenience we rewriteU as

U5rei t1c.c., ~6!

where

r5
1

2
~ i1be2 igj !, ~7!

and c.c. indicates the complex conjugate. The vectorr con-
tains the information on the orientation, size and eccentricity
of the elliptical motion of the crystal in terms of the phase
g and amplitude ratiob of the two perpendicular oscillations
indicated by~5!.

We have nondimensionalized the equations using the
following scalings:

x→~D/V!x, u→Uu, w→Uw, p→rUVp, ~8a!

T→~GD/V!T1T0 , C→~C`2C` /k!C1C` /k,
~8b!

t→t/v,

whereD is the solute diffusivity in the liquid,V is the crystal
pulling speed,U is the amplitude of the velocity oscillations
in the x-direction, r is the material density,C` is the far-
field concentration,v is the angular frequency of the ellipti-
cal translation of the crystal,G is the thermal gradient,T0 is
the temperature of the interface in the basic state andk is the
segregation coefficient.

The nondimensional parameters that appear in the equa-
tions and boundary conditions are the morphological number
M , which gives the ratio of the solutal and thermal gradients
at the interface, the surface energy parameterG, the Schmidt
numberS, the nondimensional angular frequencyV, the seg-
regation coefficientk and a ratioR measuring the amplitude
of the lateral oscillations in units of pulling speed:

M5
mVC̀ ~121/k!

GD
, G5

TmgV

DLVmC`~121/k!
, ~9a!

S5
n

D
, V5

vD

V2 , R5
U

V
. ~9b!

The far-field boundary conditions are, asz→`,

u→2U, ~10a!

w,p→ 0, ~10b!

C→1, ~10c!

and the interfacial conditions, evaluated at the interface
z5h(x,y,t), are

u5w50, ~11a!

C5M21h22GH, ~11b!

@11Vht#@11~k21!C#5Cz2¹h•¹C, ~11c!

where mean curvature of the interface,H, is given by

2H5¹•@¹h~11u¹hu2!21/2#. ~12!

Equations~11a! represent no-slip and a mass balance. Equa-
tion ~11b! is a nondimensional version of the Gibbs-
Thomson equation~1!, and equation~11c! is a balance of
solute across the interface.

The linear stability theory for this system4,5 is tacitly
summarized by Figures 2 and 3. The first of these has al-
ready been discussed. Figure 3 maps out the regions of the
nondimensional frequency versus disturbance wavenumber
plane where a weak CSL will stabilize or destabilize the
interface relative to the case without flow. Notice that there
is a finite range of frequencies for which a weak CSL stabi-
lizes disturbances with arbitrary wavenumbers.

III. THE DERIVATION OF THE EVOLUTION EQUATION

We wish to derive a correction to the long-wave evolu-
tion equation~2!, which is valid in the same limit as that
used by BD. Figure 4 shows how this limit fits into the
general linear theory. Here, the no-flow neutral curve shown
in Figure 2 is recast in terms of nondimensional variables,
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the inverse morphological numberM21 versus the surface
energy parameterG. The system is stable~unstable! for pa-
rameter values above~below! this curve, with the wave-
length of the instability approaching zero near the top of the

curve and infinity near the bottom. The system is stable for
all G.Gs51/k. We introduce the small parametere as a
measure of closeness to this point, which is known as the
absolute stability limit:

FIG. 3. Regions of thea-V plane where the flow stabilizes~S! or destabilizes~D! the interface relative to the case without flow.4 S581.0 andk50.3; result
is independent ofG.

FIG. 4. The critical value~maximized over wavenumbers! of M21 and the critical wavenumber as a function ofG for k50.3. Stable and unstable regions lie
above and below theMc

21-versus-G curve, respectively. The absolute stability limit isGs51/k.
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e451/k2G. ~13!

In this limit, the system becomes linearly unstable to long-
wave disturbances when the morphological number becomes
very large. In terms of physical variables, this limit can be
thought of as large pulling speed or small far-field concen-
tration.

The linear stability theory suggests the following slow
space and time scales:

X5e2x, Y5e2y, T5e4t. ~14!

Near the absolute stability limit, the morphological num-
ber scales like

M;e8M , ~15!

with M;O(1).
These are equivalent to the scalings employed by both

BD and Hobbs and Metzener.11 Our definition ofe is related
to those of these previous authors by a power of 1/4 and
1/2, respectively.

Hobbs and Metzener examined the limitS;O(e24),
R;O(1), andnote that, for their problem, the results are
similar to the limitS;O(1),R;O(e4). We refer to these as
the large Schmidt number and weak-flow limits, respec-
tively. We expect that the two limits produce qualitatively
similar results for our problem as well, and we choose to
consider the weak-flow case. In order to obtain a distin-
guished limit where we can derive anO(1) correction to
equation~2!, we find that we have to take a finer scaling of
the velocity ratioR than was necessary for the steady shear
flow. The appropriate scaling turns out to be

R5eR, ~16!

with R;O(1).
The analogous scaling for the ASP isR5e2R. This

scaling produces no correction to equation~2! at leading or-
der when used for the CSL, indicating that the CSL has, in
some sense, a weaker influence on the interface for a given
flow amplitude. If the ASP-scaling were used with the CSL
flow, the flow terms that appear at the same order as the
evolution equation would be time-periodic, and their effect
would average out of the equation when a solvability condi-
tion was applied. By making the flow somewhat stronger
these unsteady terms appear earlier in the analysis and steady
terms ultimately emerge from products of the lower-order
time-periodic terms. If the flow wereO(1), however, the
need for a solvability condition would arise too early, result-
ing in a flow-dominated evolution equation with the result of
BD as a weak correction.

For the CSL, it is necessary to retain a fast time scale in
addition to the slow scale presented earlier. We denote this
new scale ast5t, and employ a multiple-scale analysis in
time.

In order to simplify the derivation of the evolution equa-
tion, we use the standard technique of changing variables so
that the interfacial conditions may be applied at zero rather
than at the interface positionz5h(X,Y,T,t):

z5z2h~X,Y,T,t!. ~17!

If all of the changes outlined above are taken into ac-
count, the governing equations become

V@ut1Ut2htuz1e4~uT2hTuz!#1e3R@~u•¹!u

2~u•¹h!uz]1eRwuz1e2~¹p2¹hpz!

5Suzz1uz1e4S@¹2u22~¹h•¹!uz

2¹2huz1u¹hu2uzz#, ~18a!

V@wt2htwz1e4~wT2hTwz!#1e3R@~u•¹!w

2~u•¹h!wz]1eRwwz1pz

5Swzz1wz1e4S@¹2w22~¹h•¹!wz

2¹2hwz1u¹hu2wzz#, ~18b!

wz1e2~¹•u2¹h•uz!50, ~18c!

V@Ct2htCz1e4~CT2hTCz!#1e3R@~u•¹!C

2~u•¹h!Cz]1eRwCz

5Czz1Cz1e4S@¹2C22~¹h•¹!Cz

2¹2hCz1u¹hu2Czz#. ~18d!

The far-field boundary conditions remain the same, and
the interfacial conditions are now applied atz50:

u5w5 0, ~19a!

C5e8M21h2~1/k2e4!e4¹•@¹h~11e4u¹hu2!21/2#,
~19b!

Cz5@11V~ht1e4hT!#@11~k21!C#

1e4~¹h•¹C2u¹hu2Cz!. ~19c!

To derive the evolution equation, we expand each de-
pendent variables in powers of the small parametere:

u5u01eu1 . . . , ~20a!

w5w01ew11 . . . , ~20b!

h5h01eh11 . . . , ~20c!

C5C01eC11 . . . , ~20d!

and solve the resulting equations at each order. The lower-
order solutions are given in the Appendix~see Schulze22 for
further details!. At O(e8) only the steady portion of the sol-
ute diffusion equation is required:

C̄8zz1C̄8z5V~C4T2h0TC4z!2¹2C41¹2h0C4z

2u¹h0u2C4zz12¹h0•¹C4z

1RF ~u0•¹!C52C0zE
0

z

¹•ū5dzG , ~21!

where the overbars indicate averages over one period in the
fast timet. The boundary conditions are
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C̄85M21h01
1

2k
¹•~¹h0u¹h0u2!1¹2h0 , at z50,

~22a!

C̄8z1~12k!C̄85V~k21!C4h0T2C4zu¹h0u2

1¹C4•¹h0 , at z50, ~22b!

C̄850, as z→`. ~22c!

Here, the third boundary condition on the second-order
equation~21! plays the roll of a solvability condition, and
this determines the evolution equation forh0(X,Y,T):

L@h0#1R2f 0¹
2ur•¹u2F 21F ĥ0ukuG5N@h0#. ~23!

The operatorsL andN are defined by equation~3! and the
symbolF 21 indicates the inverse of a double Fourier trans-
form in the slow scalesX andY:

F @f~X,Y,T,t,h!#5f̂~k1 ,k2 ,T,t,h!

5
1

2pE2`

` E
2`

`

feik•XdXdY, ~24!

where k5(k1 ,k2) and X5(X,Y). The coefficientf 0 is a
function ofS andV, and its explicit form may be found in
the Appendix.

The left-hand side of the evolution equation is a fourth-
order spatial, second-order temporal linear operator that dif-
fers from the operator in equation~2! by the presence of the
flow term, which is proportional to the square of the velocity
ratioR. Note that the correction due to the flow is linear.
For the purpose of performing a weakly nonlinear analysis
the form of this term may therefore be obtained from the
characteristic equation of the linear stability theory. How-
ever, equation~23! is also valid for strongly nonlinear dis-
turbances and, in general, can not be arrived at in this man-
ner due to the non-local behavior implied by the Fourier
transform that appears in the correction term. When solving
the equation, it is necessary to invert this transform. For the
weakly nonlinear analysis one need only work with functions
of the form h05Aeik0•X which transform to
ĥ05AA2pd(k2k0). The inverse transform appearing in the
evolution equation is then given by

F 21F ĥ0ukuG5
A

uk0u
eik0•X, ~25!

and one finds that the resulting flow term is consistent with
the linear stability theory. We shall not pursue strongly non-
linear solutions here, but give the full equation for future
reference.

For comparison, the evolution equation from Hobbs and
Metzener11 for the asymptotic suction profile is reproduced:

L@h0#2Rs]XF
21@ ukuĥ0#5N@~h0 ,X,Y,T!#, ~26!

wheres is a rescaled Schmidt number. The flow term for the
CSL differs from that for the ASP in two ways. First, the
flow term for the CSL is a more complicated function and
depends on the additional flow parameterV. Second, the
flow term for the CSL is third order in space instead of

second order, indicating a correction to the linear no-flow
theory that is proportional to the cube, instead of the square,
of the wavenumber. The right-hand sides of both evolution
equations contain quadratic and cubic nonlinear terms, and
are identical to the terms found in equation~2!.

IV. TWO-DIMENSIONAL BIFURCATION THEORY

Consider theY-independent form of the evolution equa-
tion, omitting the zero subscript onh:

L@h#1
1

4
R2f 0F XXXX

21 F ĥuauG5N@h#. ~27!

We expand the functionh(X,T) ~previouslyh0) as an
asymptotic series in powers of a new small parameterd,
which is related to the amplitude of an interfacial distur-
bance:

h~X,Y!5dh1~X,T!1d2h2~X,T!1... . ~28!

At leading order, we get the linearized form of the evo-
lution equation. If we seek a solution in terms of normal
modes:

h1~X,T!5AesT1 iaX, ~29!

we obtain a long-wave version of the linear stability theory,4

with the characteristic equation

s22S 21
1

kDs1S 11
1

kDa42ka21
1

4
R2f 0a

31kM2150,

~30!

for a.0. Here the symbol for the wavenumberk5ukz has
been replaced bya to avoid confusion with the segregation
coefficientk.

Setting the real part ofs equal to zero reveals that the
characteristic equation can only be satisfied if

S 21
1

kDs i50. ~31!

This implies thats i must also be zero on the neutral curve,
because the coefficient 211/k is positive for all physically
relevantk. This feature, which is sometimes referred to as
the ‘‘principal of exchange of stabilities,’’ was first proven
for the directional solidification of a binary alloy in the ab-
sence of flow by Wollkind and Segel.7

The critical wavenumber, based on the long-wave
theory, is given by

ac5
212f 0kR

21A128k2~11k!19 f 0
2k2R4

128~11k!
. ~32!

The critical morphological number is then given by

kMc
215kac

22S 11
1

kDac
42

1

4
R2f 0ac

3 . ~33!

When flow is absent (R50) things simplify considerably:

ac
25

k2

2~k11!
, ~34a!
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Mc
215

k2

4~k11!
. ~34b!

If one takes the long-wave limit of the full linear-
stability theory,4 one recovers the result derived above after
rescaling to the long-wave variables.

The flow term appearing in the characteristic equation is
R2a3f 0 /k. Thus, we shall look at the sign off 0 to deter-
mine whether the flow term has a stabilizing (f 0.0) or de-
stabilizing (f 0,0) effect on the no-flow linear stability. Our
previous work has shown that, in general, the influence of
the flow is a complicated function of Schmidt numberS,
segregation coefficientk, surface energy parameterG, fre-
quencyV and amplitudeR of the forcing.4 A significant
advantage of the long-wave limit is thatf 0 depends only on
S andV.

In Figure 5 we plot the curvef 050 in theS-V plane.
Below this curve, the flow will have a stabilizing influence
on long-wave disturbances for allk andR. All combinations
of S andV that lie on a givenf 0 level curve give the same
results, because these parameters do not enter into the analy-
sis in any other way. Notice that the curve shown is almost
linear for S.1. Since the Schmidt number of most alloys
lies between 10 and 1000, this curve is well approximated by
its large-S asymptote for practical considerations:

V;0.73S14.7, ~35!

asS→`.
The Schmidt number is a function of the materials being

processed. The frequency, however, is a control parameter
which can be adjusted, within practical limits, to achieve a
stabilizing flow. One can optimize the stabilization by choos-
ing V to maximize f 0. Surprisingly, the optimal condition
for long-wave disturbances is to make the frequency as small
as possible~the quasisteady limit!. This contrasts with the
results for the ASP which has a destabilizing influence on
long-wave disturbances. Also, the results of the full linear
stability analysis show that the stabilizing influence of the
CSL in the quasisteady limit does not hold forO(1) wave-

length disturbances~see Figure 3!. Hence, it is unlikely that
extremely small frequencies would prove effective in prac-
tice, and we shall choose for examples frequencies for which
arbitrary wavelength disturbances are stabilized by the CSL
according to the full linear stability analysis.4

According to the long-wave evolution equation, the
magnitude of the stabilizing effect will increase monotoni-
cally with R, provided f 0.0. If the other parameters are
held fixed, the flow will eventually dominate and the inter-
face will be stabilized. We see from equation~33!, however,
that the critical inverse morphological number can never be
made equal to or less than zero; for the dominant term in
equation~33! for small a is always positive. Thus, there is
always some region neara50 whereMc

21.0. There is no
finite value ofR that can change this because the flow terms
are proportional toa3. This differs from the case where a
finite amplitude velocity is imposed on the crystal interface.5

In that case, the numerical results indicate that the neutral
curve can be bounded below the horizontal axis (M2150)
for a sufficiently strong flow. For the present case, one can
certainly make the critical morphological number very large,
and from a practical point of view that is all that matters.

When the system is near marginal stability, the exponen-
tial growth or decay indicated by the characteristic equation
~30! is approximately correct for only a short time before
nonlinear terms conspire to either dampen or accelerate this
growth. To determine the weakly nonlinear evolution of a
disturbance near marginal stability, we fix the wavenumber
and morphological number at there critical values, and pro-
ceed to higher order in the small parameterd. To this end,
we identifyM21 as our bifurcation parameter, and expand it
in a series for smalld:

M215Mc
212d2m̂/k1... . ~36!

The parameterm measures the degree of sub- or supercriti-
cality.

For h1 we write

h15A~T !eiacX1c.c., ~37!

whereA is a slowly varying amplitude that evolves on a time
scale,T 5d2T, even slower than the one previously identi-
fied for T5e4t.

In order for the equation atO(d3) to have periodic so-
lutions, one must suppress secular terms which lead to un-
bounded growth. Equating the coefficients of such terms to
zero gives the following Landau equation:

ac
2~211/k!AT 5m̂A2g1uAu2A, ~38!

where the Landau coefficientg1 is given by

g152S 3212PDac
4 , ~39!

and

P5
2~412/k!ac

4

15~111/k!ac
423kac

217/4R2f 0ac
3 . ~40!

In the absence of flow (R50), it is known from the
work of Wollkind and Segel7 that long-wave, two-
dimensional bifurcations are supercritical, and short-wave bi-

FIG. 5. The curvef 050 in theV-S plane. If the frequency and Schmidt
number are such that they lie below this curve, then the flow will have a
stabilizing ~S! influence on the interface for long-wave disturbances for all
k andR.
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furcations are subcritical. It turns out, however, that the ad-
dition of the flow can change the long-wave bifurcation from
super- to subcritical asR is increased. These flow-induced
subcritical bifurcations are a threat to our efforts to stabilize
the interface because they lower the critical morphological
number from the value indicated by linear theory. WhenR
is just beyond this transition point, it is likely that there will
be a turning point fairly close to the critical morphological
number predicted by the linear theory, but asR increases
further, it is conceivable that the system could be unstable to
finite amplitude disturbances at morphological numbers for
which the no-flow system is stable. We would like to deter-
mine the conditions for which the CSL method of stabilizing
may prove useful, taking into account both the linear and
weakly nonlinear theory. To this end, we wish to identify
regions of the parameter space where the interface is linearly
stable and the bifurcation is supercritical; for it is these re-
gions that offer the best hope of producing a flat interface.

In Figure 6 the three dark curves indicate values ofR

above whichMc
21 is reduced by a fixed percentage from its

no-flow value, with the bottom, middle and top curves cor-
responding to a 50%, 75% and 99% reduction in the value of
Mc

21, respectively. The curves are plotted as a function of
k, which may range between zero and one for alloys that
reject solute, and the remaining parameter values areV51

andS5100. The shaded region indicates a supercritical bi-
furcation and the unshaded region indicates a subcritical bi-
furcation. When a dark curve passes through the shaded re-
gion, the shaded area above the curve indicates values of
R for which the bifurcation is supercritical according to the
weakly nonlinear theory and the flow has been stabilized by
the indicated percentage according to linear theory. Exami-
nation of these figures reveals that a significant reduction in
Mc

21 while maintaining a supercritical bifurcation can be
accomplished provided the value ofR is adjusted carefully.

There is very little qualitative change in this picture as
one variesS and/orV, provided the value off 0 remains
positive~i.e., the parameter regime below the curvef 050 in
Figure 5!. Larger values off 0, which changes more dramati-
cally with the value ofV thanS, decrease the value ofR at
which the bifurcation switches from super- to subcritical.
Similarly, smaller values off 0 increase this value. The same
trend is followed by the curves indicating a fixed percentage
of stabilization, and the relative position of the curves shown
in Figure 6 does not change much for different values of
f 0.0. For example, see Figure 7, which is analogous to
Figure 6 with a value ofV510 instead ofV51. As the
value of f 0 approaches zero from above, the curves in these
figures continue to rise, and disappear entirely forf 0<0.
When f 0<0 the flow destabilizes the interface and bifurca-

FIG. 6. The three dark curves indicate values ofR above whichMc
21 is reduced by a fixed percentage from its no-flow value, with the bottom, middle and

top curves corresponding to a 50%, 75% and 99% reduction in the value ofMc
21, respectively. The curves are plotted as a function ofk, which may range

between zero and one for alloys that reject solute, and the remaining parameter values areV51 andS5100. The shaded region indicates a supercritical
bifurcation and the unshaded region indicates a subcritical bifurcation.
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tions are always supercritical. The magnitude of destabiliza-
tion is very small, however, and very large values ofR
would be necessary to produce a significant effect.

V. THREE-DIMENSIONAL PATTERN SELECTION

While results in two dimensions may apply to experi-
ments in which the alloy is placed in a Hele-Shaw cell, the
majority of applications must be considered as three-
dimensional. In three dimensions we consider the influence
of two perpendicular crystal oscillations, producing a three-
dimensional version of the CSL. When the phase difference
g between the two oscillations is an integral multiple ofp,
we have the special case of a planar oscillation, and the
results are the same as for the two-dimensional case dis-
cussed in the previous section. This type of flow does not
stabilize the three-dimensional system. When destabilizing,
two-dimensional cells will form of the flow and the bifurca-
tions will be governed by the amplitude equation derived in
the previous section. We shall refer to this pattern as ‘‘rolls’’
in analogy to the more familiar pattern observed in convec-
tion experiments. When stabilizing, cells will form in the
direction parallel to the flow, the critical morphological num-
ber will be unchanged and bifurcations will be governed by

the same amplitude equation minus the flow terms. In this
case, the linear theory predicts that the only effect of the flow
is to choose cell orientation.

For gÞnp , the motion of the crystal is in elliptical or-
bits, and according to the linear theory, it is possible for a
sufficiently strong flow to eliminate the instability for a large
range of parameter values.5 When the motion of the crystal is
in a noncircular ellipse, the symmetry of the system is bro-
ken, and two-dimensional cells are again the preferred pat-
tern at onset. When the instability persists, but the flow is
stabilizing~i.e., the flow increases the critical morphological
number!, the cells will orient themselves along the minor
axis of the ellipse, which is the direction least stabilized by
the flow. When the flow is destabilizing, the cells will orient
themselves along the major axis of the ellipse.

We examine the linear stability of a single oblique roll
solution by assuming normal modes of the form

h~X,Y!5Aeia•X1c.c., ~41!

in equation~23!. Here we have once again omitted the sub-
script zero onh, and we have already set the growth rate and
wave speed to zero, so that we are seeking neutrally stable,
stationary solutions which have the physical form of an infi-
nite sheet of parallel cells with a wavevectoruau ori-

FIG. 7. The three dark curves indicate values ofR above whichMc
21 is reduced by a fixed percentage from its no-flow value, with the bottom, middle and

top curves corresponding to a 50%, 75% and 99% reduction in the value ofMc
21, respectively. The shaded region indicates a supercritical bifurcation and

the unshaded region indicates a subcritical bifurcation. The curves are plotted as a function ofk, which may range between zero and one for alloys that reject
solute, and the remaining parameter values areV510 andS5100. Notice that this figure is essentially the same as the previous one except for a change in
the scale ofR.
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ented at an angleu5tan21(a2 /a1) with respect to the
X-axis and a wavenumbera[uau5Aa1

21a2
2.

The neutral stability surface is now given by

kM215ka22~111/k!a42R2f 0aur•au2

5ka22S 11
1

kDa42
1

4
R2f 0a

3@~cosu

1b cosg sin u!21b2sin2usin2g#. ~42!

The dependence on the phase difference between the two
oscillationg and the amplitude ratiob is analogous to that
found by Kelly and Hu6 in their study of the influence of
nonplanar oscillations on Be´nard convection. From equation
~42! we see that the critical morphological number is a func-
tion of the disturbance orientation. As a result, the flow will
select a preferred orientation for developing cells, as de-
scribed above.

When considering the weakly nonlinear analysis in
the elliptical case, we shall look only at the most un-
stable cell orientation. The weakly nonlinear develop-
ment of these cells will be governed by the same amplitude
equation found in the two-dimensional case with the flow
amplitudeR replaced byR85R@(cosuc1b cosg sinuc)

2

1 b2sin2ucsin
2g]1/2, whereuc is the angle that the wavevec-

tor of the critical disturbance makes with theX-axis. With
this new interpretation ofR the results in the figures of
Section IV still apply.

As it turns out, elliptical oscillations may provide the
best hope for suppressing morphological instability in three
dimensions because of their symmetry breaking feature. In
the case of circular oscillations, the critical morphological
number is the same for cells oriented in every direction. This
lack of a preferred orientation makes it possible for a super-
position of cells with the same wavenumber to grow at onset.
Some of these superposition patterns bifurcate transcritically,
and therefore always pose the threat of a subcritical instabil-
ity that will reduce the stabilization indicated by the linear
theory. These more complicated three-dimensional patterns
are likely to emerge in the case of elliptical oscillations as
well, but only as secondary bifurcations for larger amplitude
disturbances or for small amplitude disturbances when the
motion of the crystal is nearly circular.

When the amplitudes of the two oscillations are the same
and the phase difference isp/2 we have the special case of
circular orbits. In this case, as in the no-flow case, there is no
preferred direction for cells to orient themselves, and more
complicated patterns are possible at onset. Because these are
both laterally isotropic cases, squares and hexagons are the
likely patterns. When the crystal motion is in a circular pat-
tern, we shall be interested in both when instability occurs
and what type of pattern emerges as a result.

A. Squares

Square patterns are the result of the simultaneous growth
of two perpendicular roll patterns. In order to consider the
instability of two perpendicular cellular solutions near onset,

we must restore the symmetry of the linear operator by con-
sidering circular orbits of the crystal. To this end, we set
b51 andg5p/2 in equation~6!.

We then derive the amplitude equations by assuming a
leading-order solution of the form

h15A~T !eiaX1B~T !eiaY1c.c. ~43!

This solution will satisfy the linearized evolution equation
provided the morphological number lies on the neutral curve
identified by equation~33!. Note that, due to the circular
symmetry, the orientation of the square lattices can be fixed
without loss of generality.

Secular terms again appear atO(d3) and their elimina-
tion leads to two coupled Landau equations:

ac
2~211/k!AT 5m̂A2~g1uAu21g2uBu2!A, ~44a!

ac
2~211/k!BT 5m̂B2~g2uAu21g1uBu2!B, ~44b!

where

g152a4@3/212~211/k!P1#, ~45a!

g252a4@112~221/k!P2#, ~45b!

and

P15
22a4~211/k!

15~111/k!a423ka21 7
4R

2f 0a
3
, ~46a!

P25
22a4

k@3~111/k!a42ka21~2A221!/4#R2f 0a
3]
.

~46b!

Equations~44! have four types of stationary solutions:

uAu5uBu50, ~47a!

uAu5Am̂/g1.0;uBu50, ~47b!

uAu50;uBu5Am̂/g1.0, ~47c!

uAu5uBu5Am̂/~g11g2!.0. ~47d!

The first of these solutions corresponds to the basic state.
The second and third solutions correspond to two-
dimensional cells aligned with theX- and Y-axis, respec-
tively. These solutions bifurcate supercritically forg1.0
and subcritically forg1,0. The third solution corresponds
to a square pattern aligned with the axes. This solution bi-
furcates supercritically forg11g2.0 and subcritically for
g11g2,0. These results, along with the eigenvalues for the
linearized system are summarized in Table I. Using these
results, one may predict when stable squares or two-
dimensional cells are the preferred pattern.

In Figure 8 we interpret these results in terms of the
parameters in the governing equations. The plot is once
again in thek-R plane, and the curve indicating transition
from super- to subcritical instability for rolls is the same as
shown in Figures 6 and 7. The other solid curve in this pic-
ture separates the regions where square solutions bifurcate
sub- or supercritically. When bifurcations are subcritical
(m̂,0), none of the bifurcating solutions are stable. How-
ever, whenm̂.0 the supercritical region of the figure can be
subdivided. Stable two-dimensional cells are the preferred
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pattern for a range of segregation coefficients. Just outside
this range there is a region where stable squares are the pre-
ferred pattern. The other regions correspond to unstable so-
lutions, some of which may be supercritical bifurcations. In-
creasing the flow amplitude reduces the range of segregation
coefficients corresponding to stable square solutions. If the
flow-amplitude is increased sufficiently, all bifurcations be-
come subcritical. For extreme values of the segregation co-
efficient squares always bifurcate subcritically and are un-
stable; thus it is impossible to identify regions with
significant flow-stabilization and supercritical bifurcations.
Unstable supercritical squares, which are impossible without
flow, exist in the region bounded by the two solid curves.

As with the two-dimensional results, the scale of the
R-axis in Figure 8 is augmented by adjusting the value of
S or V. Changes in these parameter values that increase the

magnitude off 0 increase the influence of the flow and lower
the curves in the figure. Changes that decreasef 0 decrease
the influence of the flow and raise the curves. Once again,
there are no qualitative changes untilf 0 is reduced below
zero, at which point the flow becomes very weak, slightly
destabilizing and the no-flow bifurcation structure is essen-
tially unaltered.

These equations cannot tell us if the system eventually
saturates at some superposition state other than rolls or
squares. Furthermore, we cannot say how these other states
would compete with the squares even when the squares exist
and are linearly stable according to equations~44!. In fact,
based on experimental evidence,21 it is known that hexagonal
solutions are a likely alternative to square solutions, and we
shall discuss this possibility next.

FIG. 8. A map in thek-R plane showing regions where rolls~SR! or squares~SS! are the preferred stable state. The unmarked regions correspond to unstable
solutions. Rolls bifurcate subcritically~supercritically! above~below! the darker solid curve which spans all values ofk. Squares bifurcate subcritically
~supercritically! above~below! the lighter solid curve which spans a limited range of segregation coefficients. The other parameter values areS5100 and
V51. Recall that solute is preferentially incorporated into the solid fork.1.

TABLE I. The steady solutions of the two-mode amplitude equations, the eigenvalues of the linearized system
and the range of coefficients for which the solution exists and is stable.

Cell type Solution Eigenvalues Stable solution range

None uAu5uBu50 m̂,m̂,m̂ m̂,0

2D uAu5Am̂/g1.0,uBu50 22m̂,m̂(12g2 /g1) m̂.0,g2.g1.0
uBu5Am̂/g1.0,uAu50

Square uAu5uBu5Am̂/(g11g2) 22m̂, m̂.0,g1.ug2u
22m̂(g12g2)/(g11g2)
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B. Hexagons

For the case of hexagonal cells, consider the superposi-
tion of three two-dimensional cell patterns oriented at 2p/3
rad with respect to one another. The leading-order solution is
then of the form

h15A~T !eian1•X1B~T !eian2•X1C~T !eian3•X1c.c.,
~48!

where theni are normal vectors in theX-Y plane separated
by 2p/3 rad. The orientation of the three vectors with respect
to the axis is arbitrary, with all orientations leading to the
same amplitude equations.

At O(d2) we have

Lh252¹2u¹h1u22
1

k
¹•~¹2h1¹h1!

522~211/k!a4@A2e2ian1•X1B2e2ian2•X

1C2e2ian3•X#

23~111/k!a4@AB* eia~n12n2!•X1AC* eia~n12n3!•X

1BC* eia~n22n3!•X#

3~121/k!a4@ABeia~n11n2!•X

1ACeia~n11n3!•X1BCeia~n21n3!•X1c.c.#, ~49!

whereL is the same linear operator found in equation~23!

with M replaced byM-critical andur•¹u25 1
4 ¹2.

Some of the terms appearing on the right-hand side of
this equation have wavevectors whose moduli are unity,
making them secular. If one suppresses these terms in the
usual way, time must be scaled ond rather thand2. The
resulting evolution equation will only have quadratic nonlin-
earities, and all bifurcations will be to transcritical hexagons.
This means that the potential for subcritical instabilities al-
ways exists for this flow configuration, and will negate at
least some of the stabilization predicted by the linear theory.
The extent to which this is true depends on the location of
the turning point for the bifurcating solution which, in gen-
eral, may not be determined by a weakly nonlinear analysis.
When the coefficients of the secular terms areO(d), how-
ever, the need to suppress these terms is delayed to higher
order, where the resulting amplitude equation will have cubic
as well as quadratic nonlinearities. When this is the case, the
location of the turning point may be determined by a weakly
nonlinear analysis. In the present problem, the terms in ques-
tion may be made small by assuming that the segregation
coefficientk lies withinO(d) of unity.

In order to proceed to higher order we shall then assume

k;11Kd1... , ~50!

for K;O(1).
At O(d3) suppressing secular terms leads to three

coupled amplitude equations of the form

3a2AT 5m̂A1g0B*C*2~g1uAu21g2uBu21g2uCu2!A,
~51a!

3a2BT 5m̂B1g0A*C*2~g2uAu21g1uBu21g2uCu2!B,
~51b!

3a2CT 5m̂C1g0B*A*2~g2uAu21g2uBu2

1g1uCu2!C, ~51c!

where

g05Ka4, ~52a!

g152a4~3/216P1!, ~52b!

g252a4~3/213P2!, ~52c!

and

P15
26a4

30a423a21~7/4!R2f 0a
3 , ~53a!

P25
26a4

16a422a22@~123A3!/4#R2f 0a
3 . ~53b!

Notice thatP1 is the same as for the case of a square pattern
if k;1. This is not the case forP2, however.

In the case of rolls and squares, only the moduli of the
cell amplitudes are important for classifying solutions. This
is because a change in the sign of the amplitude results in
another solution which is distinguishable only by a transla-
tion in the X-Y plane. Changing the sign of a solution to
equations~51! will still result in a solution; however, the new
solution may or may not be physically distinguishable from
the original.

In general, the amplitudes determined by equations~51!
are complex. To determine the steady solutions and analyze
their behavior, it is convenient to represent each of the am-
plitudes in complex-polar notation:

A5rAe
ifA, B5rBe

ifB, C5rCe
ifC, ~54!

and separate the amplitude equations into real and imaginary
parts:

mrA1g0rBrCcos~fA1fB1fC!2~g1rA
21g2rB

2

1g2rC
2 !rA50, ~55a!

mrB1g0rArCcos~fA1fB1fC!2~g1rA
21g2rB

2

1g2rC
2 !rB50, ~55b!

mrC1g0rBrAcos~fA1fB1fC!2~g1rA
21g2rB

2

1g2rC
2 !rC50, ~55c!

sin~fA1fB1fC!50. ~55d!

These equations are underdetermined due to translational
symmetry in theX-Y plane. Thus the fourth equation may be
satisfied by any totalfA1fB1fC equal to an integral mul-
tiple of p. The even and odd multiples ofp separate the
remaining equations into two cases which differ in the sign
of the quadratic terms. It is convenient for illustrative pur-
poses to choose two of the phase angles, sayfB andfC , to
be zero. The third phase angle will then be an integral mul-
tiple of p and all of the amplitudes will be real.

A bifurcation diagram, such as the one shown in Figure
9, is a convenient way to sort out the possible solutions to
these equations. This figure is for no flow, and is valid for
k sufficiently close to unity. As the flow amplitude is in-
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creased the structure of this diagram is compressed into a
narrower range ofm̂ values, but remains qualitatively similar
until R exceeds a critical value. The diagram is symmetric
with respect to theA-axis, and only the upper portion is
shown. The diagrams for the amplitudesB andC versusm
are identical to that forA.

When two of the three amplitudes are zero, two-
dimensional cells are once again solutions with, say,
rA
25m̂/g1. These solutions are unstable when they bifurcate
subcritically ~which does not occur when there is no flow!.
These solutions are initially unstable when they bifurcate
supercritically, but become stable when they intersect a sec-
ondary bifurcation atm̂5g1g0

2/(g12g2)
2.

When all three of the amplitudes are equal, the solutions
are hexagonal with either

rA5rB5rC5
g06Ag0

214m̂~g112g2!

2~g112g2!
~56!

or

rA5rB5rC5
2g06Ag0

214m̂~g112g2!

2~g112g2!
, ~57!

depending on the sign of the quadratic terms. These bifurca-
tions are transcritical and take the form of parabolas in the
bifurcation diagram. There are turning points located at
m̂5 2 g0

2/2(g112g2), r5 6 g0/2(g112g2). For a suffi-
ciently weak flow, these parabolas open to the right and the
branches with the larger magnitude amplitudes are initially
unstable, switching to stable at the turning points. These
branches are then stable from the turning point until they
intersect secondary bifurcations at
m̂5g0

2(2g11g2)/(g12g2)
2. The branches with the smaller

magnitude amplitudes are unstable.
The two types of hexagonal solutions differ only in sign.

However, because the solutions are not symmetric about the
z50 plane, the two solutions result in different patterns of
solute distribution in the solid. In one case, the local maxima

are more pronounced than the local minima, while in the
other case, the local minimums are more pronounced. Note
that, for k,1, the solute distribution will be out of phase
with the interface height, as the solute concentration is lower
away from the interface. Whenk,1 the upper hexagonal
branch in Figure 9 corresponds to hexagonal nodes, and the
lower branch to hexagonal cells.

Finally, when two of the amplitudes are equal but non-
zero, we have what are called ‘‘class V,’’ or mixed mode
solutions:

rA5
2g0

g12g2
, ~58a!

rB5rC5Am̂~g12g2!
22g1g0

2

~g11g2!~g12g2!
2. ~58b!

The amplitudes may be permuted to give still other solutions,
which are identical in form. In total there are six different
solutions if one accounts for these permutations and the pos-
sible sign change of the quadratic terms. Note that the two
mixed-mode branches in the diagram actually correspond to
different solutions. The eigenvalues for the mixed mode
were not calculated; however, their stability would be incon-
sistent with the structure of the bifurcation diagram, so we
shall assume they are unstable.

There are no solutions with all of ther distinct from one
another.

AsR is increased for a stabilizing flow, the bifurcation
diagram shown in Figure 9 is compressed in the horizontal
direction; the bifurcation structure remains unchanged until a
critical value ofR is reached. This structure features two
hysteresis loops: one is due to the very shallow turning point
of the hexagonal solutions, and the other occurs because of
the changes in stability when the mixed mode solutions are
intersected by the roll and hexagon solutions. Beyond this
critical value ofR, the roll solutions become subcritical.
This is the same transition which occurs for the two-
dimensional cells, and is determined by the value ofR

which makesg150. At a second value ofR, which tends to
be numerically close to this first transition, there is a singu-
larity that causes the turning point of the hexagonal solutions
to approach negative infinity. The location of the second
transition point is determined by the value ofR which
makesg1522g2. Beyond the immediate vicinity of this
second critical value ofR, which is in the neighborhood of
R56 whenS5100 andV51, the parabolas in the bifurca-
tion diagram flip so that they open to the left. The mixed-
mode solutions make a similar transition, so that the entire
bifurcation diagram essentially reflects over the vertical axis
asR is increased. An example of a bifurcation diagram
when the value ofR is beyond these transition points is
shown in Figure 10. All of the solutions are unstable. One
structural distinction from the smallR case is that the lower,
rather than the upper, hexagonal branch is now the one that
intersects the mixed-mode branch. The new intersection
point is give bym̂53g0

2g2 /(g12g2)
2.

AsR is increased, the transition of the bifurcations can
be viewed as a change from super- to subcritical solutions, as
the turning point of the hexagonal branch is very close to the

FIG. 9. Bifurcation diagram for the system whenR50. Stable solutions
~unstable! are indicated with solid~dotted! curves. The curves marked
‘‘H1’’ and ‘‘H2’’ correspond to hexagonal nodes and cells respectively. The
curves marked ‘‘M1’’ and ‘‘M2’’ correspond to two distinct mixed-mode
solutions. The diagram is presented without scales because its qualitative
features are representative for a wide range ofR values.
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origin compared to the other structure in the diagram. Thus,
in general, increasing the flow amplitude seems to favor sub-
critical solutions for rolls, squares and hexagons.

These results are summarized in Table II. We have not
calculated the eigenvalues for the mixed modes as they are
complicated solutions to a nontrivial cubic polynomial.

VI. CONCLUSION

In this paper, we derived a strongly nonlinear evolution
equation for the shape of a directionally solidifying interface
in the presence of a three-dimensional compressed Stokes
layer. We used a one-sided model, where diffusion of solute
in the solid is neglected, and we invoked the frozen tempera-
ture approximation.20 The equation is valid when~1! the sur-
face energy parameterG is near the absolute stability bound-
ary Gs51/k; ~2! the imposed flow is weak; and~3!
equilibrium thermodynamics hold. Under these conditions,
the critical disturbance wavelength is long compared to the
diffusion length scaleD/V and the critical morphological
number is large. We then presented the results of a weakly
nonlinear analysis of the evolution equation in two and three
dimensions.

In previous work we had determined that increasing the
flow amplitudeR could stabilize the interface, provided the
frequency of the flow oscillations is within a calculated
range. The stabilization was particularly effective in the
long-wave regime. The two-dimensional bifurcation analysis
showed that increasing the amplitude of the CSL will even-
tually change bifurcations from super- to subcritical when
the flow is in the stabilizing parameter regime. Thus, at least
some of the stabilization gained according to the linear
theory is lost to subcritical instabilities if the flow amplitude
is made too large; yet it is still possible to stabilize within a
range ofR values for which the bifurcation is supercritical
and, presumably, one could increaseR at least somewhat
beyond this range before the subcritical instability would ne-

FIG. 10. Bifurcation diagram for the system whenR55.7, V51 and
S5100. Stable solutions~unstable! are indicated with solid~dotted! curves.
Note that the only stable solution is the flat interface up to the critical point.
The curves marked ‘‘H1’’ and ‘‘H2’’ correspond to hexagonal nodes and
cells, respectively. The curves marked ‘‘M1’’ and ‘‘M2’’ correspond to two
distinct mixed-mode solutions. The diagram is presented without scales be-
cause its qualitative features are representative for a wide range ofR val-
ues.

TABLE II. The steady solutions of the three-mode amplitude equations and the eigenvalues of the linearized
system. The table is forK.1. ForK,1 the hexagonal nodes and cells are reversed.

Description Solutions Eigenvalues

Planar rA5rB5rC50 m̂,m̂,m̂

2D cells rA5Am̂/g1,rB5rC50 22m̂,
rB5Am̂/g1,rA5rC50 m̂(12g2 /g1)6g0Am̂/g1

rC5Am̂/g1,rA5rB50

Hexagonal
nodes rA5rB5rC56

g01Ag0
214m̂(g112g2)

2(g112g2)
m̂7g0rA23rA

2g12rA
2g2 ,

m̂7g0rA23rA
2g12rA

2g2 ,

m̂62g0rA23rA
2g124rA

2g2

Hexagonal
cells rA5rB5rC56

g02Ag0
214m̂(g112g2)

2(g112g2)
m̂6g0rA23rA

2g12rA
2g2 ,

m̂6g0rA23rA
2g12rA

2g2 ,
m̂72g0rA23rA

2g124rA
2g2

Mixed modes rA56g0 /(g12g2), see the text

rB5rC5Am̂(g12g2)
22g1g0

2

(g12g2)
2(g11g2)

rB56g0 /(g12g2),

rA5rC5Am̂(g12g2)
22g1g0

2

(g12g2)
2(g11g2)

rC56g0 /(g12g2),

rB5rA5Am̂(g12g2)
22g1g0

2

(g12g2)
2(g11g2)
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gate the stabilization indicated by the linear theory.
In light of the nonlinear results presented here, it appears

that effective stabilization of the two-dimensional system us-
ing the CSL will require careful control of both the ampli-
tude and frequency of the flow. In Figure 11 we present a
conjectured version of the stability diagram when the system
is optimally stabilized by a CSL. The linear-theory neutral
curves are known exactly, but we have assumed, based on
our long-wave results, that a strongly stabilizing flow will
move the transition from sub- to supercritical bifurcations
around the nose of the curve and toward the absolute stabil-
ity limit. In the subcritical regions, we have assumed that the
critical value of the concentration is lowered, but by a lim-
ited amount—due either to the presence of a turning point in
the bifurcation diagram or to the finite amplitude of noise in
the system. In particular, we assume that the subcritical in-
stability will become negligible as one approaches the tran-
sition point.

For the three-dimensional system we examined bifurca-
tions to steady roll, square and hexagonal solutions. When
the motion of the crystal is in a noncircular elliptical pattern,
rolls are the only primary bifurcation in the weakly nonlinear
limit though others may occur as secondary states.

When the motion of the crystal is in a circular pattern,
the system is isotropic in the plane of the interface, and su-
perposition states involving more than one set of obliquely
positioned rolls are possible. This flow may be useful for
selecting a preferred pattern among these states, allowing a
crystal grower more control over crystal microstructure.

We examined the competition between roll and square
solutions, and found that increasing the flow amplitude tends
to reduce, and eventually eliminate, the range of segregation
coefficients for which stable square solutions are possible.
Increasing the flow amplitude favors subcritical instabilities
for both squares and rolls. Unlike the no-flow case, unstable,

supercritically bifurcating square solutions are possible for a
small range ofR values.

Next we examined the competition between roll and
hexagonal solutions. For values ofk away from unity, un-
stable hexagons bifurcate transcritically and are the only bi-
furcating solution in the weakly nonlinear limit. Whenk is
sufficiently close to unity, the cubic and quadratic nonlineari-
ties in the evolution equation are balanced, and a compli-
cated bifurcation structure emerges. As with the square and
roll solutions, bifurcations to rolls are supercritical whenR
is sufficiently small, but switch to subcritical asR is in-
creased. Hexagons bifurcate transcritically, but with very
shallow subcritical turning points for smallR. WhenR is
increased, the bifurcation for the hexagons changes direction,
and they become essentially subcritical. So, in general, in-
creasing the flow amplitude favors subcritical instability for
all types of solutions examined.

In general, we found that the flow has little impact on the
system when the frequency and Schmidt number are in the
destabilizing range. Clearly, this is an effect of the weak-
flow limit, as microstructure will be significantly altered by a
stronger version of this flow any time the interface remains
unstable in its presence. The steady rolls, squares and hexa-
gons indicated by the analysis of this chapter are leading-
order approximations for the interface shape in a specific
limit. Higher-order corrections to the evolution equation
would indicate time-periodic variations of these patterns as
one moves vertically through the crystal, and a large ampli-
tude flow would likely render the patterns unrecognizable.

When the flow parameters are in the stabilizing range,
we found that the bifurcation structure for all types of solu-
tions ~rolls, squares, hexagons and mixed modes! changes
only in scale until a critical value ofR is surpassed. Beyond
these transition points, which are distinct for each solution
type, bifurcations switch from super- to subcritical. In gen-
eral, lowering the frequencyV lowers these transitions, and
increasing the frequency raises them.
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APPENDIX: DETAILS OF DERIVATION OF EVOLUTION
EQUATION

The nonzero solutions for the lower-order terms appear-
ing in the expansions~20! are given below. The solution for
u2 requires a boundary layer solution so that it may satisfy
the far-field conditions. The boundary layer equations are
rescaled using an outer vertical coordinateh5e2z. The re-
sulting boundary layer solution, indicated below with an
‘‘o’’ superscript, gives rise to the nonlocal behavior of the
flow-term in the evolution equation. Other solutions are di-
vided into portions which are steady with respect to the fast
time scale and portions which are periodic in the fast time
scale with the same period as the external forcing. In these

FIG. 11. Conjectured stability diagram for the strongly stabilized system.
The curves are given in dimensional form—V versusC` with a fixed tem-
perature gradientG. The~solid! neutral curves are based on linear theory for
the no-flow2 ~outer! and strongly stabilized5 ~inner! cases. The dashed
curves extending from the neutral curves are assumed to give a qualitative
description of the manner in which subcritical instabilities lower the critical
value of the concentration. For a given case, the interface is assumed stable
~S! when the far-field concentration is to the left of both the solid and
dashed curves.
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cases we decompose each of the dependent variables into
these two types of terms; for examplef(X,Y,T,z,t) would
be given as

f~X,Y,T,z,t!5f̄~X,Y,T,z!1@f̃~X,Y,T,z!ei t1c.c.#,
~A1!

where the bar indicates the steady portion and the tilde indi-
cates the coefficient of theei t terms. Terms with periods
other than that of the external forcing have been omitted, for
they do not play a role in the analysis:

u05@r ~e2s0z21!ei t1c.c.#, ~A2a!

C0512e2z, ~A2b!

w25¹h0•u0, ~A2c!

u25¹a0•@r ~e
2s0z21!ei t1c.c.#5¹a0•u0 , ~A2d!

û2
o52

kk

uku
•~rei t1c.c.!e2ukuhĥ0 , ~A2e!

C452e2z¹2h0 /k1~Vh0T2¹2h02u¹h0u2!ze2z,
~A2f!

C55R@r ~b0e
2s2z1b1e

2z1b2e
2~s011!z1b3ze

2z!ei t

1c.c.#•¹2a0 , ~A2g!

h55R~r h̃5e
i t1c.c.!, ~A2h!

h̃55
1

s2212 iV F ~s02s211!b22b31~s221!

3S b3
~ iV!

1
i

s0V
D G , ~A2i!

ū55R@a1e
2 z/S1a2e

2s0z1a3e
2s0* z1a4e

2~s01s0* !z

1a5ze
2s0z1c.c.#ur•¹u2a0 , ~A2j!

where the caret indicates the Fourier transform of a quantity
~see below! and the notation ‘‘kk ’’ indicates a dyadic prod-
uct. The coefficients appearing in these equation are given by

r5
1

2
~ i1be2 igj !, ~A3!

s05
1

2S
@11~114iSV!1/2#, ~A4!

s25@11~114iV!1/2#/2, ~A5!

a05F 21F ikĥ0uku G , ~A6!

b052~b11b2!, ~A7!

b15h̃52
i

s0V
1
ib3
V

, ~A8!

b25
1

s0@s0
21s02 iV#

, ~A9!

b35
i

V
, ~A10!

a152~a21a31a41c.c.!/2, ~A11!

a25
s0 /s0*211a5~2Ss021!

s0
2S2s0

, ~A12!

a35
iVh̃5s0*21

Ss0*
22s0*

, ~A13!

a45
s0 /s0*21

s01s0*2S~s01s0* !2
, ~A14!

a55
1

12s0S
, ~A15!

wherer is given by equation~7! andF 21 indicates the in-
verse of the double Fourier transform in the slow scalesX
andY:

F @f~X,Y,T,t,h!#5f̂~k1 ,k2 ,T,t,h!

5
1

2pE2`

` E
2`

`

feik•XdXdY. ~A16!

Herek5(k1 ,k2) andX5(X,Y).
The coefficientf 0 in equation~23! is given by

f 05
a1

S2111
1

a2
s011

1
a3

s0*11
1

a4
s01s0*11

1
a5

~s011!2

1
b0s0*

s2~s21s0* !
1

b1s0*

s0*11
1

b2s0*

~s011!~s0*1s011!

1
b3~s0*

212s0* !

@s0*11#2
1c.c. ~A17!
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