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Abstract

We study the coarsening observed in spiral-mode growth of thin films. The high-temperature superconductor YBa2Cu3O7−δ

provides a suitable model system. The density of spirals at the surface decreases as the film gets thicker. In other words, the
grain size coarsens with distance from the substrate. We propose a simple mechanism for this coarsening, based on geometrical
competition of spirals with different vertical growth rates. The consequences of this mechanism are developed both analytically
and numerically in the limit where adatom attachment is controlled by surface diffusion. In particular, we show how the time-
evolution of spiral density, film thickness, and surface roughness depend on the spiral growth rate statistics. ©1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The growth of epitaxial films has received a lot of attention (see [1] for a particularly relevant review article).
Much is known about the mesoscopic consequences of layer-by-layer growth, in which new layers are created by
the nucleation of islands on terraces. Less is known about the mesoscopic consequences of spiral growth, in which
screw dislocations provide a continuous source of new steps. That is the topic of this paper.

The fundamentals of spiral growth were established by Burton, Cabrera and Frank [2]. At the heart of their model
is a similarity solution for a single, steadily growing spiral. Their work has been extended by others, including
Cabrera and Levine [3] and Müller-Krumbhaar et al. [4]. Monte Carlo simulations of spiral growth can be found
in [5,6]. A Ginzburg–Landau simulation can be found in [7]. Karma and Plapp [8] use a phase-field approach to
incorporate the effect of nonlocal diffusion. Most of this work has focused on the microscopic details of a single
spiral or a few interacting spirals. Our focus, by contrast, is on the consequences of spiral growth for mesoscopic
features such as grain size, surface roughness, and the overall growth rate.
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Our interest in spiral growth stems from its relevance to high-temperature superconducting (HTS) films. HTS
films have been found to have higher critical currents and transition temperatures than the bulk state, making
them superior for technological applications [9]. The material properties of the film are, at least in part, related to
film microstructure. While our model is quite general, it is specifically motivated by the growth of YBa2Cu3O7−δ

(YBCO) films. This system exhibits a spiral growth morphology in parameter regimes that yield high-quality films,
see e.g. [9,10]. These articles, and many others, feature scanning tunneling microscopy (STM) images of the YBCO
film surface that show quite clearly the individual spirals. Each spiral consists of many terraces and ledges that wind
around a central screw dislocation. The terrace widths are on the order of 10–100 nm while the step heights are one
unit cell (∼1 nm). YBCO films are commonly grown on MgO withc-axis orientation and a cube-on-cube epitaxy.
There are small misalignments in the growth orientation where spirals meet to form low-angle grain boundaries.
Occasionally, spirals will grow with more significant misalignment, e.g. rotated by 45◦ around thec-axis.

Each spiral determines a grain. The grain size is observed to coarsen as the YBCO film thickens, with 500 nm
thick films exhibiting spiral widths at the surface which are on the order of 500 nm. Coarsening data can be found
in [9–11], but coarsening has also been observed by many other authors, using various substrates and growth
techniques. We know of three possible mechanisms that could drive this coarsening:
1. Yeadon et al. [10] propose that the screw dislocations are mobile. In their view coarsening is driven by elastic

stress, which makes nearby dislocations of opposite sign migrate toward one another and eventually merge.
2. Ortiz et al. [12] propose that the valleys where spirals meet, i.e. the grain boundaries, have an associated ‘defect

energy’. In their view coarsening is driven by the tendency of the film to grow so as to decrease its defect energy.
3. We propose here that spatial heterogeneity leads naturally to coarsening. In our view, coarsening is a consequence

of geometrical competition, whereby faster-growing grains overtake their slower-growing neighbors.
The purpose of this paper is to develop mechanism 3. We do not insist that it is the only coarsening mechanism
operative in YBCO; all three mechanisms may actually be present. We nevertheless focus exclusively on mechanism
3, to gain a clear understanding of its consequences.

We shall use a simple geometric model to link heterogeneity to mesoscopic quantities such as surface roughness,
the average growth rate, and the average grain size. The geometric character of our model is a simplification
introduced to clarify the essential physics: we believe a more realistic treatment incorporating surface and bulk
diffusion would have similar behavior. The key assumption of our model is that the (vertical) growth rate varies
from spiral to spiral. This variation could be due, for example, to differences in the local structure at centers of the
spirals. We do not attempt to model the origin or statistics of vertical growth rate variation; rather, we assume that
it is given as constitutive information, and we explore its consequences.

Coarsening due to geometrical competition has been considered in other settings. Tang et al. [13] modeled the
growth of an amorphous film by sputter deposition; there the mechanism of coarsening is self-shadowing, which gives
large interfacial perturbations an advantage over their smaller neighbors. Thijssen et al. [14] modeled the growth of
polycrystalline films made from crystals with few facets; there the mechanism of coarsening is competition between
the faster-and slower-growing facets. Molchanov et al. [15] modeled the large-scale structure of the universe as a
coarsening process in forced Burgers turbulence. Their work, though apparently unrelated to materials science, is
in fact very closely connected to the present paper.

We introduce our geometric model in the following section, then discuss it more mathematically in Section 3.
We mainly focus upon the case of diffusion-limited growth; in Section 4 we briefly discuss the implications of our
analysis when this assumption is relaxed. Section 5 derives analytical results for coarsening and surface roughness
based on this model; Section 6 verifies and extends these results using numerical simulation and Section 7 gives
some concluding remarks.

We note in passing that the origin of the screw dislocations in YBCOc-axis films is not well understood. Some
possible mechanisms are suggested in [10,16,17].
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2. A geometric growth model

We begin by reviewing the physical mechanism of spiral growth, and the justification for a geometric model.
A flux of atoms is raining down on the film surface. The deposition technique is not particularly relevant, but
to fix ideas one can think of vapor deposition. The surface has many planar terraces and unit-cell high ledges.
Atoms landing on the terraces move to the ledges by surface diffusion, where they attach themselves to
the film.

We consider the case where there is no depletion of the diffusion boundary layers surrounding each ledge. This
requires that the terrace width be much larger than the diffusion length

√
Dτ , whereD is the surface diffusivity and

τ is the typical adatom residence time. Under this condition of diffusion-limited growth, all the ledges see the same
local adatom concentration, so one expects the normal velocityU to be a constant to leading order. We shall ignore
corrections due to curvature, but we include the effect of crystalline anisotropy by allowing the normal velocity to
be a function of growth direction:U = U(n̂nn), wheren̂nn is a unit vector in the direction ofhorizontalgrowth.

An interesting generalization of this setting would let the ledge velocityU depend on the terrace width, i.e. the
distance between ledges. Such dependence would provide a geometrical (albeit oversimplified) model of growth
beyond the diffusion-limited regime. Unfortunately, as we explain in Section 4, our method for predicting the
coarsening and other mean film properties does not extend to this case. We therefore restrict our attention to
U = U(n̂nn).

Under this simple motion law, an initial landscape of ledges grows horizontally (in planes parallel to the substrate);
each ledge continues growing until it is blocked by another ledge or it reaches the boundary of the film. In spiral
growth there is no nucleation on terraces. Instead, screw dislocations provide a continuous source of new ledges.
The spiral associated with a screw dislocation looks like a driveway winding its way up a mountain (Fig. 1(a)). The
spiral ends precipitously at the top, so there is always an edge for the growth of a new layer of atoms. The theories
for steady-state spirals (references given above) have the spiral terminating with a finite radius of curvature so that
ledge growth at the top of the spiral causes it to precess. The spiral endpoint can either remain fixed or travel in a
circle, depending on the details of the theory.

For our purposes, this detailed picture of the spiral is unnecessary. The essential point is the existence of a
continuous source of new growth layers at the spiral center. Taking a somewhat more macroscopic point of view we
can say that the spiral grows by repeatedly nucleating new growth layers at the screw dislocation, which then grow
outward with uniform speedU . The resulting picture is rather like that of island growth: it produces a wedding cake
rather than a spiral driveway (compare Figs. 1(a,b)). There are some differences, of course, from true island growth:
our nucleation of new growth layers occurs at precisely the same point from one layer to the next and we envision a
nucleation rate which varies from spiral to spiral – the idea being that variation in local structure produces different
precession rates for different spirals.

The screw dislocations are formed very early in the YBCO-film growth process. We shall assume that these
dislocations are distributed randomly on the substrate, at pointsxxxj . We further assume that thej th dislocation
remains at a fixed position, and produces vertical growth at a constant ratevj until it is covered by the spiral
associated with another dislocation. Our analytical results assume that no new dislocations are formed after the
deposition process begins, though we explore the effect of relaxing this assumption in a simulation. We use a
Poisson point process (PPP) to generate the screw dislocations, so the expected number of screws in a given region
is proportional to its area. We suppose the vertical growth ratesvj are drawn independently from some statistical
distribution, forming what is known as amarkedPPP.

Since our interest is in mesoscopic quantities, we neither need nor want to resolve the individual steps and terraces.
Therefore we work in the continuum limit obtained by letting the step height and terrace width tend to zero while
keeping their ratio (the slope of the spiral) fixed. In this limit our wedding-cake structures become cones (Fig. 1(c)),
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Fig. 1. The relationship between (a) a detailed picture of the spiral growth process, (b) an intermediate model that mimics spiral growth via
nucleation at the top of a wedding cake, and (c) the continuum limit in which the wedding cake becomes a cone.

and the ledges become level sets of the surface height function. The growth produced by adatom attachment is
directed normal to this level set, in the plane parallel to the substrate.

To understand the essential issues, it is helpful to visualize the one-dimensional version of this problem. Figure
2(a) shows the profile produced by five screw dislocations at a certain time (solid lines) and a slightly later time
(dotted lines), when the vertical velocitiesv2 = v3 are larger thanv1 = v4 = v5 and the horizontal velocity is 1.
Thej th screw is associated with a growing peak of constant slopevj and increasing heightvj t (grey lines). This
peak is the growth profile associated with a single, isolated screw dislocation atxj . Our model says that the film’s
growth profile is the envelope of these peaks. The valley where two peaks meet represents a grain boundary. In the
setting of Fig. 2(a), the grain boundaries move relative to the substrate as time evolves, becausev2 = v3 is larger
thanv1 = v4 = v5. Eventually the sources atx1, x4, andx5 are covered by the peaks associated withx2 andx3

(in Fig. 2(b) the source atx1 has been covered). As time proceeds, an increasingly large percentage of the film is
occupied by the grains associated with the faster-growing spirals. This simple example shows how a distribution of
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Fig. 2. (a) The profile produced by five screw dislocations at a certain time (solid lines) and a slightly later time (dashed lines), when the vertical
velocitiesv2 = v3 are larger thanv1 = v4 = v5. The peaks meet at grain boundaries, which move (relative to the substrate) as the film evolves.
(b) The profile of the film after the source atx1 has been covered. As time proceeds, an increasingly large percentage of the film is occupied by
the fast-growing grains.

growth rates leads to coarsening. The two-dimensional picture is similar: the film surface is an evolving collection
of cones, centered at pointsxxxj with vertical velocityvj ; the valleys where the cones meet are the grain boundaries.

3. Evolution of the film surface, Huygens’ principle and a solution formula

Our goal is an analysis of the mesoscopic features of growth – particularly the time dependence of average
thickness, surface roughness, and grain size. Our principal tool in the pursuit of this goal is an explicit solution
formula for the thickness of the film:

h(xxx, t) = max
j

{vj [t − T (xxxj ,xxx)], 0}. (1)

Hereh(xxx, t) is the height of the film above the substrate at positionxxx ∈ RRR2 and timet > 0; xxxj is the position of
the j th screw dislocation (source);vj > 0 is the vertical growth rate of thej th source; andT (xxxj ,xxx) is the time
it takes a ledge to advance fromxxxj to xxx. The expression for the travel timeT (xxxj ,xxx) is discussed below (Section
3.3, see especially Eq. (14)). For the isotropic case, we takeU(n̂nn) ≡ 1, so that the ledges move at unit speed in all
directions. Huygens’ principle then givesT (xxxj ,xxx) = |xxxj − xxx| and the solution formula (1) reduces to

h(xxx, t) = max
j

{vj [t − |xxxj − xxx|], 0}. (2)
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Our justification of Eqs. (1) and (2) will combine well-known facts about interface motion with arguments from
the recent work of Molchanov et al. [15]. Our analysis requires the speed functionU(n̂nn) > 0 to be aconvexvelocity
in the sense that its homogeneous extension of degree one,

Ue(xxx) ≡ |xxx|U
(

xxx

|xxx|
)

, (3)

is a convex function ofxxx ∈ RRR2. This clearly holds in the isotropic case, and more generally when the anisotropy
is sufficiently weak. Convexity is required for the existence of an anisotropic Huygens’ principle (see Section 3.2).
Our problem makes physical and mathematical sense for a nonconvex ledge velocity, but we doubt the existence of
a solution formula like Eq. (1) in that case.

Sections 3.1–3.5 are somewhat mathematical. A reader who is content to accept Eq. (1) as a formula for the
surface height can skip directly to Section 5 for the discussion of its consequences.

3.1. The evolution equation

We have thus far specified the solution (1), but not the equation it satisfies. An evolution equation for the film
thicknessh(xxx, t) follows from the fact that the total time derivative ofh along a given level seth = c is zero:

ht + uuu · ∇∇∇h = 0. (4)

The velocity and gradient indicated in this equation are vectors in the plane of the level set; growth in the vertical
direction is generated only at the screw dislocations and is discussed below. If we combine this equation with our
anisotropic growth law

uuu · n̂nn = U(n̂nn),

using the expression for the outward normal to the level sets

n̂nn = − ∇∇∇h

|∇∇∇h| ,

we can write Eq. (4) in the form of a Hamilton–Jacobi equation:

ht = U(n̂nn)|∇∇∇h|. (5)

In the isotropic case this reduces toht = |∇∇∇h|; in the one-dimensional setting of Fig. 2 it becomesht = |hx |.
The preceding argument is well-known. It lies at the foundation of thelevel set methodfor analyzing and

computing interface motion, see e.g. [18,19]. It can be linked to the earlier viewpoint of [20] based on the method
of characteristics, see [21]. Some care is required, however, concerning what we mean by a ‘solution’ of Eq. (5).
It is not enough to say that the equation holds whereverh is smooth; to determineh uniquely we must also say
what happens at the valleys (grain boundaries) and peaks (screw dislocations), whereh is not smooth. This issue
is closely related to the theory of ‘viscosity solutions’ of Hamilton–Jacobi equations (see e.g. [22]). However, the
viscosity solution of Eq. (5) is not what we want: it takes no account of the sourcesxxxj and growth ratesvj . In fact,
the viscosity solution is incapable of rising above the maximum height of its initial data:

h(xxx, t) ≤ max
xxx∈RRR2

h(xxx, 0),

and solutions develop plateaus rather than peaks (Fig. 3).
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Fig. 3. Schematic illustration of the maximum principal for viscosity solutions of Eq. (5). Cone-shaped initial data will develop a plateau rather
than a peak.

The recent work of Molchanov et al. [15] gives a way of addressing this issue. Informally, one can consider the
viscosity solution of

ht = U(n̂nn)|∇∇∇ h| +
∑
j

vj I (xxx − xxxj ) (6)

where

I (xxx − xxxj ) =
{

1 for xxx = xxxj

0 otherwise.

This does not strictly make sense, because the right hand side is too singular for the theory of viscosity solutions to
apply. One should approximate the functionI (xxx − xxxj ) by something smoother, solve the evolution equation, then
pass to the limit (6). The evolution equation requires an initial condition. Our solution formula (1) corresponds to

h(xxx, 0) = 0.

One can show by arguing as in [15] that the solution of Eq. (6) with this initial condition is the same as the one
defined in Section 3.2 by a variational principle.

3.2. Variational formulation

The link between Hamilton–Jacobi equations and optimal control theory is known. This link provides the con-
nection between Eq. (6) and the solution formula (1). It also provides an anisotropic version of Huygens’ principle
and explains why our analysis is restricted to convex velocity functionsU(n̂nn). Finally, it gives a triangle inequality
for travel times Eq. (15), which we shall need in Section 3.4.

To explain this link, consider the general problem of maximizing

S[rrr(s)] =
∫ t

0
[8(rrr) − g(ṙrr)] ds

over the set of pathsP = {rrr(s) : [0, t ] → RRR2, rrr(t) = xxx} that start at an arbitrary location and end atxxx in time t .
Let h(xxx, t) be the optimal value:

h(xxx, t) = max
P

S[rrr(t)]. (7)
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It is known (see e.g. [22]) thath(xxx, t) is the viscosity solution of the differential equation

ht = 8 + g∗(−∇∇∇h) (8)

with initial valueh(xxx, 0) = 0. Hereg∗ is the Fenchel transform ofg:

g∗(xxx) = max
yyy

[yyy · xxx − g(yyy)]. (9)

(See e.g. [23] for a convenient summary of results about the Fenchel transform.)
To see informally why Eq. (7) satisfies Eq. (8), look at the variational problem definingh(xxx, t + δt). It is natural

to consider the trial path which follows the optimal path in the definition ofh(xxx − δxxx, t), then continues in a straight
segment for timeδt to end atxxx. The best path for the definition ofh(xxx, t + δt) is obtained by optimization overδxxx.
In the limit δt → 0 this gives

h(xxx, t + δt) = max
δxxx

{
h(xxx − δxxx, t) +

[
8(xxx) − g

(
δxxx

δt

)]
δt

}
.

Expandingh(xxx − δxxx, t) in a Taylor series aboutxxx gives

h(xxx, t + δt) − h(xxx, t)

δt
= 8(xxx) + max

δxxx/δt

[
−δxxx

δt
∇∇∇h(xxx, t) − g

(
δxxx

δt

)]
,

which is equivalent to Eq. (8) asδt → 0.
To make Eq. (8) agree with our differential equation (6) we have only to make appropriate choices of8 andg.

We evidently want

8(xxx) =
∑
j

vj I (xxx − xxxj ), (10)

and

g∗(∇∇∇h) = |∇∇∇h|U
( ∇∇∇h

|∇∇∇h|
)

= Ue(∇∇∇h). (11)

The second condition requiresUe to be convex, sinceg∗ – being the maximum of linear functions by Eq. (9) – is
convex for anyg. If Ue is convex, then we may takeg to be the Fenchel transform ofUe. SinceUe has linear growth
at∞, its Fenchel transform takes only the values 0 and∞, i.e. it is theindicator function of a convex setW :

g(xxx) = U∗
e (xxx) =

{
0 if xxx ∈ W

∞ if xxx /∈ W.

The setW is known as the Wulff shape associated withU(n̂nn); its analytical expression is

W =
{
xxx : |xxx| ≤ w

(
xxx

|xxx|
)}

,

where for any unit vector̂rrr

w(r̂rr) = min
n̂nn·r̂rr>0

[
U(n̂nn)

n̂nn · r̂rr
]

. (12)

There is a well-known geometrical construction of the Wulff shapeW : it is formed by making a polar plot of the
speed functionU(n̂nn), constructing lines which are orthogonal to the radius vector at each point on this plot, and
taking the inner envelope of those lines.
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The Wulff construction also arises in the analysis of anisotropic surface energy. If the surface energy density is
γ (n̂nn) then the associated Wulff shape, defined as above withU replaced byγ , has minimal surface energy for given
volume. We emphasize, however, that our model omits any effect of surface energy. Therefore the relevant Wulff
shape is the kinetic one, associated with the growth velocityU(n̂nn).

3.3. Travel time and the solution formula

It remains to link our differential equation (6) with our solution formula (1). The key, of course, is the variational
principle (7). Using the choices Eqs. (10) and (11) it becomes

h(xxx, t) = max
ṙrr∈W,rrr(t)=x

∫ t

0

∑
j

vj I (xxx − xxxj ) ds,

which can be written more simply as

h(xxx, t) = max
admissible paths

∑
j

vj × (residence time atxxxj ). (13)

We like to visualize this optimization as follows. For any admissible pathrrr(s) in the substrate plane (defined for
0 ≤ s ≤ t , with speeḋrrr(s) ∈ W and endpointrrr(t) = xxx), consider the path in physical space with the same planar
projection, which starts at height 0 and accumulates height at ratevj during any interval whenrrr(s) remains at a
dislocation sitexxxj (Fig. 4(a)). The sum on the right hand side of Eq. (13) is the height of this physical space path
at timet .

A useful observation concerning Eq. (13) is the fact that

residence time at dislocation sites= t − travel time.

It follows that the optimal path must be efficient: it minimizes travel time.
We claim that paths which minimize travel time (among all paths with the same endpoints, and velocity inW )

are necessarily straight paths with constant velocity. Indeed, consider any pathrrr(s), straight or not, traveling from
xxxa toxxxb in minimal timeT :

rrr(0) = xxxa, rrr(T ) = xxxb, ṙrr(s) ∈ W.

Its average velocity must belong toW , sinceW is convex. The average velocity is evidently

ūuu = 1

T

∫ T

0
ṙrr(t) dt = xxxb − xxxa

T
.

Therefore the straight pathρ(s) = xxxa + ūuus is admissible, and it too arrives atxxxb at timeT . If the original path
rrr(s) did not have constant velocity thenūuu would be in the interior ofW (assumingW is strictly convex). But then
the straight path could be traversed faster and still remain admissible, contradicting the assumption thatT was the
minimal travel time.

The formula for travel time is now clear. SinceW is given by Eq. (12), the optimal path fromxxxa toxxxb has velocity

w(r̂rr) where r̂rr = xxxb − xxxa

|xxxb − xxxa| ,

and its travel time is

T (xxxa,xxxb) = |xxxb − xxxa|
w(r̂rr)

. (14)
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Fig. 4. (a) A non-optimal path starting in the plane of the substrate, residing for a time at the sourcexxxj , then proceeding to the surface position
above the pointxxx. The dotted line shows the trajectoryrrr(t) in Eq. (13); the solid line is the path in physical space. (b) The optimal path for Eq.
(13). The solid line gives the history of the ledge that forms the surface atxxx.

Our argument that minimal-travel-time paths are straight also shows that travel time satisfies a triangle inequality:

T (xxxa,xxxc) ≤ T (xxxa,xxxb) + T (xxxb,xxxc). (15)

Thus travel time behaves a lot like a metric, though it is not necessarily symmetric (T (xxxj ,xxx) 6= T (xxx,xxxj ) if
U(n̂nn) 6= U(−n̂nn)).

Returning to the variational principle (13), a minor extension of the preceding arguments shows that the optimal
path must start at a conveniently chosen screw dislocation sitexxxj , reside there for timet − T (xxxj ,xxx), then proceed
directly toxxx with velocityw

(
(xxx − xxxj )/(|xxx − xxxj |)

)
. Optimization over all possible choices ofxxxj gives our solution

formula (1). Ift < T (xxxj ,xxx) for all j then there is no admissible path starting at a screw and ending atxxx; the optimal
path is indeterminate in this case, andh(xxx, t) = 0.

Suppose the optimal path starts atxxxj . The associated path in physical space, visualized in Fig. 4(b), rises above
xxxj for time t −T (xxxj ,xxx) with velocityvj , achieving heighth(xxx, t) = vj (t −T (xxxj ,xxx). Then it proceeds horizontally
towardsxxx during the remaining timeT (xxxj ,xxx). It traces the physical history of the ledge which forms the surface of
the film at locationxxx and timet .

If there is just a single screw dislocation at the origin growing vertically with velocityv0, our solution formula
becomesh(xxx, t) = v0 max{[t − T (0,xxx)], 0}, and the region on the substrate covered by the film is a scaled copy of
the Wulff shape:

h(xxx, t) > 0 ⇔ T (0,xxx) < t ⇔ xxx ∈ tW. (16)
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We thus recover the well-known fact that the Wulff shape expands self-similarly under the flow with normal velocity
U . Notice that ifrrr lies at the boundary oftW , w(rrr/|rrr|) is theradial velocity of W ; the normal velocity isU(n̂nn)

wheren̂nn achieves the optimum in Eq. (12). Our analysis is restricted to convex velocities, but the Wulff shape is
known to expand self-similarly even when the velocity is not convex. This can be used to show that the Wulff shape
is the large-time asymptotic growth shape of any set [24].

The analysis of Frank [20] rests on the observation that the characteristics of Eq. (5) are straight lines; see also
[25]. These characteristics are in fact the optimal paths for our variational principle.

3.4. Physical correctness of the solution formula

Our solution formula (1) is simple. We have linked it to a differential equation (6) and a variational principle (13).
But is it physically correct?

The physical picture is this. Thej th screw dislocation rises, generating new growth layers, at ratevj . Each new
growth layer spreads horizontally, continuing to spread until it gets blocked by a ledge coming from another source.
It can happen that a screw dislocation gets covered by a ledge originating at another, faster-growing source; once
this occurs the covered screw dislocation is inactivated, i.e. it ceases to generate new growth layers.

To validate our solution formula, we shall check its consistency with two key aspects of the physical picture:
1. The growth layer which, according to the solution formula, arrives at the surface of the film at positionxxx and

time t has not been blocked by another growth layer at an earlier time.
2. Once a source gets covered it plays no further role in the solution formula.
To clarify assertion 1, and to convince the reader that it is not entirely trivial, we begin by examining a slightly

different setting where it is false. Suppose the horizontal growth velocity varies from cone to cone – isotropic, say,
but with magnitudeUj for layers generated atxxxj . It would be tempting to propose a ‘solution formula’ analogous
to Eq. (1), giving the film thicknessh(xxx, t) as the envelope of the profiles of individual cones. However, such a
formula would bewrong. To see why, consider the cross-sections of two initially non-intersecting cones at some fixed
height. As time advances, these level sets eventually meet one another, blocking further growth at the associated grain
boundary. However, the proposed ‘solution formula’ propagates the two cones independently. The cross-section
with the larger normal velocity eventually passes through and completely engulfs the other one. When it has done
so, the ‘solution formula’ puts its boundary at the surface of the film. Thus assertion 1 fails: the ledge that arrives,
according to the ‘solution formula’, at the surface of the film at positionxxx and timet may in fact have had its growth
blocked at an earlier time.

There is nothing physically pathological about this example. The same sort of difficulty arises if individual cones
grow with different anisotropiesUj(n̂nn) – as well they might, if the grains have different crystallographic orientations
in thea–b plane. However, the methods of this paper are simply not appropriate for modeling the growth of multiphase
systems and polycrystals. For such systems there is no solution formula or variational principle. There has been
some work on simulation using level-set methods [26], and on the behavior near triple points [27–29], however, the
situation is not as well understood as the single-phase case considered here.

We turn to the verification of assertion 1. Leth(xxx, t) be given by the solution formula (1), and consider a fixed
locationxxx and timet such thath(xxx, t) > 0. The ledge which, according to the solution formula, arrives at the surface
at (xxx, t) originates from sourcexxxj such that

vj [t − T (xxxj ,xxx)] ≥ vk[t − T (xxxk,xxx)] for all k. (17)

Its history (according to the solution formula) is described by the optimal path for Eq. (13): the ledge was created
at time t − T (xxxj ,xxx), when the sourcexxxj had just reached heightvj [t − T (xxxj ,xxx)] = h(xxx, t); then it propa-
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Fig. 5. Illustration of the argument validating the physical correctness of the solution formula. The pointsxxxj andxxxk are the locations of screw
dislocations. The ledge arriving at locationxxx at timet originated from the source atxxxj . The pointxxx′ is on the (straight) path betweenxxxj andxxx.
The travel time fromxxx′ toxxx is s.

gated with constant speed toxxx, taking timeT (xxxj ,xxx) to get there. We must show that it did not get blocked on
the way.

Our task is to show that from the moment this ledge was created until the moment it arrived atxxx, the solution
formula put this ledge at the surface of the film. At timet − s, this amounts to the assertion that

h(xxx, t) = vj [t − s − T (xxxj ,xxx
′)] ≥ vk[t − s − T (xxxk,xxx

′)] for all k, (18)

wherexxx′ is the position of the ledge at timet − s, i.e. the point along the segment fromxxxj toxxx whereT (xxx′,xxx) = s.
We must show this for 0≤ s ≤ T (xxxj ,xxx). The first equality is obvious sinces + T (xxxj ,xxx

′) = T (xxxj ,xxx) (see Fig. 5).
The inequality is an easy consequence of Eq. (17) and

s + T (xxxk,xxx
′) ≥ T (xxxk,xxx),

a special case of the triangle inequality (15).
Now let us verify assertion 2. We can use the notation of the previous paragraphs: it suffices to show that the

sourcexxxj identified by Eq. (17) was not covered prior to timeT (xxxj ,xxx). This amounts to the assertion that for
t ≥ s ≥ T (xxxj ,xxx),

vj (t − s) ≥ vk[t − s − T (xxxk,xxxj )] for all k. (19)

We need only considerk such thatt − s − T (xxxk,xxxj ) > 0. If vj ≥ vk then

vj (t − s) ≥ vj [t − s − T (xxxk,xxxj )] ≥ vk[t − s − T (xxxk,xxxj )]

as desired. Ifvj < vk, we observe that Eq. (19) holds fors = T (xxxj ,xxx), because it reduces to Eq. (18) (sincexxx′ = xxxj

for this choice ofs). But whenvj < vk this implies Eq. (19) holds for alls > T (xxxj ,xxx).
The thoughtful reader might have some second thoughts about the appropriateness of our assertion 2. A dislocation

in a crystalline solid cannot end in the interior. So what becomes of a screw dislocation after it gets covered? The
answer, we suppose, is that it continues to reach the surface of the film – but because it emerges on a narrow terrace
rather than a mountain top, it cannot develop a growth spiral and so it does not nucleate new growth layers. In truth,
the presence of such dislocations on the terraces could influence the horizontal velocities of ledges as they sweep
across the terraces. Our model ignores this effect.
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Fig. 6. Polar plots of some speed functions and the associated Wulff shapes (dashed inner regions): (a) the isotropic caseU = 1, (b) the squarish
anisotropy Eq. (20), and (c) the asymmetric anisotropy Eq. (21) (not to scale).

Fig. 7. Time-series of a film growing from randomly distributed sources with the anisotropic speed function (20) and heterogeneous vertical
growth rates. The large cone on the left side of the figure eventually consumes all the others.

3.5. Some examples

Figs. 6(a–c) show the polar plots of three speed functions and their corresponding Wulff shapes. Fig. 6(a) describes
the isotropic caseU(n̂nn) = 1, for which the speed function and Wulff shape coincide; Fig. 6(b) describes the speed
function

U(n̂nn) = 1 + 1
8 sin2(2θ), (20)

whose anisotropy is characteristic of YBCO growth (hereθ is the angle that the vectorn̂nn makes with a fixed axis in
the substrate plane); Fig. 6(c) describes the speed function

U(n̂nn) = 1

2 − cos(θ)
. (21)

chosen to illustrate a case when the travel time is not symmetric. Convexity in the sense of Eq. (3) requires that the
polar plot of 1/U be a convex figure in the plane, or equivalently thatU + Uθθ be positive; this is the case for all
three examples.

Figs. 7(a–c) gives a time series of snapshots of the surface of a film growing under the second of these three speed
laws. It was obtained by evaluating the solution formula (1) for a particular choice of sourcesxxxj and velocitiesvj .
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4. The case of nonuniform normal velocities

The aim of this section is to explore, in a qualitative way, the effects of variation in the horizontal growth rate
U(n̂nn) from one cone to the next. Our former assumption, that the speed functionU(n̂nn) is the same for the entire film,
is valid when the terraces are much wider than the surface diffusion length or, equivalently, when the cones have
sufficiently small slopes. When the terraces are very narrow, the normal velocity of ledges is roughly proportional to
terrace width. We can connect these two limits by making the normal velocityU a function of the terrace widthw.
For simplicity, we restrict our discussion to the isotropic case, and we assume the relationshipU = w/(1+w). This
choice interpolates between diffusion-limited behavior (U = 1) when the terraces are very wide and kinetic-limited
behavior (U ∝ w) when the terraces are very narrow.

In the continuum limit the terrace widthw is inversely proportional to the surface gradient, sayw = c/|∇∇∇h|, and
U = w/(1 + w) becomesU = c/(c + |∇∇∇h|). Settingc = 1 by a suitable nondimensionalization, and substituting
this expression forU in Eq. (6), we arrive at the evolution equation

ht = |∇h|
1 + |∇h| +

∑
j

vj I (xxx − xxxj ). (22)

We emphasize that whileU is no longer constant, it is not chosen from a distribution (like the vertical growth rates
vj ). Rather, it is a deterministic function of|∇h|. We choose the vertical growth rates from a distribution because
they are determined by local conditions near the centers of the spirals. We treatU differently, specifying it as a
function of∇h, because it is determined by more global considerations – namely the flux of material to the surface.

An immediate consequence of Eq. (22) is the restriction of the vertical growth ratesvj = ht to the interval

0 ≤ ht < 1,

with the upper bound being approached for increasingly steep cones.
Like Eq. (6), Eq. (22) admits individual cone-shaped solutions:

hj (xxx, t) = vj

(
t − |xxx − xxxj |

1 − vj

)
, (23)

but a superposition formula analogous to Eq. (1),

h(xxx, t) = max
j

[
vj

(
t − |xxx − xxxj |

1 − vj

)
, 0

]
, (24)

is no longer valid. Physically, this upper-envelope type solution fails for the simple reason described in Section 3.4: a
cone with a fast-expanding circular cross-extension will eventually pass through a slow-expanding cross-section, so
that the computation of the solution becomes history dependent (see [14] for another example of a history-dependent
film-growth model). Mathematically, this happens because the extended speed function|∇∇∇h|U(∇∇∇h) is nonconvex
(Fig. 8). This prevents us from repeating the analysis of Section 3.2 (see Eq. (11) and the discussion just after it).
Therefore we no longer have the crucial triangle inequality (15) that was used to prove the validity of the solution
formula (1).

One can still solve the evolution equation (22) numerically. But lacking a solution formula, one cannot expect
analytical results analogous to those presented in the following section. The new formula (23) is, however, valid up
to the point of overlap and near the center of any exposed spiral. From this we deduce that the vertical and horizontal
growth rates are in fact related:

Uj = 1 − vj .
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Fig. 8. Plot of the assumed relationshipU = w/(1 + w) between step width and normal velocity.

Thus, in analyzing the diffusion-limited regime, we are neglecting small changes in the horizontal velocity

Uj ∼ 1 − εŨj ,

but we take into account leading order variations in the vertical growth rate

vj ∼ εṽj � 1. (25)

5. Analytic results for expected coarsening rates and surface roughness in the diffusion-limited growth
regime

We explained in Section 2 how heterogeneity of the vertical growth rates provides a coarsening mechanism,
whereby faster-growing cones overtake their slower-growing neighbors. This section determines the time-evolution
of the density of uncovered spirals. We also find the statistics of surface height, leading to formulas for the evolution
of mean thickness and surface roughness. First, however, we briefly discuss the case when all the vertical growth
rates are equal.

5.1. Coarsening and Voronoi tesselations

Let hj (xxx, t) be the profile of the cone centered atxxxj :

hj (xxx, t) = max{vj [t − T (xxxj ,xxx)], 0}.
The position of the grain boundary between the cones centered atxxxj andxxxk is the locus of pointsGjk where the
heights of the cones are equal:

Gjk = {xxx : hj (xxx, t) = hk(xxx, t) ≥ hl(xxx, t) for all l}.
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Fig. 9. Grain boundaries for the tesselations formed when all of the vertical growth rates are equal. The three cases (a–c) correspond with the
speed functions plotted in Figs. 6(a–c). Source locations, indicated by diamonds, are the same for all three figures.

If the vertical velocities are all equal then the grain boundaries are stationary, i.e. they do not depend ont . If in
additionU is isotropic thenGjk lies along the line equidistant fromxxxj andxxxk. The grain boundaries are the polygons
formed by these lines; each point in the plane is assigned to the nearest nodal point. The resulting grain structure,
known as a Voronoi tessellation, and is a familiar concept in the literature on crystal growth [30]. Figure 9(a) gives
an example of a Voronoi tesselation. IfU is anisotropic and the vertical velocities are all equal, the grain structure
is still a static tesselation: each pointxxx is assigned to the node with the shortest travel timeT (xxxj ,xxx). Figures 9(b,c)
give examples of such tesselations; note that the grain boundaries are no longer straight in this case.

When the vertical velocities are heterogeneous, faster-growing cones encroach upon their slow-growing neighbors.
If there is a maximal velocity and a nonzero density of sources with maximal velocity, then the asymptotic growth
state is the Voronoi tesselation formed by the fastest growing cones. However, for an infinite system with a continuous
distribution of growth rates, coarsening continues indefinitely.

5.2. Formulas for the spiral density and surface statistics

We now examine the statistical properties of the growing film. Our analysis assumes that the sources are distributed
as a Poisson point process. It capitalizes on the special properties of Poisson processes [31], and is closely analogous
to the work of Molchanov et al. [15].

Let the initial density of nucleation sites beλ0. We seek a formula for the expected density of uncovered sites
at later times,λ(t). Clearlyλ(t) is the product of the initial density times the probability that an arbitrary sitexxxj

remains uncovered. The condition thatxxxj remain uncovered at timet is

tvj > vk(t − T (xxxk,xxxj )), for all k 6= j.

We simplify the notation by taking the origin to be atxxxj and removing the subscript onvj :

tv > vk(t − T (xxxk,000)). (26)

Let F(v) be the probability that an arbitrary spiral has a growth rate less than or equal tov – i.e. the cumulative
distribution function (CDF) for the vertical growth rates. The probabilityPk that Eq. (26) is satisfied for a givenk is

Pk =
{

1, T (xxxk,000) ≥ t

F (tv/(t − T (xxxk,000))) , T (xxxk,000) < t.
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The probabilityP(t) that Eq. (26) is satisfied for allk at timet is the expected value of the product of thePk ’s:

P(t) =
〈∏

k

Pk(xxxk, v, t)

〉
=

〈
exp

[∑
k

logPk

]〉
,

where the brackets indicate an average overv > 0 and all possible configurations of the PPP.
The average over thexxxk can be evaluated in terms of an integral using Campbell’s theorem (see [31]):

P(t) =
〈
exp

[
λ0

∫
T (xxx,000)<∞

(P (xxx, v, t) − 1) dxxx

]〉
v

=
〈
exp

[
−λ0t

2
∫

T (xxx,000)<1
F̃

(
v

1 − T (xxx, 0)

)
dxxx

]〉
v

,

whereF̃ = 1−F is the complement ofF and we have made the change of variablesxxx → txxx in the second integral.
Averaging overv gives

λ(t) = λ0P(t) = λ0

∫ ∞

0
exp

[
−λ0t

2
∫

T (xxx,000)<1
F̃

(
v

1 − T (xxx, 0)

)
dxxx

]
F ′(v) dv. (27)

Finally, making the change of variableR = r/w(r̂rr), we can write Eq. (27) in terms of the area of the Wulff shape:

λ(t) = λ0

∫ ∞

0
exp

[
−2Awλ0t

2
∫ 1

0
F̃

(
v

1 − R

)
R dR

]
F ′(v) dv, (28)

where

Aw = 1

2

∫ 2π

0
w2(θ) dθ.

We turn now to the statistics of the surface height. LetH(h) be the probability that an arbitrarily chosen pointxxx′

will have a heighth′ ≤ h – in other words, the CDF for surface height. IfHj represents this probability for each
cone individually, we have

H(h) =
〈 ∞∏

j=1

Hj(h)

〉
.

Takingxxx′ to be at the origin, we require

vj

(
t − T (xxxj , 0)

) ≤ h for all j.

Relating this to the CDF for the growth rates then gives

Hj = F

(
h

t − T (xxxj , 0)

)
,

and applying Campbell’s theorem as before we arrive at

H(h; t) = exp

[
−2Awλ0t

2
∫ 1

0
F̃

(
h/t

1 − R

)
R dR

]
. (29)

The preceding result determines, in particular, the average height and the surface roughness (standard deviation).
In fact, the average height at timet is

〈h(t)〉 =
∫ ∞

0
hH ′(h) dh (30)
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and the surface roughness at timet is

σh(t) =
√

〈h2〉 − 〈h〉2 =
(∫ ∞

0
[h2 − 〈h〉2]H ′(h) dh

)1/2

. (31)

5.3. Large-time behavior

The large-time behavior is dominated by the tail of the vertical velocity distribution, i.e. the statistics of the cones
with the largest growth rates. In this section we derive the large-time asymptotic behavior for the spiral density and
surface height.

We begin by writing Eq. (28) as a Laplace type integral:

λ(t) = λ0

∫ ∞

0
exp[−2Awλ0t

2K(v)]F ′(v) dv, (32)

where

K(v) =
∫ 1

0
F̃

(
v

1 − R

)
R dR. (33)

Laplace’s method (see e.g. Section 6.4 of [32]) shows that the large time behavior of Eq. (32) is determined by
the behavior ofK(v) near its minimum within the range of integration. Examination of Eq. (33) reveals that this
minimum is zero and it occurs in the limitv → ∞. We map this minimum to the origin using the change of variable
X = F̃ (v):

λ(t) = λ0

∫ 1

0
exp[−2Awλ0t

2K(X)] dX.

The expansion ofK(X) depends on the choice of growth rate distribution. As explained in Section 4 (see especially
Eq. (25)), an appropriate distribution in the surface-diffusion limited case will have allvj ∼ O(ε) � 1. Here we
use the rescaled growth ratesṽj ∼ O(1), so we can consider distributions which are conveniently defined for all
positive values in the limitε → 0:

F̃ (ṽ) = 1

ε
F (v).

In doing so, we recognize that any realistic distribution will beheavilyweighted to favor small growth rates. More
specifically, one expects a realistic distribution to approach zero asṽ approaches both zero and infinity, with most
of the growth rates close to a small mean value.

We have no specific model for this distribution nor even its tail. To briefly illustrate the manner in which Eq. (32)
can be used to obtain power laws for coarsening and other mesoscopic surface quantities, we use a class of Weibull
distributions as an example:

F̃ ′(ṽ) = α

βα
ṽα−1e−(ṽ/β)α . (34)

The large-̃v/small-X behavior ofK(X) is given by the asymptotic expansion of the integral equation (33) in the
limit R → 0. This expansion is relatively straightforward, being given by Watson’s lemma (see [32]) after a suitable
change of variables:

K(X) ∼ X

(
1

α2(−logX)2
+ O

(
1

(−logX)3

))
.
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The integral equation (32) can be converted to a more conventional Laplace-type integral by changing variable
to Y = Xlog−2X:

λ(t) ∼ λ0

∫ δ

0
exp

[
− Aw

2λ0t2Y

]
log2Y dY,

for any positiveδ. A further change of variable toZ = 2Awλ0t
2Y reduces the integrand to a function that can be

expanded for large values oft to give known integrals. The leading order term in this expansion is

λ(t) ∼ 2α2

Awt2
log2t. (35)

This, in turn, implies a nearly linear increase in the average grain size 1/
√

λ(t).
A similar procedure can be applied to Eq. (30). We omit the details, giving just the result:

〈h(t)〉 ∼ 21/αβt log1/αt. (36)

Thus the mean growth of the film is slightly superlinear. It would be exactly linear if the velocitiesvj were all
equal and there were no coarsening. The logarithmic factor reflects the gradual coarsening associated with the
exponentially-decaying tail of the distribution.

We emphasize the contrast between Eqs. (35) and (36). Heterogeneity of the vertical growth rates has only a
minor qualitative effect on the overall growth rate: it changes the law from linear to linear times a power of logt (Eq.
(36)). However, it has a dramatic effect on the coarsening behavior: it changes the law from one of no coarsening
to one with approximately linear increase in the average grain size (Eq. (35)).

It is more difficult to obtain the asymptotic behavior of the surface roughnessσ(t). One can proceed as above, but
the first two terms in the expansions of〈h2〉 and〈h〉2 cancel. This suggests that the growth of the standard deviation
is slightly sublinear; our simulations support this conclusion. Note that the surface roughness, like the grain-size,
would not change at all if all of the vertical growth rates were the same.

Finally, it should be understood that this model is in no way limited to exponentially decaying distributions.
If subsequent theory or experiment should suggest otherwise, it is a simple matter to reevaluate the large-time
asymptotic behavior of Eq. (32).

5.4. Discrete distributions

The integrals in Eqs. (28) and (29) are easy to evaluate when the distribution of growth rates is discrete. Suppose
the possible growth rates are 0< V1 < V2 < . . . < VN , with P(vj = Vn) = pn and

∑N
n=1pn = 1. For notational

convenience we setV0 = 0, p0 = 0, andVN+1 = ∞. The CDF of this discrete probability distribution is

F(v) = Fn =
n∑

k=0

pk when Vn ≤ v < Vn+1.

Its complement isF̃n = 1 − Fn whenVn ≤ v < Vn+1.
Our expression (28) for the uncovered spiral density evaluates to

λ(t) = λ0

N∑
n=1

pnexp

[
−Awλ0t

2
N−1∑
k=n

F̃k · (R2
k+1 − R2

k )

]
,
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where

Rk = 1 − Vn

Vk

,

and the inner sum is understood to be zero ifn > N − 1. Notice that the last term in the outer sum is justλ0pN

and the other terms decay exponentially in time. The asymptotic uncovered spiral density is just the fraction of the
original spirals that grow at the fastest rate, as expected.

Our expression (29) for the distribution of surface heights becomes

H(h; t) = exp

[
−Awλ0t

2
N−1∑
k=n

F̃k · (R2
k+1 − R2

k )

]
, (37)

whentVn−1 ≤ h < tVn, with the notation

Rk = 1 − h

tVk

.

The expressions for average height and surface roughness are most conveniently evaluated numerically. This is best
done by first integrating by parts to eliminate the derivative of Eq. (37).

The growth associated with any continuous distribution can be approximated by using a suitable discrete distri-
bution. This amounts to approximating the integrals in Eqs. (28) and (29) by Riemann sums.

6. Simulations

The analytic results of the previous section are useful for examining simple cases and large-time asymptotics.
Other results such as transient behavior are best obtained by evaluating the integrals in Eqs. (28) and (29) numerically,
or else evaluating the solution formula (1) directly using a large number of randomly generated sources. Figs. 10(a–c)
compare typical results from simulations done both ways.

We have thus far ignored any variation in the nucleation times of the spirals. The experiments of Yeadon et al.
[10] suggest that such variation can be important. It can be included by making a minor change in our solution
formula:

h(xxx, t) = max
j

[vj (t − tj − T (xxxj ,xxx)), 0]. (38)

Heretj represents the nucleation time of thej th source; it should be drawn (likevj ) from a specified probability
distribution. Figure 11 shows the result of including this effect, using a Weibull distribution fortj . Nucleation com-
petes with coarsening: the density of spirals increases initially (dominated by nucleation) then decreases (dominated
by coarsening). The competition between these two effects can be adjusted by tuning the parameterβ in the Weibull
distribution fortj . To generate Fig. 11 we chose this parameter to make the result resemble the experimental data
of Yeadon et al. [10].

One could, in principle, use Eq. (22) to collect statistics for the non-diffusion-limited case. We have not done
this because it requires a huge calculation: one would have to step through the entire history of the film’s evolution,
with large enough sample sizes to keep a statistically significant number of grains. Such a calculation would be of
interest; alternatively one might hope for further analytical progress that would simplify the task.
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Fig. 10. Comparison of analytic predictions and the results of simulations for (a) uncovered spiral density, (b) mean surface height, and (c)
surface roughness (standard deviation of surface height).

Fig. 11. Uncovered spiral density as a function of time using the generalized solution formula (38), which distributes the nucleation times. The
resulting graph is qualitatively similar to the experimental results of Yeadon et al. [10].

7. Conclusions

We have explained how heterogeneity of the vertical growth rates can lead to coarsening in spiral-mode growth.
The mechanism is a sort of geometrical competition, whereby faster-growing spirals outgrow their neighbors. Under
the frequently reasonable assumption of diffusion-limited growth, our model permits explicit numerical evaluation
of statistical features such as the density of uncovered spirals, the overall growth rate, and the surface roughness.
The predictions of our model are not ‘universal’. Rather, they depend on constitutive information – namely, the
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distribution of vertical growth rates. The large-time asymptotics depend only on the tail of this distribution, which
may be obtainable from an as yet undeveloped theory or from empirical evidence.

Other plausible explanations have been offered for the coarsening observed in YBCO thin films. Yeadon et al.
[10] suggest a mechanism based on the motion of screw dislocations under elastic stress, but a quantitative model
based on this idea has yet to be developed. Ortiz et al. [12] suggest a mechanism based on a tendency to decrease
the defect energy of valleys (grain boundaries) at the surface of the film. Their model is very quantitative, with
no tunable parameters, and it predicts that grain size should scale liket1/3 as t → ∞. This scaling law seems
consistent with some of the (very limited) experimental data that is available, but disagrees with results obtained by
Blank et al. [11] that suggest at1/2 time-dependence. Our results using the example of Wiebull statistics suggest a
linear growth in the grain size for large times, but this is, of course, dependent on the choice of vertical growth-rate
distribution. Distributions with tails that decay more slowly are apt to yield slower coarsening rates. It is not clear,
however, whether the existing data on coarsening of YBCO represents an asymptotic large-time regime or simply
some intermediate-time transient.

One motivation for studying film microstructure is the hope that it can be influenced by variation in growth
conditions. To this end it would be natural to couple our growth model with a description of the deposition process,
for example vapor deposition. Coupling of this type has recently been considered in a related setting [33]. To couple
our growth model with a vapor deposition flow model, the horizontal growth rateU(n̂nn) and the vertical growth rates
vj should depend in some way on supersaturation. Also, the fluid-film boundary condition should reflect the overall
growth rate. Notice that this growth rate is transient even when the supersaturation is constant, as a consequence of
coarsening. The implementation of such coupling remains a task for the future.
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