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We present a numerical study of steady convection in a two-dimensional mushy layer
during the directional solidification of a binary mixture. The calculations reveal the
internal structure of strongly nonlinear states featuring upflow which has been focused
into solid-free regions known as chimneys. The mushy layer is modelled as a porous
medium whose permeability is a function of the local solid fraction. The mushy layer is
coupled to a chimney that is modelled as a narrow vertical channel where lubrication
scalings are used to simplify the Navier—Stokes equations. We use these methods to
exhibit solutions which give the detailed structure of the temperature, solute, flow
and solid-fraction fields within the mushy layer. A key finding of the numerics is
that there are two distinct chimney solutions at low Rayleigh numbers, presumably
corresponding to stable and unstable portions of a subcritical solution branch. We
also explore the relationship between convective solutions with and without chimneys.

1. Introduction

Interfacial instability during the solidification of binary mixtures (Mullins & Sek-
erka 1964) frequently leads to the formation of a layer of dendrites at the solid/liquid
interface. These ‘mushy’ layers are common in both industrial and geophysical set-
tings, and have been the focus of many recent investigations. General reviews of
mushy layers and the convective processes that take place within them are given by
Worster (1992a, 1997).

Our focus here is on steadily convecting solutions within the mushy layer once
the flow has been focused into discrete solid-free regions that puncture the mushy
layer at roughly periodic intervals. These defects in the mushy layer are known as
‘chimneys’, and they can occur when an alloy is cooled from below and rejects some
or all of the lighter component of the mixture, or when it is cooled from above
and rejects the heavier of the two components. The rise (or fall) of the rejected
material due to solutal buoyancy results in a decreased freezing temperature, which
may be sufficient to inhibit solidification locally. When this occurs, upflow (downflow)
is enhanced by the increased permeability, and becomes focused in narrow, solid-
free vertical channels. Experiments using aqueous solutions of ammonium chloride
(Copley et al. 1970; Tait & Jaupart 1992; Chen 1995) provide a convenient means
of viewing chimneys in the laboratory (figure 1). Chimneys have also been studied
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FIGURE 1. A photograph of mushy layer chimneys during an experiment with an ammonium-chloride
solution. In this system, pure ammonium-chloride crystals are formed when the solution is cooled
below its freezing temperature, leaving behind a diluted solution with a density lower than that of
the bulk fluid. In the present case, the mushy layer is growing away from a fixed cold base which is
at a temperature below the eutectic point, so that both the solid-mush and mush-liquid interfaces
are advancing at a decreasing rate. At the time the photograph was taken the distance between the
base of the tank and the eutectic front was approximately 3 cm. Notice that the chimney walls and
the mush-liquid interface are flat to a good first approximation.

in experiments using metallic alloys (Sarazin & Hellawell 1988; Hellawell, Sarazin
& Steube 1993), NaCl-water solutions (Wettlaufer, Worster & Huppert 1997) and
alcohol-water solutions (Worster 1997).

Interest in the chimney phenomenon stems from two sources. In industrial settings,
chimneys are responsible for the formation of ‘freckles’ in cast binary alloys. Freckles
result when the chimney solidifies, leaving behind narrow cylindrical regions within
the solid which have a composition and microstructure differing significantly from
the bulk of the material. Such non-uniformities are highly undesirable and much of
the research on mushy layers has been motivated by a desire to understand and
prevent the formation of freckles. A knowledge of the solute fluxes through chimneys
is also needed in order to determine the bulk composition of solidified materials.
In geophysical settings, chimneys are known to form within sea ice in polar oceans
(Eide & Martin 1975) and are believed to form within magma chambers (Tait &
Jaupart 1992) and the Earth’s inner core (Fearn, Loper & Roberts 1981). A better
understanding of the fluxes from chimneys will help to determine the driving force
for the abyssal circulation of the oceans and the geodynamo.

The theoretical investigation of convection in mushy layers has a history which goes
back nearly thirty years. A thermodynamically consistent model of a mushy layer
treated as an additional phase of matter was proposed by Hills, Loper & Roberts
(1983), who developed equations governing the evolution of the mass-averaged prop-
erties of the layer. Alternative derivations of similar equations governing the volume-
averaged properties have since been given by Fowler (1985) and Worster (1992a).
These equations have been subjected to linear stability analyses (Fowler 1985; Worster
1992b; Chen, Lu & Yang 1994) and, more recently, weakly nonlinear analyses (Am-
berg & Homsy 1993; Anderson & Worster 1995). In the linear and weakly nonlinear
analysis, there is no chimney per se — just a region of reduced solid fraction at the
upflowing centres of convection cells.
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Emms (1993) has performed numerical computations which follow the evolution
of the solid fraction in the mushy layer until it becomes negative, at which point
the model breaks down; the region of negative solid fraction needs to be replaced
by a pure liquid region. Emms’s computations are based on a model put forward
by Emms & Fowler (1994) which assumes a mushy layer of fixed permeability and
approximates the convection in the liquid region as a nearly uniform downflow.

The studies featuring fully developed chimneys fall into two groups. Roberts &
Loper (1983) were the first to consider flow through a fully developed chimney,
modelled as a cylindrical tube of uniform cross-section surrounded by an annular
mushy layer of fixed permeability. This study was built upon by Worster (1991), who
coupled the permeablility to the local solid fraction and deduced a scaling for the
thermal boundary layer surrounding the chimney. The approach of these authors
jumps past the development of the chimney by assuming a computational domain
with the same physical characteristics seen in the laboratory. No numerical solutions
for this model have been presented to date. All of the remaining mushy layer studies
that feature anything resembling a chimney (for example, Bennon & Incropera 1987;
Felicelli, Heinrich & Poirier 1991; Neilson & Incropera 1991, 1993) have been based
on the Darcy-Brinkman equation, which models both the liquid and mushy regions
by using a hybrid of the Navier—Stokes and Darcy equations. An advantage of this
approach is that it eliminates the need to track the location of the mush-liquid
interface. A disadvantage is that it normally requires one to resolve the mushy layer
on the same scale as the chimney. To date, all of the solutions using this method have
been poorly resolved.

The present study adopts the first of these two approaches. Motivated by ex-
perimental photographs, such as that shown in figure 1, we model the boundaries
of our convection cell as being flat. We present detailed numerical solutions for a
two-dimensional mushy layer punctured by chimneys at periodic intervals. While the
same physical mechanisms are responsible for the formation of chimneys in planar
and axisymmetric geometries, there are subtle differences in the way various quan-
tities scale, and care should be taken when comparing our study with axisymmetric
studies. In practice, most experimentally observed chimneys are approximately ax-
isymmetric, but there have been some experiments on chimneys formed in Hele-Shaw
cells (Chen 1995; Solomon & Hartley 1998) which come close to approximating the
two-dimensional geometry considered here.

We present the governing equations and boundary conditions in §2. In §3, we outline
the boundary-layer structure which emerges for large Rayleigh numbers, using the
scaling analysis to motivate some of the boundary conditions used in the subsequent
numerical analysis. The numerical procedures are briefly described in §4. In §5, we use
these methods to exhibit solutions which give the detailed structure of the temperature,
solute, flow and solid-fraction fields within the mushy layer. This simple model also
provides insight into a possible distinction between strongly nonlinear convective
solutions with and without chimneys. Our calculations in §6 are aimed at accounting
for the portion of the mush-liquid boundary where it rises sharply to meet the cold
fluid emerging from the chimney. We summarize our results in §7.

2. Formulation

Consider the physical domain consisting of a horizontal mushy layer sandwiched
between semi-infinite liquid and solid layers. A steady state with this geometry can
be established by forcing liquid at constant speed through a temperature gradient
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that is fixed in the laboratory frame of reference. In practice the liquid must be
confined in some way — in a Hele-Shaw cell, for example. The processing of material
in this manner is commonly referred to as directional solidification. Note, however,
that this directional solidification at constant speed differs from the case where
material is solidified by cooling from a fixed boundary. While the latter case is more
representative of geophysical applications and has been the focus of the previous
numerical studies, it is less desirable for theoretical purposes because the solid-liquid
and mush-liquid interfaces slow down as time advances, and the system is always in
a transient state. Both cases are common in industrial applications.

We seek steady solutions for a half-cell of a periodically extended system. To this
end, the mushy layer is further divided into two domains, corresponding to zero-
solid-fraction chimneys and finite-solid-fraction mushy regions. The two domains
are separated by a boundary (the chimney wall) where the the solid fraction is
approximately zero. In principle, one can formulate a free boundary problem where the
chimney wall is, for example, the locus of points where the solid fraction approaches
zero continuously. This is a very challenging problem which remains to be solved. In
practice, chimneys have nearly vertical sidewalls and appear to extend to the bottom
of the mushy layer (see figure 1). Hence, we shall constrain the chimney wall to be
flat and vertical but allow its width to adjust dynamically to the flow by requiring
the solid fraction to be zero at mid-height on the chimney wall. We demonstrate that
this leads to solutions where the solid fraction is close to zero along the entire wall
when the mass flux through the chimney becomes large.

With the aim of keeping our model as simple as possible, we ignore thermal
buoyancy and solutal diffusion, which are normally small effects. We also assume
that the mush-liquid interface advances slowly, so that the mushy layer remains in
local thermodynamic equilibrium, and take the solid and liquid to have the same
densisty, so that phase-change convection is ignored. Finally, we assume that all
of the lighter component of the mixture is rejected upon solidification and that
the liquidus relationship is linear, conditions which are approximately true in many
systems, including ammonium-chloride—water.

Using this idealized model, one can scale the temperature and concentration so
that, within the mushy region, they are equal to one another:

0= [T — Ti(Cy)] /AT = (C — Cy)/AC. (2.1)

Here AT = I'AC = T (Cy) — Tk is the difference between the liquidus temperature
at the far-field concentration and the eutectic temperature, AC = Cy — Cg is the
difference between the far-field concentration and the eutectic concentration and I’
is the slope of the liquidus.

Following the formulation of Worster (1991), we treat the mushy region as a porous
medium, in which the flow is governed by Darcy’s equation with variable permeability
II:

u = —Rall <Vp + 012) . (2.2)

We have non-dimensionalized this equation by scaling the Darcy velocity (volume flux
of fluid per unit area) # with the vertical pulling speed (solidification rate) V, distance
with the thermal diffusion length scale x/V, permeability with a characteristic value
I1y and pressure with SACpogk/V, where f§ is the solutal expansion coefficient, g is
the acceleration due to gravity and p, is a reference density.
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An important feature of mushy layer dynamics is that the permeability varies with
the solid fraction. Despite this, many studies have either assumed a fixed permeability
or avoided the issue by choosing scalings that make this effect weak. Here, we assume
that the permeability I1 depends on the local solid fraction ¢ as

I =(1—¢)> (2.3)

Amberg & Homsy (1993) explore the influence of varying the exponent in this power
law within their asymptotic model. Note that, with this law, the permeability drops
to zero as the solid fraction approaches unity, but remains finite as the solid fraction
approaches zero.

The governing equations in the bulk of the mushy region are given by conservation
of heat and solute, along with (2.2), which we recast in terms of a streamfunction y:

V0 +0.=u-V0+So., (2.4a)
0. +%6p. =u-V0 +($0)., (2.4b)
V3p = —Rall 0, + (VII - Vy)/I1. (2.4¢)

Here the stream function is defined by u = Vx(w}'), where } is a unit vector orthogonal
to the plane of the two-dimensional mushy layer and oriented out of the plane of
our x, z coordinate system. The non-dimensional variables in these equations are the
Stefan number S, a concentration ratio ¢ and the solutal porous-medium Rayleigh
number Ra:

S = i, ¢=5= CO, Ra = M, (2.5a-¢)
cAT AC vV
where Z is the latent heat of fusion, ¢ is the specific heat, Cg is the concentration of
the solid forming the dendrites and v is the kinematic viscosity.
Within the chimney and the liquid region above the mushy layer, the solid fraction
is zero and the temperature and concentration are unconstrained by the liquidus
relationship. The non-dimensional governing equations are conservation of heat,

solute and mass, along with the Navier—Stokes equations:

VT +T.=u-VT, (2.6a)
C.=u-VC, (2.6b)
Veu=0, (2.6¢)
Vu = (1/Pr)(u-Vu — u.) + (Ra/Da)(Ck + Vp), (2.6d)
where the new non-dimensional parameters are the Prandtl and Darcy numbers:
II 2
Pr= X, Da = Ol/ . (2.7a,b)
K K

The Darcy number is the ratio of the permeability scale to the thermal-diffusion
length scale, and must be small for the porous-medium assumption to hold.
Avoiding the solution of equations (2.6) in the liquid region above the mushy layer
is one of the principal simplifications sought in this study. In order to accomplish
this, one must make assumptions about the values of the pressure, temperature and
temperature gradient along the top of the mushy layer. Following the example of
previous authors (see, for example, Fowler 1985; Amberg & Homsy 1993 or Emms
& Fowler 1994), we assume that the top of the mushy layer has both constant
temperature and constant dynamic pressure. The latter can be derived formally in the
limit of small Darcy number (Emms & Fowler 1994). More difficult is the condition
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on the temperature gradient, which, in principle, can be used to determine the shape
of the mush—liquid boundary. This boundary condition is discussed in some detail in
the following section, where we ultimately decide to determine the location of the top
of the mushy layer in an approximate manner by considering a heat balance across
the interface at the centre point which divides two chimney catchment regions.

A complete set of boundary conditions for equations (2.4a—c) is given by constant
temperature and continuity of mass flux at the lower boundary; constant temperature,
constant pressure and zero solid fraction at the top; continuity of pressure and
continuity of heat flux at the chimney wall; and symmetry conditions at the centreline
dividing two chimney catchment regions:

0=—-1, p=0 at z=0, (2.8a)
0=¢=p=0 at z=h, (2.8b)
plt=n-VO|'=0 at x=aq, (2.8¢)
0,=yv=0 at x=1L, (2.84d)

where jump conditions are indicated with the m (mushy region) and ¢ (chimney region)
super/subscripts, L is half the non-dimensional chimney spacing, a is the half-width of
the chimney, h is the height of the layer and 7 is a unit vector normal to the interface.
The two elliptic equations (2.4a, c¢) require information on each of the boundaries for
both the flow and thermal fields. Equation (2.4b) requires information on the solid
fraction to be supplied along the top boundary; this information is then propogated
downward by the vertical motion of the crystal. These nine boundary conditions are
sufficient to close the system, provided we know the location of the free boundaries.
For the purposes of the numerical portion of this study, these boundaries will be
determined in an approximate manner, using the conditions alluded to previously.

The boundary conditions in the chimney region consist of continuity of temperature,
pressure and mass flux at the top of the chimney; constant temperature, constant
concentration, continuity of mass flux and the no-slip condition at the base of
the chimney; symmetry conditions at the centre of the chimney; and continuity of
temperature, concentration and mass flux, along with the no-slip condition at the
chimney wall:

T=C=—-1, p=y9,=0 at z=0, (2.9a)
P=p=T,=0 at x=0, (2.9b)
T"=C"=y|"=ut=0 at x=a, (2.9¢)

where 7 is a unit vector tangent to the interface. Boundary conditions at the top of the
chimney are not used in our analysis, owing to the use of a lubrication approximation
in this region.

3. Scaling analysis

The scaling analysis put forward in this section serves two purposes. Firstly,
it provides a framework within which the subsequent numerical analysis can be
interpreted by revealing the dominant mechanisms which govern distinct regions of
the mushy layer. Secondly, it suggests approximate boundary conditions that can be
used to simplify the numerical analysis and it reveals the significance of the errors
made in applying these approximations. We emphasize, however, that the numerics
in the remainder of this paper rely only on the lubrication approximation within the
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chimney and are not dependent on the more specific distinguished limit considered
here. As is often the case, the asymptotic and numerical approaches complement one
another — the former offering insight into the large-Rayleigh-number behaviour of
the system while the latter is better suited to O(1)-Rayleigh-number computations.

Given the large number of parameters in the system, there are several distinguished
limits which one might consider. Our efforts here are guided by the ammonium-
chloride-water system, a key attribute of that system being its relatively low solid
fraction. We choose a distinguished limit which preserves this feature as the Rayleigh
number becomes large:

Ra~% > 1. (3.1)

In this limit one finds that the mass flux through the mushy layer grows with
the Rayleigh number. Alternative scalings that have an O(1) mass flux and an
asymptotically vanishing permeability for large Rayleigh numbers can also be found.
The Darcy number must be small for the porous-medium assumption to hold; further,
we shall assume

Ra*°Da'? < 1, (3.2)

so that the thermal field within the chimney is horizontally uniform to leading order
(see (3.8) below). Assuming a Darcy number of O(107°) and a Rayleigh number of
0(10), the quantity on the left of (3.2) is about 6 x 102, We assume the remaining
parameters to be O(1).

The regime we consider is similar to the large-Rayleigh-number limit in Bénard
convection (Turcotte 1967; Roberts 1979; Emms & Fowler 1994) in that there is a
large, inertially dominated central core in the liquid region which is isothermal and,
in the present case, has a uniform concentration as well (see figure 2). In the case
of Bénard convection between two parallel boundaries, diffusive boundary layers are
formed at the upper and lower boundaries and along the regions joining convection
cells. In the present case the upper boundary is taken to be at infinity, with the result
that temperature and concentration in the core region take on the far-field values.
The lower boundary layer includes the mushy layer itself, which indicates that the
height of the mushy layer shrinks with increasing Rayleigh number, provided the
far-field temperature remains fixed. Note that this new understanding corrects the
tacit assumption in the scaling analysis of Worster (1991) that the vertical scale of
the mushy layer is independent of the Rayleigh number. A consequence of this is
the conclusion that there is no region of the mushy layer in which the isotherms are
horizontal to leading order at large Rayleigh number.

Looking to the mushy layer, the considerations just mentioned imply that the
dominant balance in equation (2.4a) is between vertical diffusion and advection. In
equation (2.4b) we consider the distinguished limit where the advective terms are
balanced by the source term for solute released upon solidification, and in equation
(2.4c) we maintain the balance between the viscosity and buoyancy:

0,, ~u-vo, (3.3a)
Ep, ~u-Vo, (3.3b)
P,, ~—Rall 0, + Iy, /II. (3.3¢)

These balances imply the scalings

p~Ra”, h~Ra'? ¢~RadPe™, 0~1. (3.4a—d)
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FIGURE 2. A diagram of the boundary layer structure in the mush—chimney system for the limit
Ra > 1, Da < 1 and ¥ ~ Ra. In this limit the mass flux is large and the solid fraction is small. The
chimney and thermal boundary layer scale like Da'/?/Ra*° and Ra—?/3, respectively. The height of
the mushy layer, and the thickness of the boundary layer in the liquid above the mushy layer both
scale like Ra~!/3.

Equations (3.3a—c) apply throughout most of the mushy layer, but a separate
scaling must be found to allow for horizontal diffusion in a small region near the
chimney. We refer to this region as the thermal boundary layer (see figure 2), and it is
analogous to the thermal boundary layer suggested by the scaling analysis of Worster
(1991). Physically it represents the effect of heat being drawn out of the mushy region
as a result of cold fluid from the bottom of the layer moving up the chimney. The
dominant balances within the boundary layer are given by

Hxx ~u: VH, (350)
G ~ u-V0, (3.5h)
Py ~ —Rall 0, + wa,\‘/Ha (3.5¢)

where we have assumed that the stream function and the height of the mushy layer
scale the same as in the outer region, implying that the bulk of the streamlines
pass through both regions. From the balances in equations (3.5), the boundary layer
thickness is found to be O(Ra—?/3). Comparing equations (3.3b) and (3.5b) we see
that ¢ ~ Ra/% ~ 1 in the thermal boundary layer. In the ammonium-chloride-water
system, the concentration ratio is fairly large (¥ ~ 20), and it is this fact that is
responsible for the relatively low solid fraction in that system. So the combined
limits of large concentration ratio and large Rayleigh number are consistent with our
assumption of a highly permeable, high-mass-flux mushy layer.

Experimental observation reveals that chimneys are quite slender in practice, with
a height that is many times their nearly uniform width. Taking advantage of this
narrow geometry, the non-dimensional half-width of the chimney a is assumed to be
small. Combining this assumption with the large-Rayleigh-number and small-Darcy-
number assumptions, we consider the limit where the leading-order behaviour of the
chimney is governed by

T ~ O, (3.6a)
u-vC ~ 0, (3.6b)

Ra
Pxxx ~ F(pz + C), (360)
a
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px ~ 0. (3.6d)

Here, the stream function, temperature and height of the chimney are scaled as in
(3.4a—d). We also have

Da1/3
a~ W, p~ Ra_1/3.

Thus, to leading order, the chimney has a diffusion-dominated thermal field, an
advection-dominated concentration field and a flow field governed by lubrication
theory. Unlike equations (3.3) and (3.5), equations (3.6) apply equally well for moderate
as well as large Rayleigh numbers, owing to the narrow aspect ratio of the chimney
and the smallness of the Darcy number.

Notice that equation (3.6a) implies that, to leading order, the temperature in the
chimney is a function of z determined by the temperature at the chimney wall. This
does not allow for the conduction of heat across the chimney wall, which is an
important effect in the real system. As cold fluid rises up the chimney, it draws heat
from out of the mushy region, resulting in an increased solid fraction in the area
surrounding the chimney. This effect can be captured by including the leading-order
correction to (3.6a), which accounts for the vertical advection of heat in the chimney:

(3.7a,b)

Ty« = Da'*Ra*°y, T., (3.8)

where Da'/*Ra*? < 1.
Integrating this equation and converting to coordinates scaled for the mushy region
leads to an explicit boundary condition for the heat flux through the chimney wall:

T, =yT, at x=a. (3.9)

This condition makes use of and replaces the jump condition requiring temperature
gradients to match across the chimney wall, decoupling the thermal field in the mushy
layer from that in the chimney at leading order.

We can gain some qualitative information on the actual shape of the chimney wall
by applying the condition ¢ = 0 along the entire boundary. This is equivalent to

¢, + pa. =0 at x=a(z), (3.10)
which may be combined with the solute conservation equation (2.4b) to give
u-vo—20
a,=——32 (3.11)

At the base of the mush—chimney boundary we have w = 6, = 0 and 6§ = —1, so that
this reduces to

— 92
XTE)

It is evident that 0 increases away from the solid boundary and that ¢ increases
as one moves into the mushy layer. We can therefore deduce that a, > 0 at x =
z = 0, indicating that chimneys narrow towards the bottom. By maintaining a flat
vertical boundary in spite of this conclusion, we will find that there is a significant
region of positive solid fraction near the base of our chimneys. The conclusion that
chimneys narrow toward the bottom appears to apply specifically to the case where
the solidification is taking place at constant speed. In contrast, experiments where the

a, (3.12)
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dendrites are growing from a fixed cold boundary exhibit chimneys that flare out at
the bottom.T

Moving to the top boundary, we find that the concentration is uniform throughout
the liquid layer wherever the flow is downward, owing to the lack of solutal diffusion.
Combining this information with the assumption that the temperature and concen-
tration are coupled through the liquidus relationship gives us the condition that the
top of the mushy layer is an isotherm:

T=C=0=0 at z=h (3.13)

We note that the same boundary-layer thickness applies on the liquid side of the
interface (see figure 2), so that the dominant balance is again given by equation
(3.3a). Within this boundary layer, the continuity equation implies that the horizontal
velocity is zero to leading order and the vertical component is a function of only the
lateral coordinate. This allows equation (3.3a) to be integrated across the depth of the
boundary layer, producing a relationship between the far-field temperature (which
applies throughout the core of the liquid region) and the temperature gradient at the
interface:

0,=0,1—vy,) at z=h, (3.14)
where the non-dimensional temperature at infinity is defined by
O = (T — T1(Co))/AT. (3.15)

This condition, proposed by Fowler (1985), retains the effect of the vertical pulling
speed which should be a small effect at large Rayleigh numbers, making it better
suited to our calculations which are at moderate Rayleigh numbers. The condition
breaks down near the chimney exit, owing to significant horizontal diffusion of heat.
Unfortunately, there is no simple way of solving the equations within this region in
order to relate the temperature gradient to the far-field temperature. We shall estimate
the height of our flat-topped mushy layer model by applying (3.14) at the point where
two chimney catchment regions meet the mush-liquid interface (i.e. x = L, z = h).
Symmetry arguments suggest that the condition will be most accurate at this point.

4. Computational procedures

When we examine equations (3.3a—c) and (3.5a—) we find that there is no essential
simplification over the full governing equations (2.4a—c), and we choose to work with
the latter in formulating a numerical approximation to the system. The asymptotic ap-
proximations in the chimney (equations (3.6a—e)), however, are significantly simplified
versions of equations (2.6a—d), and we take full advantage of these approximations.

4.1. Mushy region computations

The equations in the mushy region (2.4) are solved iteratively using either direct
inversion with a sparse solver or successive over relaxation (SOR) on the elliptic
equations (2.4a and 2.4c) and a numerical integration of (2.4b) using the trapezoidal
rule.

1 D. E. Loper (private communication) has recently deduced that the chimneys formed in the
case of continuous solidification at constant speed must pinch off just before reaching the bottom of
the mushy layer. The essence of his argument hinges on the fact that material must be flowing into
the solid at the fixed pulling speed. This downward flowing material is getting colder, but material
which is flowing up into the chimney must be getting warmer if it is to rise above the liquidus.
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With the understanding that the differential operators in the following equations
are second-order-accurate central difference operators, the symbolic representation of
the first half of the iteration for the direct inversion algorithm is

V20" 49 = 4=V .yl 4 g pln=/2), (4.1a)
V2w(n) — _Ran(nfl/Z)gi‘nfl) + (VH(nfl/Z) . le(nfl))/n(nfl/Z)’ (41b)

where the superscripts indicate the value of a quantity at the nth iteration. At the end
of each half iteration the values of § and y on the boundary are updated, and the
value of the solid fraction on the entire domain is determined by the direct integration
of

95711) + (g¢gn+l/2) _ (9(11)¢(n+1/2))z — u(n) . VH(")dz. (42)

For a fixed set of parameter values, one can trade the dependence on 6, for
dependence on the (assumed) constant height k. In this case, one need only invert the
elliptic operators in (4.2) once during the entire iterative procedure, and the direct
inversion method is much faster than the SOR algorithm, typically requiring between
100 and 1000 iterations and converging in less than a minute on an HP 715/50
workstation.

The same calculation using the SOR method typically requires ten times the number
of iterations, with each iteration taking about the same amount of time. However, if
one is going to do several calculations changing one or more parameters each time,
one will want to keep 6., fixed, allowing h to evolve iteratively to its equilibrium
value. Using the direct inversion method requires reinverting the elliptic operators in
(4.2) for each iteration, which slows the procedure down considerable, especially for
small mesh sizes. In such cases it proves more efficient to use the SOR technique.
When using SOR, the integration for the solid fraction is the same as in (4.2) and
the elliptic equations are solved using the standard SOR algorithm (Press et al. 1992),
with the nonlinear terms evaluated using data from the previous iteration.

4.2. Chimney computations

The asymptotic approximations introduced in §3 for the equations in the chimney
region are valid for moderate as well as large values of the Rayleigh number,
provided the Darcy number is sufficiently small. In practice, the Darcy number is
roughly proportional to the square of the dendrite spacing, and is typically 1073 or
smaller.

The equations (3.6a—d) are dealt with in two ways. In one approach, they are
solved by transforming them to a set of coupled ODEs and applying a fourth-order
Runge-Kutta method, with shooting, to solve the resulting boundary value problem.
In a second approach a quadratic Polhausen-type approximation is made for the
concentration field, which then allows one to integrate the momentum equation
exactly. We describe the shooting method first.

Examining equations (3.6b) one sees that the gradient of the concentration field is
normal to the flow field, indicating that streamlines are also isopycnals. This suggests
the use of streamline coordinates in the chimney. Replacing the (X,Z) coordinate
system with a (¥, Z) system, equations (3.6b—d) reduce to

W(W W)y =Ps(Z)+C(¥) for 0S¥ <V, (4.3a)
We =0 at ¥ =0, (4.3b)
W=0 at ¥=1,, (4.3¢)

where ¥, (Z) is the value of ¥ at the chimney wall and Z appears only as a parameter,
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so that the pressure is determined from its value at the chimney wall. We have used
capital letters to emphasize that these are the scaled equations, and that boundary
data must be rescaled when matching to data in the mushy region.

A third boundary condition, which determines the location of the free boundary
can be found by inverting the coordinate transformation:

Xy =—1/W for 0S¥ <Y, (4.4a)
X=4 at Y=Y, (4.4b)

Equation (4.4a) must be integrated in order to find the value of ¥, (Z). The near-
vertical chimney wall, combined with the no-slip condition, implies that W will be
zero at ¥ = ¥, creating a singular condition in equation (4.3a). To remedy this, we
find the leading-order asymptotic solution in terms of AY =¥ — V:

W ~ co(Z)AP'?, (4.5)

where co(Z) is used as the shooting parameter. After choosing a value for ¢, (4.5) is
applied at a fitting point close to the singularity, and the result is used to initialize a
fourth-order Runge—Kutta routine which is then used to integrate (4.3a) to ¥ = 0. An
improved guess for ¢y is made, and the procedure is repeated until (4.3b) is satisfied.
When one has found the appropriate values of cy(Z) all along the chimney wall,
equation (4.4) is integrated backward from ¥ = 0 until X = A, which determines the
new value of ¥,. This entire procedure is coupled to the numerical scheme in the
mushy region (§4.1) and is iterated until a steady state is reached.

Finally, we use a root-finding procedure in order to determine the approximate
chimney width A4 that will result in the solid fraction being zero at mid-height on the
chimney wall.

4.3. Reduced chimney model

The procedure outlined in the previous section is still numerically time-consuming.
In order to reduce computation time further, so that a detailed exploration of the
parameter space can be undertaken, we opt for a simpler process based on a Polhausen
approximation similar to that used by Roberts & Loper (1983) and Worster (1991).
The value of the streamfunction given by this method was compared to that given by
the method described in the previous section, and it was found that the two methods
agreed to within 10% or better along the entire chimney wall, with the greatest error
occurring at the top of the chimney.

In the simplified model, we assume that the concentration profile in the chimney
is given by a quadratic function in X with Z-dependent coefficients, which are
determined by the value of C at the chimney wall along with the fact that the
concentration is constant along streamlines:

C(4)=C,, C(0)=—1, Cyx(4)=0. (4.6a-c)

Here we have assumed that streamlines enter the chimney orthogonally to the nearly
vertical chimney wall as a result of the no-slip condition on the liquid side of the
interface. We also assume that the streamline flowing up the centre of the chimney
carries material very close to the eutectic concentration. These conditions give the
following approximation for C within the chimney:

(Z 1 w(Z 1
ClZ)+1,  CuZ)+

=—1+2
C + 1 VB

X2 (4.7)
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With the approximation (4.7) in hand, the momentum equation can be integrated
exactly to give

_PZ)-1 (X, 1+C, (X* 1+C, (X5
”’—2(3 ) ) e )
(4.8)

Finally, (4.8) can be evaluated at the chimney wall and combined with (2.9) to give
a new boundary condition on the mushy region:

_ Ra Yx 3 _
w=pod <3RaH+20(9+1)) at x=a. (4.9)

Here we have used Darcy’s equation (2.2) to eliminate the pressure term. Note that
we have written this equation in terms of unscaled coordinates. In presenting our

results, we find it useful to define the quantity .o/ = (Ra/ Da)l/ * 4 as a measure of the
strength of the flow through a chimney. The boundary condition (4.9) can be applied
directly to the mush, and removes the need for further consideration of the chimney
region.

5. Discussion of computational results

In figure 3(a—c) we plot the scaled chimney width ./, the mushy layer height h and
the volume flux circulating through the top of the mushy layer as functions of the
Rayleigh number for the case ¥ = 10, S = 1, 6, = 0.1, Da = 0.001 and L = 1.0.
These curves can be interpreted as portions of a bifurcation diagram. Our numerical
results extend beyond the data shown in these graphs, but we choose not to present
the data where the flow amplitude is small since our model with the flat chimney
walls is aimed only at fully developed chimneys. We can, of course, be confident that
there is a purely conductive state having no chimney (a = 0). In fact, comparing with
the linear theory results of Worster (1991) reveals that our numerics reproduce the
correct linear critical Rayleigh number when interfacial perturbations are neglected,
but the inappropriateness of this model for the weak-convection regime is noticable
from the fact the curves shown in figure 3(a—c) intersect the linear-critical point at a
transcritical rather than pitchfork bifurcation (this asymmetry, noticeable only when
the flow is weak, is introduced in applying condition (3.14) at only a single point on
the top boundary). The linear critical point is shown in the figure for reference. Notice
that the volume flux increases with increasing chimney width (decreasing mushy layer
height) and that the bifurcation is subcritical. Below we speculate on the nature of
the relationship of the chimney solutions to convective solutions without fully formed
chimneys (like those corresponding to the linear and weakly nonlinear analysis).

One can gain a fairly general feel for how the curves in figure 3(a—c) deform as the
parameter values are changed by tracking the location of the turning point Ra,,. In
figure 4(a—d) we plot this information for a range of parameter values. The dotted
curve in figure 4(a) gives the volume flux into the layer as a function of Rayleigh
number for a fixed set of parameters, duplicating the plot in figure 3(c). Superimposed
on this plot are three curves indicating the path of the turning point when each of
the three parameters %, 6., and S is varied independently of the other two. In figure
4(b—d) we give a more quantitative description of the turning point location by
plotting Ra,,;, as a function of %, 6,, and S, with two of the three parameters fixed in
each case.
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FIGURE 3. A plot of (a) scaled chimney width, (b) mushy layer height and (¢) volume flux of fluid
through the mushy layer as a function of Rayleigh number for ¥ = 10, S = 1, 0., = 0.1, Da = 0.001
and L = 1.0. For given values of a and Ra, the solid fraction (at mid-height) on the chimney wall
is less than zero to the right of these curves. The details of the three points labelled A, B and C are
shown in figure 5(a—c).

5.1. Mushy layer structure

The details of the solutions at the three points marked on figure 3(a—c) can be found
in figure 5(a—c), where we plot streamlines in both the chimney and mushy regions,
along with contours for temperature and solid fraction in the mushy region. The
boundary condition requiring the pressure at the top of the mushy layer be constant
combined with Darcy’s equation (2.2) implies that the streamlines are vertical at the
top of the layer. The streamlines may, however, leave the mushy layer through the
chimney at oblique angles because the no-slip condition is applicable only on the
liquid side of the mush—chimney interface. As a result, there is a discontinuity in the
slope of the streamlines as they cross into the chimney.

The isotherms clearly show the existence of a thermal boundary layer that shrinks
with increasing Rayleigh number. The boundary layer results from increasingly large
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FIGURE 4. The dotted curve in (a) is a replot of figure 3(c), giving the volume flux into the layer as
a function of Rayleigh number for a fixed set of parameters. Superimposed on this plot are three
solid curves indicating the path of the turning point when each of the three parameters %, 0., and S
is varied independently of the other two. Thus, all three of the turning point paths pass through the
turning point of the dashed curve. The parameter ranges shown are 5 < ¢ < 50, 0.01 < 6, < 0.5
and 0 < § < 14. The curves (b—d) show Ra,,;, as a function of these variables in the given ranges.

amounts of cold fluid being swept up the chimney as the strength of the flow increases.
This has the secondary effect of increasing the solid fraction in the immediate
neighbourhood of the chimney. Indeed, the isotherms near the top of the mushy
layer have a shape which is reminiscent of the experimentally observed shape of the
mush-liquid interface (see figure 1), despite the fact that the flat-top approximation
is being used. The chimney itself is prevented from freezing because increasingly
large amounts of solute are also being swept up the chimney, which greatly decreases
the melting temperature of the liquid. This second effect is localized in the region
where the streamlines are upturned because the diffusion of solute has been ignored.
Thus, the effects of heat loss are felt further from the chimney boundary than those
of solute-induced changes in the melting temperature. The net result of these two
competing effects is a solid fraction that first increases very sharply near the chimney
boundary, then decays slowly across the mushy layer, reaching a minimum value at
the symmetry line dividing two chimney catchment regions.

Examining figure 5(a—c), one sees that the solid-fraction contours near the chimney
wall become increasingly vertical as the flow amplitude increases, indicating that
the flat-wall approximation works well in this limit. At low amplitudes, however,
we find that the approximation is poor, and it gives rise to anomalous behaviour
in the limit of the chimney width going to zero. An analysis of the details in the
vicinity of the pinch-off point would require different scalings than those presented
here; we anticipate that a more refined model will reveal that solutions in this poorly
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FIGURE 5. Streamlines in both the chimney and mushy regions, along with contours for temperature
and solid fraction in the mushy region for (a) Ra = 24, lower branch, (b) Ra = 24, upper branch
and (¢) Ra = 30, upper branch. In all three cases ¥ = 10, S =1, ,, = 0.1, Da = 0.001, L = 1.0 and
we have used the SOR method with a 30 by 30 mesh. The contour values for the right-hand-side
streamlines are p = 0.1 to v = 1.5 by 0.2 increments, starting from the outside. The temperature
contours (dashed lines) are shown on the left-hand side of the mushy region only, and their values
are 0 = —1.0 to 0 = 0 by 0.2 increments. Solid fraction contours (dashed curves on right-hand side
of mushy region) have values in the range ¢ = 0 to ¢ = 0.15 by 0.03 increments, starting from the
top. Note that not all of these contour values appear in every figure.
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FIGURE 6. The right-hand side of this figure shows the streamlines from figure 5(c) redrawn with a
streamfunction that is measured relative to a reference frame that moves with the interface. In this
frame of reference streamlines do correspond to particle paths, and the vertical velocity is equal
to the pulling speed at the lower boundary. For comparison, the streamlines as viewed from the
laboratory frame are shown on the left-hand side of the figure.

modelled region are composed of states featuring partially formed chimneys which
pinch off well before reaching the bottom of the mushy layer. The slope of the
contours near the base of the chimney wall supports the arguments put forward in
§3 that fully developed chimneys also become narrower and pinch off (D. E. Loper,
private communication) near the bottom of the mushy layer when solidification is
forced at constant speed.

In interpreting this figure it is important to remember that the velocity and stream-
function are measured in a frame of reference fixed with respect to the solid phase.
This is done in keeping with the traditional notation in the directional solidification
literature, but has the disadvantage that the fluid particles do not follow streamlines.
In figure 6 we have redrawn figure 5(c) with a streamfunction that is measured rela-
tive to a reference frame that moves with the interface. In this figure streamlines do
correspond to particle paths, and the vertical velocity is equal to the pulling speed at
the lower boundary. This latter reference frame makes it easy to see a qualitative dis-
tinction between convection with and without chimneys — chimneys do not form until
material escapes from the top of the mushy layer. Convection may still be present
when all of the material flowing into the mushy layer exits the mushy layer by becom-
ing frozen into the solid. In the purely conductive case, these streamlines are vertical.

5.2. Bifurcation structure

The presence of a subcritical solution branch may be understood in terms of physical
mechanisms with the aid of figure 3(a). When the Rayleigh number is small, the flow
can be shut down entirely by making the chimney sufficiently narrow. Thus, along the
lower branch of the curve, the existence of a solution with non-zero flux is dependent
on the increased permeability produced by widening the chimney. For a fixed value of
the Rayleigh number, one finds that increasing the width of the chimney (and, hence,
the strength of the flow) near the lower branch causes the solid fraction to drop as
more and more rejected solute is swept upward through the chimney wall, causing
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FIGURE 7. The dashed curve shows the location of the turning point as L is varied from 0.5 to 2.7
with the parameters %, 0., and S held fixed at the values used in the previous figures. The three solid
curves represent the solution as Ra is varied for L fixed at 1.0, 2.0 and 3.0. The figure demonstrates
that the point where the numerical method fails moves closer to the turning point as L is increased.

solid to melt. Thus, the solid fraction on the chimney wall crosses zero as the chimney
is widened in the vicinity of the lower branch. Further increases in the chimney width
eventually lead to a flattening of the streamlines entering the chimney. When this
happens, the rejected solute is swept into the chimney before turning upward, and
thus avoids melting solid near the chimney wall. After this point has been reached,
further increases in the chimney width result in an increased solid fraction near the
chimney wall as the cold liquid passing through the chimney draws heat from the
mushy region. This eventually leads to the solid fraction on the chimney wall returning
to zero, at which point there is a second, presumably stable, chimney branch. Only
the second mechanism continues to work at higher Rayleigh numbers, where strong
flows are present even in the absence of chimneys.

In figure 7 we consider the dependence of the system on the chimney spacing L.
The dotted curve shows the location of the turning point as L is varied from 0.5 to
2.7 with the parameters %, 6, and S held fixed at the values used in the previous
figures. The three solid curves represent the solution as Ra is varied for L fixed at
1.0, 2.0 and 3.0. As the width of the cell grows, one expects to reach a critical width
where there is enough buoyant fluid to sustain two cells. If this critical width could
be determined at the turning point for the solution curve, one would have the global
critical Rayleigh number, i.e. the Rayleigh number below which an arbitrarily large
periodic disturbance of any wavelength would decay. However, as seen in figure 7,
this point, if it exists, is at a flow amplitude which is beyond our ability to calculate
successfully, owing to a numerical instability within the thermal boundary layer.

In experiments, this global critical Rayleigh number is likely to correspond to
solutions of such large amplitude that they never occur, so that the chimney spacing
is determined instead by the level of noise in the system. For a fixed chimney strength
</, we find that increasing the chimney spacing does eventually lead to the formation
of a second convection cell. In the case under investigation here, this happens at a
value of L which is roughly the same order of magnitude (L ~ 3) as half the linear
critical wavelength, indicating that the preferred chimney spacing is considerable
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FIGURE 8. Drawing of a conjectured bifurcation diagrams showing flux versus Ra. The complete
solution curve corresponding to physically relevant equilibrium solutions includes the stable (solid)
and unstable (dashed) portions of the diagrams. The remaining (dotted) portions of the diagrams
correspond to non-physical solutions having either ¢ < 0 or ¢ < 0. In (a) the chimney curve
intersects the unstable portion of the non-chimney curve, while in (b) the intersection of the
chimney and non-chimney curves occurs on the stable portion of the non-chimney curve, indicating
that there is a hysteresis loop between solutions with and without chimneys.

smaller than the linear theory would predict. Our choice of L = 1.0 for most of the
calculations was motivated by experimental results which seem to indicate an O(1)
aspect ratio for the portion of a convection half-cell contained within the mushy layer
(see figure 1) and by the fact that we could achieve larger amplitude solutions without
encountering numerical difficulties. Obtaining a quantitative result for the preferred
chimney spacing will require extensive investigation beyond the present study.

Another point of significant interest is the transition from fully nonlinear convective
solutions which lack chimneys to solutions with chimneys. This transition occurs
when fluid starts to rise through the mushy layer and prevents solidification within
the chimney, necessitating a change in the type of boundary condition applied at
the point where a plume emerges from the top of the mushy layer (ie. T = 0 is no
longer appropriate.) In the model with the flat chimney wall, this transition is deemed
to occur when the solid fraction at mid-height on the chimney wall first becomes
negative. (Note that the development referred to here occurs as the Rayleigh number
is varied, as opposed to a temporal development.)

In figure 8(a, b) we draw conjectured bifurcation diagrams for two possible cases.
In both cases the volume flux of fluid into the layer from above is plotted as a
function of the Rayleigh number for solutions with (¢, = 0,a > 0) and without
(¢pw # 0,a = 0) chimneys. The area to the right of the chimney (¢ = 0) curve can
be understood to correspond to non-physical solutions with negative solid fraction
on the chimney wall, with the area to the left of the curve corresponding to non-
equilibrium solutions having positive solid fractions on the chimney wall. Similarly,
the a = 0 curve divides the flux-Rayleigh-number plane into a section with non-
physical solutions having negative chimney widths (right-hand side of curve) and a
section having positive chimney widths. In the first case (figure 8a) the transition
to chimneys occurs on the lower, presumably unstable, branch of the non-chimney
solutions and in the second case it occurs on the upper, presumable stable, branch.
As first noted in the weakly nonlinear analysis of Anderson & Worster (1995), there
is an important distinction between these cases: when the intersection occurs on the
lower branch of the non-chimney curve (figure 8a) there will be no stable convective
solutions that do not feature chimneys, while in the second case there may be a small
range of Rayleigh numbers where one can find stable convective solutions without
chimneys. Our numerical results suggest that both cases can occur.
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6. An improved approximation for the shape of mush-liquid interface

As noted previously, the flat-topped mushy layer does not occur in practice. Using
the condition that the top of the mushy layer is an isotherm and the boundary
condition (3.9) on the chimney wall, we can see that the slope of the mush-liquid
interface at the point where it meets the chimney wall should be

he = —T/T. = —p. (6.1)

Forcing a flat top onto the system, despite (6.1), leads to a discontinuity in the
thermal field. (The adverse effects of this can be seen in figure 5(c) if one looks
carefully at the isotherms near the top of the chimney.) This discontinuity is readily
repaired by constructing a boundary condition which is consistent with (3.14) in the
outer mushy region, but reduces to (6.1) in the corner of the mushy region near
the chimney opening. An appealing and simple choice for this condition is one that
converts (3.14) into an ODE with an appropriate boundary layer structure:

Shye — h = —hy, (6.2)

where hy is the height that would be determined by (3.14) alone. The solution of this
equation compatible with both end conditions is

. PO L—x
h(x) = hy + Sinh(L/3) <1 — cosh <5>> , (6.3)

where . is the value of the streamfunction in the corner near the chimney. The
appropriate boundary layer thickness in the large Rayleigh number limit discussed in
§3 is the thermal boundary layer thickness 6 ~ Ra=%/3.
This boundary condition is incorporated into the numerical analysis using the
domain fixing transformation:
{ = z/h(x). (6.4)
The resulting nonlinearities in the governing equations are dealt with by using data
from the previous iteration in our numerical scheme. Figure 9 shows the result of a
calculation using (6.3) for the same parameter values used in figure 5(b). Here, the
small volcano-shaped structure at the chimney exit may be seen explicitly, and there
is no discontinuity in the thermal field. Comparing with figure 1, we see that the top
of the mushy layer in this figure has a realistic shape.

7. Summary and conclusions

In this paper we have analysed convection in a mushy layer using a model that
treats the layer as a porous medium with a solid-fraction-dependent permeability.
Zero-solid-fraction chimney regions were analysed using lubrication theory, and,
subsequently, a Polhausen approximation. We began our analysis by identifying a
distinguished limit which reveals a complicated boundary layer structure for highly
permeable mushy layers at large Rayleigh numbers. The boundary-layer equations
outside the chimney region were found to offer no essential simplification over the
full governing equations. Hence, we adopted numerical techniques in the mushy
layer and coupled them to lubrication solutions in the chimney region. In order
to facilitate extensive numerical calculations within the mushy region, we used the
approximation that both the chimney wall and the top of the mushy layer were flat
but free to move in the direction normal to the coordinate axes. As a step toward
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FIGURE 9. A picture analogous to that in figure 5(b) but using the approximation (6.3)
for the top of the mushy layer.

a more accurate model, we explored the use of an ad hoc boundary condition that
links together in a consistent way local approximations for the top of the mushy
layer.

The numerical solutions reveal the thermal boundary layer predicted by the scaling
analysis, even at relatively moderate values of the Rayleigh number. The boundary
layer was seen to feature a solid fraction which first increases very rapidly from zero
near the chimney, and then decreases as one moves toward the outer region of the
mushy layer. Isotherms were seen to slope upward as one moves toward the chimney
within this boundary layer, while they were much flatter in the outer region. It is
encouraging that, even within the flat-top approximation, the shape of the isotherms
echoes the volcano-shaped structures that have been widely observed to form at
chimney openings (compare figure 1 and 5c).

A key finding of the numerics was that there are two distinct chimney solutions
at sufficiently low Rayleigh numbers, presumably corresponding to the stable and
unstable portions of a subcritical bifurcation. The unstable portion of this bifurcation
appears to connect with convective solutions with no chimney. The transition to
chimneys is the result of the qualitative change in the flow pattern when flow begins
re-emerging from the top of the mushy layer. It appears that this transition can occur
on either the stable or unstable portion of the non-chimney solution. In the former
case there can be a hysteresis between strongly nonlinear solutions with and without
chimneys.

This work was supported by a grant from the National Aeronautics and Space
Administration through the Program on Microgravity Science and Applications and
by the NSF-NATO postdoctoral fellowship program. The authors are grateful to
J. R. Lister for several helpful discussions, to D. M. Anderson and R. C. Kerr for
examining an earlier draft of this manuscript and to D. E. Loper for pointing out
that the chimney cannot extend to the bottom of the mushy layer for the case of
continuous solidification.
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