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When a fluid system is subject to time-periodic forcing, it is well known that it may exhibit both
harmonic and subharmonic instabilities, the classic example being Faraday oscillations. When the
forcing is confined to a periodic shearing motion, however, it has been observed that the
subharmonic response is absent. The underlying mathematical feature that unifies these systems is
a conjugate-translation symmetry@A. C. Or, J. Fluid Mech.335, 213 ~1997!#. We show that any
subharmonic solutions of periodically driven systems with conjugate-translation symmetry must
have Floquet multipliers with multiplicity greater than one. The effect of this constraint is that
subharmonic solutions are very difficult to locate within the system’s parameter space and, more
importantly, that phase locking cannot occur for such systems. ©1999 American Institute of
Physics.@S1070-6631~99!00412-2#
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The study of time-periodic forces on fluid systems co
prises a vast body of research. Two canonical examples
clude the Stokes layer and the Faraday instability, wh
represent two classes of problems where the fluid is for
by either a tangential or normal motion of the bounda
respectively. Davis1 gives a broad review covering time
periodic flows and Miles2 gives a review specific to the Fa
aday instability.

A linear stability analysis of these systems leads direc
to differential equations with time-periodic coefficients. Su
equations, referred to as Floquet systems, give rise to
well-known phenomenon of parametric resonance, where
frequency of a solution’s oscillations can become locked
either the driving frequency~harmonic response! or half that
frequency~subharmonic response! over distinct regions of
parameter space. This parametric resonance is in contra
normal resonance which occurs at discrete parameter va
The most widely studied equation of this type is Mathieu
equation:

ü1~d1e cost !u50, ~1!

which appears in the analysis of numerous physical
amples, including theFaraday instability ~Benjamin and
Ursell3! where a container of liquid is oscillated in the ve
tical direction.

A number of authors have noted a lack of a subharmo
response in certain periodically driven fluid systems~Kelly
and Hu;4 Or and Kelly;5 Schulze and Davis;6 Or7!, the uni-
fying feature of these systems being a harmonically oscil
ing shear flow. Or7 further clarifies the issue by noting tha
subharmonics are suppressed when, upon linearization a
the basic flow and decomposition into time-periodic norm
3571070-6631/99/11(12)/3573/4/$15.00
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modes, the resulting PDE’s have a conjugate-transla
~CT! symmetry: if û(z,t) is a solution of the system, so i
û* (z,t1a/2), wherea is the period of oscillation. Note tha
the advective term in the Navier–Stokes equations~or in an
advection diffusion equation! is of precisely the right form
for this type of symmetry to arise in that it is nonlinear~al-
lowing the basic state to provide the periodicity! and first-
order ~so that it will have a pure imaginary Fourier tran
form!.

Thus, it is most natural to consider this particular~CT!
symmetry in the context of a fluid or other continuous sy
tem governed by such PDE’s. This observation is, howev
closely related to a result due to Swift and Weisenfeld8 that
demonstrates the suppression of period doubling in m
general dynamical systems with real coefficients and sym
try under the operations of inversion and translation: ifu(t)
is a solution of the system, so is2u(t1a/2). More recently,
Nicolaisen and Werner9 use group theoretic arguments
identify additional symmetries leading to the suppression
period doubling.

This paper explains the lack of subharmonic resona
by showing that any subharmonic solutions of periodica
driven systems with CT symmetry must have Floquet mu
pliers with multiplicity greater than one. To do this, we fir
assume that the PDE’s that determine the eigenfunct
û(z,t) are reduced to ODE’s via an expansion method t
removes the remaining spatial dependence. This expan
may be exact or a numerical approximation. When this
done, one will be left with a system of ODE’s with C
symmetry:

u̇5@R1 iP~ t !#u, ~2!
3 © 1999 American Institute of Physics
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whereu is now a large~in principle infinite! vector of un-
knowns,R is a real matrix andP(t) is real, time-periodic
matrix with zero mean, least perioda and satisfies
P(t)52P(t1 a/2). Again, a simple example is provided b
the Mathieu Eq.~1! if d is taken to be real,e pure imaginary
and one converts the equation to a system of two first-o
equations.

The main result in Floquet theory is that ODE’s wi
periodic coefficients have at least one solution of the for

u~ t !5estp~ t !,

wherep(t) is a periodic vector function with~least! period
equal to that of the forcing ands is a complex constan
known as theFloquet exponent. Those solutions which are o
this form are calledFloquet solutionsand possess the prop
erty that

u~ t1a!5lu~ t !, ~3!

wherel is referred to as theFloquet multiplier. The Floquet
multipliers and exponents are related byl5esa. In the cases
where the Floquet multipliers are real, the response will
either synchronous with the forcing~no negative multipliers!
or subharmonic~at least one negative multiplier!. These fea-
tures of Floquet systems are well known and are freque
used to restrict one’s search for neutral stability curves to
casess i50 ~synchronous instability! or s i5p/a ~subhar-
monic instability!. The CT symmetry described above im
plies the usual symmetry of Floquet systems: ifu(t) is a
solution, so isu(t1a), and therefore places a further restri
tion on the solution’s behavior.

Or7 suggests that CT symmetry is incompatible with
subharmonic response, and sketches a proof that analyze
structure of a solution’s Fourier coefficients. The proof rel
on the assumption that solutions to~2! have the property

u* ~ t1a/2!5ku~ t !, ~4!

wherek is said to be a complex constant. This assumptio
apparently made in analogy to~3!, but is too restrictive. In-
deed, if this were true, one could immediately show that
Floquet multipliersl would be real and non-negative sinc
iterating ~4! once givesu(t1a)5kk* u(t). There is no rea-
son for this relationship to hold for arbitrary solutions, ho
ever, and solutions with complex multipliers, for examp
are easy to find@see Fig. 1~b!#. @Note that even~3! applies
only to the Floquet solutions—solutions formed from line
combinations of these solutions do not possess this prope#

What one can show in a simple and precise way is t
any purely negative Floquet multiplier of a system with C
symmetry must have~geometric! multiplicity greater than
one. The implication for subharmonic instability is that if
particular system should happen to have an isolated sub
monic solution, it will not persist when the system para
eters are perturbed in the way that solutions to Mathie
equation do. In other words, there is no phase locking
s i5p/a @compare Figs. 1~a! and 1~b!#.

To see that negative Floquet multipliers of CT-invaria
equations must have multiplicity greater than one, we be
by observing that Eq.~2! has a fundamental matrix of lin
early independent solutionsF(t) satisfying
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F~0!5I ,

whereI is the identity matrix.
The CT symmetry implies that ifF(t) is a fundamental

matrix then so areF(t1a) and F* (t1a/2), so that there
exist complex matricesA andB such that

F~ t1a!5F~ t !A, ~5!

F* ~ t1a/2!5F~ t !B, ~6!

whereA5F(a) andB5F(a/2).
An arbitrary solutionu(t) may be expressed as a linear

combination of the solutions inF(t):

u~ t !5F~ t !x.

FIG. 1. ~a! The locations within the complexl-plane of the two Floquet
multipliers for Mathieu’s Eq.~1! using a range of real values for the coef-
ficientsd ande. ~b! A similar plot for the CT-invariant version of Mathieu’s
equation, whered is real ande is pure imaginary. In case~a!, two negative
multipliers can assume separate values, allowing an infinite range ofl val-
ues asd and e are varied; in case~b! any negative multipliers must be
degenerate, restricting the range ofl values to a single point.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Substituting this expression into~3! we see that there will be
a set of linearly independent Floquet solutions with Floq
multipliers l that satisfy the eigenvalue relationship

Ax5lx. ~7!

Combining Eqs.~5! and ~6! we see that

A5BB* . ~8!

The form of~8! immediately implies that the determinant
A must be real and positive since it is the product of comp
conjugates and that any complex eigenvalues ofA come in
complex conjugate pairs, despite the fact thatA is, generally,
complex itself. It is also clear that there are an even num
of negative eigenvalues, but it is somewhat harder to see
the negative eigenvalues must have multiplicity greater t
one.

One way to show the degeneracy of negative eigen
ues for the matrixA is to use the following identity:

B* A5B* BB* 5A* B* . ~9!

Multiplying ~7! by B* and using~9! we have

@A* 2lI #B* x50,

which implies thatB* x is an eigenvector ofA* with eigen-
valuel. If l is a real eigenvalue we also have

A* x* 5lx* . ~10!

Thus, ifl has multiplicity one andl is real,B* x andx*
must be related by

B* x5rx* .

Finally, combining this relationship with its complex
conjugate we have

Ax5BB* x5rr* x5lx,

so thatl>0.
Figures 1~a! and 1~b! illustrate this result using the

Mathieu equation with real coefficients and the modified v
sion with pure imaginarye. These especially simple secon
order equations give rise to two Floquet multipliers that m
satisfy the additional constraintl1l251 ~since the Wronsk-
ian evaluates to unity!. Thus the eigenvalues distribute them
selves over the unit circle in the complex plane and along
real axis. In the case of imaginarye the negative multipliers
are missing.

The argument above leaves open the possibility t
there might sometimes be degenerate negative multipl
This could happen, for example, if we had

B5F 0 2
5

2

2

5
0
G ,

a matrix that corresponds to the Mathieu equation whee
50, d5 25

4 and the period is 2p. This is a trivial instance of
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CT symmetry having no periodic coefficient, but can be seen
to give rise to a repeated multiplierl521. A numerical
solution for nonzero values ofe continues to indicate pairs of
eigenvalues equal to21 ~see Fig. 2!.

In the end, the possibility of degenerate negative multi-
pliers is only interesting in that the proof given above cannot
rule it out; it has no practical implication for phase locking.
Barring further symmetries, any such solutions will be iso-
lated in parameter space as they are in Fig. 1~b!. In contrast,
pairs of positive multipliers are free to assume separate val
ues, and synchronous solutions are relatively easy to find
More importantly, these synchronous solutions persist for
small perturbations to the parameters, so that phase-lockin
can occur.

In summary, this paper explains that equations with CT
symmetry are incompatible with subharmonic phase locking.
This symmetry arises naturally from a consideration of har-
monically oscillating shear flows. This result follows from
the fact that any negative Floquet multipliers for equations
with this symmetry must be degenerate and the reasonabl

FIG. 2. A plot of the real part ofl for one of the two Floquet multipliers of
the CT-invariant version of Mathieu’s equation (e pure imaginary! when
e5 i andd assumes a range of values~solid curve!. Notice that the real part
of the eigenvalue appears to be21 for two values ofd. For this equation
the eigenvalues must be complex conjugates with product unity, indicating
that l has no imaginary part and multiplicity two at these points.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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assumption that such a degeneracy will not be maintaine
the system parameters are varied.
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