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When a fluid system is subject to time-periodic forcing, it is well known that it may exhibit both
harmonic and subharmonic instabilities, the classic example being Faraday oscillations. When the
forcing is confined to a periodic shearing motion, however, it has been observed that the
subharmonic response is absent. The underlying mathematical feature that unifies these systems is
a conjugate-translation symmet#. C. Or, J. Fluid Mech335, 213 (1997]. We show that any
subharmonic solutions of periodically driven systems with conjugate-translation symmetry must
have Floquet multipliers with multiplicity greater than one. The effect of this constraint is that
subharmonic solutions are very difficult to locate within the system’s parameter space and, more
importantly, that phase locking cannot occur for such systems19@9 American Institute of
Physics[S1070-663199)00412-3

The study of time-periodic forces on fluid systems com-modes, the resulting PDE’s have a conjugate-translation
prises a vast body of research. Two canonical examples iINCT) symmetry: ifu(z,t) is a solution of the system, so is
clude the Stokes layer and the Faraday instability, whicl{y« 7 {+a/2) wherea is the period of oscillation. Note that
represent two classes of problems where the fluid is forceghe gqvective term in the Navier—Stokes equati@rsin an

by either a tangei]r;tia_ll or normal motion of the boundary,qyection diffusion equatioris of precisely the right form
respectively. Davis gives a broad review covering time- o this type of symmetry to arise in that it is nonline@i-
periodic flows and Milesgives a review specific to the Far- lowing the basic state to provide the periodiignd first-

aday instability. _ _ order (so that it will have a pure imaginary Fourier trans-
A linear stability analysis of these systems leads directly ).

to differential equations with time-periodic coefficients. Such  thus it is most natural to consider this particul&)

equations, referred to as Floquet systems, give rise 10 thg mmetry in the context of a fluid or other continuous sys-
well-known phenomenon of parametric resonance, where thg,,, governed by such PDE’s. This observation is, however,
frequency of a solution’s oscillations can become locked aklosely related to a result due to Swift and Weiserfetdt
either the driving frequencgharmonic responger half that  gemonstrates the suppression of period doubling in more
frequency (subharmonic respongever distinctregions of eneral dynamical systems with real coefficients and symme-
parameter space. This parametric resonance is in contrast §9, ynder the operations of inversion and translationu(i
normal resonance which occurs at discrete parameter valugg. 5 solution of the system, soisu(t+a/2). More recently

The most widely studied equation of this type is Mathieu'sjicolaisen and Wern&ruse group theoretic arguments to

equation: identify additional symmetries leading to the suppression of
period doubling.
This paper explains the lack of subharmonic resonance

which appears in the analysis of numerous physical ebe showing that any subharmonic solutions of periodically
amples, including theFaraday instability (Benjamin and ~ driven systems with CT symmetry must have Floquet multi-
UrselP) where a container of liquid is oscillated in the ver- pliers with multiplicity greater than one. To do this, we first
tical direction. assume that the PDE’s that determine the eigenfunctions
A number of authors have noted a lack of a subharmoni¢!(z,t) are reduced to ODE’s via an expansion method that
response in certain periodically driven fluid systetdglly removes the remaining spatial dependence. This expansion
and Hu* Or and Kelly® Schulze and Davi8;0r’), the uni- may be exact or a numerical approximation. When this is
fying feature of these systems being a harmonically oscillatdone, one will be left with a system of ODE’s with CT
ing shear flow. Of further clarifies the issue by noting that symmetry:
subharmonics are suppressed when, upon linearization about
the basic flow and decomposition into time-periodic normal  u=[R+iP(t)]u, 2

u+(8+ecost)u=0, 1
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whereu is now a large(in principle infinite vector of un-
knowns,R is a real matrix and®(t) is real, time-periodic 15 - T T . - T

matrix with zero mean, least period and satisfies figta
P(t)=—P(t+ a/2). Again, a simple example is provided by L
the Mathieu Eq(1) if & is taken to be reak pure imaginary
and one converts the equation to a system of two first—orde05 I
equations. '

The main result in Floquet theory is that ODE’s with /\\
8 QO MWW B
A U

periodic coefficients have at least one solution of the form 0 p® ¢ ooca

u(t)=e""p(t),

wherep(t) is a periodic vector function witlileas} period

equal to that of the forcing and is a complex constant
known as thd-loquet exponenfThose solutions which are of
this form are called~loquet solutionsand possess the prop- . . . 1 . . . .

erty that T2 a5 4 05 0 05 1 15 2

u(t+a)=xu(t), ©)

05

whereN\ is referred to as thEloquet multiplier The Floquet

multipliers and exponents are relatedXoy e’?. In the cases 15 T - - - ' - -
where the Floquet multipliers are real, the response will be
either synchronous with the forcirigo negative multipliens 1k
or subharmonidat least one negative multiplierThese fea-
tures of Floguet systems are well known and are frequentl
used to restrict one’s search for neutral stability curves to th
caseso;=0 (synchronous instabilifyor o;=7/a (subhar-
monic instability. The CT symmetry described above im- 97T
plies the usual symmetry of Floquet systemsuf(t) is a
solution, so isu(t+a), and therefore places a further restric- .05 |-
tion on the solution’s behavior.

Or’ suggests that CT symmetry is incompatible with a
subharmonic response, and sketches a proof that analyzes 1
structure of a solution’s Fourier coefficients. The proof relies
on the assumption that solutions @ have the property A s a4 o5 o o5 1 s

u* (t+a/2)=ku(t), (4)

wherek is said to be a complex constant. This assumption igIG.. 1: (& The Iocgtio,ns within the complex-plane of the two Floquet
cpparently made in anclogy (), but s to restricve In-  MAPITS o HalleVs €10 i e of e vl o o ot
deed, if this were true, one could immediately show that th%quation, where is real ande is pure imaginary. In cas@), two negative
Floquet multipliersh would be real and non-negative since multipliers can assume separate values, allowing an infinite ranyevaf-
iterating (4) once givesu(t+a)=kk*u(t). There is no rea- ues asé and e are varied; in cas¢b) any negative multipliers must be
son for this relationship to hold for arbitrary solutions, how- degenerate, restricting the rangerotalues to a single point.

ever, and solutions with complex multipliers, for example,

are easy to findsee Fig. 1b)]. [Note that ever(3) applies P(0)=1,

only to the Floquet solutions—solutions formed from linear

combinations of these solutions do not possess this propertywherel is the identity matrix.

What one can show in a simple and precise way is that The CT symmetry implies that ®(t) is a fundamental
any purely negative Floquet multiplier of a system with CT matrix then so areb(t+a) and ®* (t+a/2), so that there
symmetry must havégeometri¢ multiplicity greater than exist complex matriceé andB such that
one. The implication for subharmonic instability is that if a

05

particular system should happen to have an isolated subhar- ®(t+a)=®(t)A, 5)
monic solution, it will not persist when the system param-

eters are perturbed in the way that solutions to Mathieu’'s ®*(t+a/2)=®(t)B, (6)
equation do. In other words, there is no phase locking for

o;=mla [compare Figs. (a) and 1b)]. whereA=®(a) andB=®(a/2).

To see that negative Floquet multipliers of CT-invariant ~ An arbitrary solutionu(t) may be expressed as a linear
equations must have multiplicity greater than one, we begirtombination of the solutions ifP(t):
by observing that Eq(2) has a fundamental matrix of lin-
early independent solutionB(t) satisfying u(t)=d(t)x.
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Substituting this expression int8) we see that there will be

a set of linearly independent Floquet solutions with Floque! 2 . T , . . . . .
multipliers \ that satisfy the eigenvalue relationship
AX=\X. (7)
Combining Eqgs(5) and (6) we see that e 1
A=BB*. €S)

The form of (8) immediately implies that the determinant of
A must be real and positive since it is the product of comple»
conjugates and that any complex eigenvalue# afome in
complex conjugate pairs, despite the fact #has, generally,
complex itself. It is also clear that there are an even numbe
of negative eigenvalues, but it is somewhat harder to see th.
the negative eigenvalues must have multiplicity greater thal
one.

One way to show the degeneracy of negative eigenval
ues for the matriXA is to use the following identity:

B*A=B*BB* =A*B*. (9)
Multiplying (7) by B* and using(9) we have

[A* —\]B*x=0,

which implies thatB* x is an eigenvector oA* with eigen-

value\. If \ is a real eigenvalue we also have 45k N
A*x* =\x*. (10
Thus, ifA has multiplicity one and is real,B* x andx* 2 . \ ) ) L . . .

must be related by LU 2 3 4 S5 6 7 8 9 10
B*x=px*. FIG. 2. A plot of the real part ok for one of the two Floquet multipliers of

the CT-invariant version of Mathieu’s equatioe pure imaginary when

Fma”y’ Combmmg this relatlonShlp with its complex- e=i and assumes a range of valug®lid curveg. Notice that the real part

conjugate we have of the eigenvalue appears to bel for two values ofé. For this equation
the eigenvalues must be complex conjugates with product unity, indicating
Ax=BB*x= pp* X=\X, thatA has no imaginary part and multiplicity two at these points.

so thatA=0.

Figures 1a) and 1b) illustrate this result using the CT symmetry having no periodic coefficient, but can be seen
Mathieu equation with real coefficients and the modified verto give rise to a repeated multiplier=—1. A numerical
sion with pure imaginaryg. These especially simple second- solution for nonzero values efcontinues to indicate pairs of
order equations give rise to two Floquet multipliers that mustigenvalues equal te- 1 (see Fig. 2
satisfy the additional constrainA,=1 (since the Wronsk- In the end, the possibility of degenerate negative multi-
ian evaluates to unijy Thus the eigenvalues distribute them- pliers is only interesting in that the proof given above cannot
selves over the unit circle in the complex plane and along theule it out; it has no practical implication for phase locking.
real axis. In the case of imaginagythe negative multipliers Barring further symmetries, any such solutions will be iso-
are missing. lated in parameter space as they are in Fi{f).1n contrast,

The argument above leaves open the possibility thapairs of positive multipliers are free to assume separate val-
there might sometimes be degenerate negative multipliersies, and synchronous solutions are relatively easy to find.

This could happen, for example, if we had More importantly, these synchronous solutions persist for
small perturbations to the parameters, so that phase-locking
0 _ S can occur.
2 In summary, this paper explains that equations with CT
B= 2 ; symmetry are incompatible with subharmonic phase locking.
3 0 This symmetry arises naturally from a consideration of har-

monically oscillating shear flows. This result follows from
a matrix that corresponds to the Mathieu equation whken the fact that any negative Floquet multipliers for equations
=0, =2 and the period is 2. This is a trivial instance of ~with this symmetry must be degenerate and the reasonable
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