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A continuum model for the growth of epitaxial films
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Abstract

The continuum equations presented here model the growth of epitaxial films in terms of a local edge density � rhj j
and surface concentration (number density) of adatoms. This model is more amenable to computations than existing

models that feature discrete edges and solve continuum equations on each terrace; yet it offers a more detailed picture
than continuum models that treat the surface height as the only dependent variable. This latter feature is especially
important if one wishes to account for several species which may react on the surface of the film or at step edges to build

complicated unit cells. The model is motivated by and compared with numerical solutions of rate equations which are
derived from kinetic Monte-Carlo simulations. After introducing the model in a 1+1 dimensional setting, we extend it
to a 2+1 dimensional setting assuming spatial derivatives become surface gradients. We also discuss extension for the

case with multiple species. # 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

An understanding of the thin-film growth
process began with the work of Burton, Cabrera,
Frank (BCF) and others who introduced the
notion of terrace-step-kink models [1]. In such
models, atoms are deposited on the substrate and/
or film surface by a variety of techniques (e.g.
sputter deposition or chemical vapor deposition),
where they wander about before becoming in-
corporated into the growing crystal lattice. This

latter process is most likely to take place at step
edges and, more specifically, at kinks in the step
edges where the atomic potential favors permanent
attachment.

The mathematical modeling and simulation of
film growth has taken a variety of approaches,
ranging from molecular dynamics and kinetic
Monte-Carlo (KMC) simulations to continuum
equations that use surface height as the only
dependent variable [2]. The former require intense
computations and are necessarily limited to very
small length scales; the latter offer the promise of
revealing larger scale features but are too simple to
account for details like surface chemistry. The
BCF-like models treat discrete layers of the crystal
(the terraces) using continuum equations to track
the number density of adatoms on the surface and
couple the layers through boundary conditions at
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the (moving) step edges [1,3]. The step edges
themselves are treated as continuous planar
curves, though one can incorporate a kink density
into such models [4]. These models hold a
significant advantage over KPZ [5] and other
surface-evolution equations [2] in that one can
easily treat multiple species and surface reactions
that prefer step edges. Recently, there has been a
great deal of computational work on such models
using level-set techniques [6–8].

While the latter approach is less computation-
ally demanding than Monte-Carlo simulations, it
presents enormously complicated free-boundary
problems. The approach we advocate here is a
fully continuous model that treats edge density as
a surface variable and separately tracks the
number density of each adatom species. Like the
semi-discrete models just described, this allows one
to model multi-species systems and site-specific
chemical reactions, but restores the computational
ease of the surface evolution equations. Further,
we aim to understand in detail the connection
between our continuum equations and the MC
models, which are presumably more faithful to the
microscale physics.

To these ends, we introduce a simple 1+1
dimensional MC scheme in Section 2. This model
is a modified version of the one put forward by
Smilaur and Vvedensky [9] that features an explicit
adatom surface density. Ultimately, we wish to
reproduce the macroscopic consequences of this
model. In Section 3 we introduce a new simulation
tool, which we term the atomistic difference
scheme (ADS). This entails a numerical solution
of the rate equations that govern the equilibrium
and quasi-equilibrium solutions to the KMC
simulations. This method has the advantage of
retaining much of the microscale physics, but is
much faster than KMC. In Section 4 we solve
these same rate equations analytically and con-
sider a continuum limit on the length scale of
many terrace widths and time scales comparable to
the time it takes a step to advance. This produces a
system of coupled differential equations for the
homogeneized adatom density and surface height.
The continuum equations will incorporate deposi-
tion, surface diffusion, Ehrlich–Schwoebel (ES)
barriers and adsorption onto step edges. We shall

ignore evaporation, desorption, edge diffusion,
nucleation and effects due to kinks. In Section 5
we compare the behavior of the ADS and
continuum approaches, with the aim of demon-
strating the validity of our continuum model. In
Section 6 we generalize the model to consider the
evolution of films in 2+1 dimensions and multiple
species. We summarize our results and discuss
future directions for this research in the final
section.

2. Kinetic Monte-Carlo simulations

The principal goal of this work is to find a
continuum description of the epitaxial film-growth
process that is appropriate for length scales
spanning several terraces. Thus, the smallest scale
of resolution is larger than that of the BCF
approach, which operates on a scale of several
lattice spacings. We will, however, retain the BCF
formalism that tracks an explicit adatom density
rðxÞ, which will now be a continuous function of
x, the discontinuities at step-edges having been, in
some sense, averaged over. While it is possible to
homogenize a BCF-type model directly (see the
related work of E and Yip [10]) we choose to work
here from a more microscopic point of view, with
the aim of drawing attention to certain subtleties
of the adatom/step-edge interactions.

The MC method described here is based upon
the work of Smilaur and Vvedensky and related
publications [9], these models having themselves
been patterned after earlier simulations performed
by Weeks and Gilmer [11]. Like most studies, we
focus on single-species cube-on-cube epitaxy,
incorporating the basic assumption that atoms
arrive onto the surface of the film/substrate in a
stochastic manner as the result of some deposition
process like pulsed laser deposition, molecular
beam epitaxy or chemical vapor deposition. A
second assumption is that these surface atoms
(commonly referred to as ‘‘adatoms’’) occupy
discrete positions on the film or substrate that lie
on a regular cubic lattice. We shall ignore
nucleation, focusing instead on a ‘‘step-flow’’
problem where we follow the evolution of an
initial step configuration.
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After landing on the surface of the film/
substrate, it is assumed that an isolated atom on
an otherwise flat, or ‘‘vicinal’’, surface will be
loosely bonded to the film by its attraction to the
material below it, but sufficiently energetic to move
randomly on the surface with a characteristic
‘‘hopping’’ frequency. This random motion takes
the atom from one lattice site to a neighboring site
with probabilities calculated from a potential f
that depends on the local surface configuration. In
1+1 dimensions the number of relevant config-
urations is quite small, it being assumed that there
are no overhangs and that the vast majority of
steps on the surface are a single unit cell in height.
This latter assumption is justified by the slow
growth rate of the film which couples with the
tendency of atoms to fill in vacancies and attach at
existing step-edges before nucleating new layers of
growth.

The hopping rate per small, discrete time
interval is given by

k�i ¼ t exp
Df
kbt

;

where i is an integer indicating the lattice site, a +
or ÿ superscript indicates the direction of the hop,
t is a temperature-dependent hoping frequency, kb
is the Boltzmann constant and Df represents the
potential barrier to be overcome in the transition
from one site to the next (see Fig. 1). The hopping
barrier depends on a count of the nearest in- and
out-of-plane neighbors. Typically, one assumes
there is a deep well at the lower end of each step
due to the significant attraction of the in-plane
nearest neighbor. The step-edge barrier at the top

end of each step is a manifestation of what is
known as the Ehrlich–Schwoebel effect [12] and is
due to the fact that the last site on each step has
one fewer out-of-plane neighbor than the other
sites on the terrace. It is recognized [13,14] that this
asymmetry in the hopping potential has a sig-
nificant effect on the dynamics of the film growth.
Below we refer to just the symmetric portion of the
interstep barrier as ‘‘edge’’ barrier and the asym-
metric part as the ES barrier.

These theories can become quite complicated for
surfaces, but are greatly simplified – yet well
illustrated – in the 1+1 dimensional case where
there are just four rates that need be distinguished:
a rate common to all vicinal sites, which we label
ks, the difficult transition over the Schwoebel
barrier kþn and away from a step edge kþ1 and the
extremely difficult transition kÿ1 that must over-
come both of these effects. Note that there are just
two independent parameters due to scaling and the
‘‘detailed balance’’ relationship,

kþ1 k
þ
n ¼ kÿ1 ks; ð1Þ

that indicates the rates are derived from a
continuous potential. From physical considera-
tions, it is clear that the hopping rates satisfy

ks > kþn > kþ1 > kÿ1 ð2Þ

with kþ1 and kþn indicative of the strength of the
edge and Schwoebel barriers, respectively.

In typical MC simulations, the only distinction
that is made between ‘‘adatoms’’ and atoms
which have become embedded in the crystal
is that the latter are completely covered and
assigned a hopping rate of zero. In the end,
only one surface variable, the height of each
column of atoms hi, is kept track of – much
like existing continuum models that feature evolu-
tion equations for a continuous, macroscopic
surface height hðxÞ. This practice is in contrast to
the BCF tradition of calculating an adatom
density on terraces and coupling this via constitu-
tive laws to free boundaries that represent the
moving step edges. The MC model adopted here
follows this latter approach by tracking adatom
locations on the surface and treating attachment as
a separate stochastic process. This is done to
present a hierarchy of consistent, inter-related

Fig. 1. A schematic drawing of a 1+1-dimensional epitaxial

film illustrating the potential barrier f that determines the

hopping rates k�i . Most sites have three nearest neighbors in the

plane below the adatom, resulting in a generic hopping rate ks.
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models – discrete, semi-discrete and continuum –
and to derive a continuum model that is readily
adapted to multi-species growth, where a distinc-
tion between atoms on the surface and reactions to
form unit cells must clearly be made. In view of
this reasoning, we allow adatom attachment to
occur at step edges with a ‘‘reaction’’ rate a.

3. Atomistic difference scheme

MC simulations like those described above are
notoriously slow and the results from any given
simulation can be difficult to interpret due to the
noise in the data. Since we are interested in the
average behavior over many terraces, we present
an alternative approach here based on numerical
solutions of the rate equations that govern the
dynamics of the adatom distribution for the MC
scheme outlined above. We term this new method
an atomistic difference scheme (ADS).

We take r j
i to be the expected number of

adatoms at site i at time-step j. This number will be
small at most sites and we will ignore interactions
between random walkers. In this limit r j

i will be
approximately equal to the occupation probability
at site i during time interval j. The difference
equation corresponding to this process is

r jþ1
i ÿ r j

i

Dt
¼ kþiÿ1r

j
iÿ1 ÿ ðkÿi þ kþi Þr

j
i

þ kÿiþ1r
j
iþ1 ÿ air

j
i þ F ; ð3Þ

The coefficients k�i and ai depend on the topo-
graphy of the terraces fh j

i g which varies on a much
slower time scale than that of the adatom density.
Specifically, the height function evolves according
to

h jþ1
i ÿ h j

i

Dt
¼ air

j
i

with

ai ¼
a at the lower side of a step edge;

0 otherwise:

(
Note that the h j

i ’s are real-valued functions despite
the discrete nature of the growth process. At each
time step a check is made to determine whether

enough mass has accumulated at an edge site to
form a new unit cell and move the step forward. If
this is the case, the coefficients ai and k�i are shifted
locally by one site. When a step moves it is
assumed that the adatom density is not trans-
ported with it – i.e. the attachment and hopping
rates are advected with the steps but the adatom
distribution is not. In other words, the configura-
tion of the surface is defined as the minimum
integer-valued piecewise constant approximation
to the height function. Note that Dt has to be small
enough such that Dtar j

i 51.
If we ignore, for the moment, the motion of the

steps, we find that the difference equations (3)
admit a stationary and spatially period solution
for large times, where r j

i ¼ r j
iþn, and n is the length

of each terrace. This solution is easily found in
analytic form or by numerical means.

In Fig. 2 we illustrate solutions for the
parameter values a ¼ 0:01, F¼ 1:0� 10ÿ5 and a
step width of n ¼ 20. Fig. 2a features completely
homogeneous hopping rates k�i ¼ 0:5. The step
spacing can be chosen arbitrarily for n > 1 and
there is an arbitrary phase factor which positions
the steps within the domain. On each step, the
adatom density is parabolic and symmetric from
left to right. The corresponding step train is linear
and descending to the right. In Fig. 2b we use the
same parameters with the exception of k�1 , which
have now been set to 0.01 so that there is a large
edge barrier, but no ES barrier. The situation is
once again symmetric, but the parabolic adatom
distribution on each step is now augmented by a
spike in the adatom density at the step edges, due
to the attraction of the steps. Finally, in Fig. 2c we
use these parameters with the additional change
kþn ¼ 0:05, corresponding to an intermediate sized
ES barrier in addition to the large edge barrier.
Now we see that the left–right symmetry on each
step has been broken, as adatoms accumulate (on
average) at the right end of each step due to the ES
barrier.

At each lattice site there is a micro-scale surface
current

Ji ¼ kþi ri ÿ kÿiþ1riþ1 ð4Þ

from site i to i þ 1. In all three cases, the
equilibrium current is locally linear and periodic.
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The difference between successive currents on
neighboring sites (or ‘‘divergence’’) is given by
the source F . At a step edge i, the surface flux from
the sites ahead of and behind the step combine
with the source to give a sink ari. In the first
two cases shown in Fig. 2 the surface current
is symmetric in that the same amount of material
is supplying the step edge from the front and
back, whereas the ES barrier introduces an
asymmetry, as is well known. Figs. 3a and b
illustrate the local current at each site of a periodic
lattice for the case of a symmetric and asymmetric
potential.

We shall be especially concerned with such
asymmetries or ‘‘drifts’’ in what follows. Note
that in equilibrium, the drift in the adatom
density is only sufficient to supply the nearest step
in the uphill direction – there is no net surface
current from one step to the next as a result of the
detailed balance relationship (1). We term such a
drift ‘‘local’’ and note that it is incapable of

transporting adatoms over more than one terrace
width. Put another way, the probability of an
adatom at site i reaching site i�n on an n-periodic
step train is exactly the same for the equilibrium
solution whether or not an ES barrier is present.
Nevertheless, this current has global consequences
as it affects the step-width distribution in an
asymmetric way that is propagated to neighboring
steps.

A second source of asymmetry is introduced
into the system by the motion of the steps. When
this occurs, non-equilibrium effects can produce
global mass transport that is biased in the up- or
down-hill directions. To see this, note that imme-
diately after an attachment event has occurred, the
adatom distribution is virtually unchanged, but
the hopping rates have moved with the step. This is
followed by a transient phase where the adatoms
reestablish the equilibrium distribution with the
new surface configuration. This is illustrated in
Fig. 4 where we plot the average surface current

Fig. 2. These three figures illustrate typical equilibrium adatom densities for a periodic step train where (a) all of the hopping rates

k�i ¼ ks ¼ 0:5; (b) where there is an edge barrier k�1 5ks but no ES barrier kþn ¼ ks and (c) where both barriers are present and satisfy

kÿ1 5kþ1 5kþn 5ks.
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over one terrace as a function of the time step for
the case with an ES barrier.

4. The continuum model

The aim of this section is to present the
following model for the step-flow growth of
epitaxial thin films

�rt ¼ Drxx ÿ SðrhxÞx ÿ ar hxj j þ F ; ð5Þ

ht ¼ ar hxj j; ð6Þ

where �r is average adatom density over one terrace
width and time scales that are characterized by
the time it takes a step to move one site, r is the
average adatom density at the step edges over the
same time scale. The first term on the right-hand
side of Eq. (5) is a standard density-gradient-
driven diffusion; the second is a drift term which

reflects an interaction between adatoms and step
edges, the density of which is measured by the
surface gradient; the third term represents a sink of
adatoms at edge sites, which results in a corre-
sponding source term in the height evolution
equation; and the final term is the result of
deposition, which we take to be uniform. Below,
we outline in a somewhat more detailed way why
this equation ought to emerge from the difference
equations presented in the previous section.

Eq. (5) follows from conservation of mass
once we have derived an expression for the sur-
face current in terms of the macro-scale varia-
bles. Since the height and adatom-density rate
equations are coupled only at step edges,
the adatom density at edge sites provides a
convenient and natural measure of the adatom
density on the inter-terrace length scale. If we
label the density at a particular edge site r1, then
the other site we are interested in is r1þn, which

Fig. 3. The local surface current Ji as a function of i for steps with (a) and without (b) an ES barrier. Notice that the current is

asymmetric in the first case.

Fig. 4. Surface average of the current as a function of time, revealing the non-equilibrium contribution to the current and fast

relaxation time following a step-attachment event.
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will be written as rðxÞ when we take the
continuum limit.

To make a direct connection between the ADS
approach discussed in the last section and the
continuum Eqs. (5) and (6), we will adopt the
quasi-static approximation for the rate equation.
This amounts to saying that the adatom density on
each terrace relaxes quickly to accommodate the
change of the surface configuration, which changes
rather slowly. The ratio of the two time scales is
given by the coverage which will always be
assumed small.

On any given time step, the sum of the
microscale currents Jj

i averaged over a terrace of
length n gives

�Jj ¼ 1

n

Xn
i¼1

Jj
i ¼ ðkþ1 r

j
1 ÿ kÿn r

j
1þn þ kþn r

j
n ÿ ksrjnÞ=n:

ð7Þ
Taking Eq. (1) into account, we see that this
reduces to

kþ1
ðrj1þn ÿ rj1Þ

n

where there is no ES barrier, indicating D ¼ kþ1 .
For more general values of the hopping rates, we
must express the equilibrium value of rjn as a
function of rj1þjn, the edge adatom densities. This
will be done by using the steady-state rate
equations for a discrete MC process taking place
on an arbitrary step of size n:

kþiÿ1riÿ1 ÿ ðkÿi þ kþi Þri þ kÿiþ1riþ1 ÿ airi þ F ¼ 0;

where we have dropped the superscript in view of
the steady-state assumption. From these equations
we must eliminate all of the ri except r1, rn and
r1þn. To do this, we will need the equations
centered at sites 2 through n, the first and last of
which are

kþ1 r1 ÿ 2ksr2 þ ksr3 þ F ¼ 0;

ksrnÿ1 ÿ ðkþn þ ksÞrn þ kÿ1 r1þn þ F ¼ 0:
ð8Þ

The remaining equations are all of the form

ksriÿ1 ÿ 2ksri þ ksriþ1 þ F ¼ 0

which has the general solution

ri ¼ rn þ ði ÿ nÞBÿ F

2ks
ði ÿ nÞ2: ð9Þ

Using this relationship we can eliminate r2, r3 and
rnÿ1 from Eqs. (8), leaving us with the two
unknown quantities rn and B. We then form a
linear combination of Eq. (8) to eliminate B and
determine a leading order expression for rn. As n
becomes large this gives

rn ¼
nF

2kþn
þ kÿ1
kþn

r1þn:

Now, we substitute this result applied to r1þn into
Eq. (7) to arrive at

�J ¼ 1

n
kþ1 r1 ÿ kÿ1 r1þnþðkþn ÿksÞ

nF

2kþn
þ kÿ1
kþn

r1þn

� �� �
which simplifies to give

ÿ �J ¼ kþ1
rnþ1 ÿ r1

n
ÿ F

2

ks
kþn
ÿ 1

� �
the first term being the diffusively driven mass
flux and the second accounting for the steady
drift.

On a uniform step train, F is approximately
related to r1þn by

ar1þjn ¼ nF ; ð10Þ

where n is the width of the terraces. This is
obtained by a simple mass balance and can be
combined with the previous result to give

ÿ �J ¼ kþ1
rnþ1 ÿ r1

n
þ arnþ1

2n

ks
kþn
ÿ 1

� �
;

where we have expressed nF using the adatom
density r1þn.

In the continuum limit we wish to express the
current as

ÿ �J ¼ Drx ÿ Srhx:

Noting hx50 for our step train, this last result
gives the leading order relationships

D ¼ kþ1 ;

S ¼ a
2

ks
kþn
ÿ 1

� �
: ð11Þ

This is our main result.
In order to correctly express the conservation

of mass on the film surface, we need to evaluate
the average adatom density on the terraces
in terms of r1þnj . This is easily done using

T.P. Schulze, Weinan E / Journal of Crystal Growth 222 (2001) 414–425420



Eq. (9) and gives

�r ¼ kÿ1
kþn

rþ F

12ks

1

h2x
: ð12Þ

Finally, we take into account the sources and
sinks: the sink term ar is weighted by the edge
density hxj j and the deposition F is taken to be
uniform. These results combine to give Eq. (5).

5. Validation of the continuum model

In this section we make direct comparisons
between ADS simulations (3) and analytic solu-
tions to the continuum model (5).

We begin by considering the case of periodic
boundary conditions: r0 ¼ rn and r1 ¼ rnþ1,
which lead to an n-periodic, steadily moving
step-train on the microscale. One would expect
this solution to emerge on any long step train with
nearly uniform spacing. The time-averaged ada-
tom densities at step edges r � rj1


 �
is uniform in

this case so that there is no density-gradient-driven
surface current, but, as explained earlier, there is a
surface current due to the ES barrier and this
current is potentially enhanced by non-equilibrium
effects.

The solution to the continuum model has a
mean current satisfying J ¼ Srhx for a periodic
adatom distribution. From Eq. (5) we see that a
steady solution will satisfy

ht ¼ F ¼ ar hxj j ð13Þ
which has the microscale interpretation (10), and,
for steps moving to the right, yields the relation-
ship

ÿJ ¼ ÿSr1hx ¼
SF

a
: ð14Þ

Thus, for these especially simple boundary condi-
tions our equations predict a surface current that is
linear in F with a slope that depends only on the
hopping rates at leading order.

In Fig. 5a and b, we compare the value of
S given by Eq. (11) to a value calculated from
Eq. (14) and a current �Ji that is computed via
ADS (3). The variation in these two values
is shown as a function of a, kþn ; in each case
the remaining parameters are held fixed. In both

cases the agreement is seen to be very good,
suggesting that the drift term has been expressed
correctly.

While periodic boundary conditions have
the merit of isolating the effects of the
ES-barrier-induced drift, the uniform adatom
density r eliminates the dependence of the solution
upon D. To explore the combined effects of the
diffusion and drift terms we examine the case of
fixed-flux boundary conditions: J1 ¼ JN ¼ J,
where N is the width of the entire domain
measured in lattice sites. A steady solution, when
it exists, will still adhere to Eq. (10), with r ¼ r1h i
varying on the macroscopic length scale. Eq. (5)
reduces to

Drx ÿ Srhx ¼ ÿJ:

When the boundary condition is J ¼ 0, the uphill
drift produced by the ES barrier is exactly
balanced by a downward flux due to a gradient
in the adatom density. Eliminating hx via Eq. (13)

Fig. 5. A comparison of the value of S given by Eq. (11) to a

value calculated from Eq. (14) and a current �Ji that is computed

via the rate equations (3). The variation in these two values is

shown as a function of a and kþn ; in each case the remaining

parameters are held fixed.
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reduces this to

Drx ÿ
SF

a
¼ ÿJ ð15Þ

indicating a linear adatom density

r ¼ n0F

a
ÿ FS

aD
ÿ J

D

� �
x; ð16Þ

where n0 is the width of the left-most step which is
enforced as a boundary condition on hxð0Þ. The
corresponding solution for the height is

hðxÞ ¼ FD

aJ ÿ SF
log

n0DF þ ðaJ ÿ SFÞx
n0DF þ ðaJ ÿ SFÞN

� �
; ð17Þ

where N is the width of the entire step train.
Fig. 6, which plots adatom density as a function

of lattice site for a 200- and 400-site lattice when
there is no imposed current J, shows that this
linear solution appears to hold when the width of
the step train is sufficiently small, but not when it
becomes long. Even in the first figure, there are
small regions near the ends of the step train where
the linear solution breaks down. In the case of the
longer step train, the adatom density becomes too
small and the steps too bunched for our model to
hold; indeed Eq. (15) predicts a negative adatom
density if the step train is longer than Dn0=S. In
this situation, one finds that the numerical solu-
tions to the difference equations do not converge

to a steady state in the region beyond this critical
length.

Thus quantitative comparisons for fixed-flux
solutions are complicated by the competing con-
straints of large finite-domain-size effects for small
step trains and the breakdown of the steady
solution for large step trains. Nevertheless, in
Figs. 7 and 8 we have superimposed the analytic
solutions for the height onto solutions from
simulations for several values of the parameters.
In Fig. 7, the ES barrier is zero (i.e. kþn ¼ ks) and
the imposed current J is varied from ÿF to F . The
curvature of the step train is accurately predicted,
the top figure being concave down and the lower
figure being concave up. The variation from a
linear step train can be made stronger by increas-
ing the imposed current J. If this is done, the
quantitative agreement between the simulated and
analytic solutions decreases, as there are presently
no terms in the continuum model (5) that would
account for the curvature of the step train. One
could presumably capture these effects by con-
sidering slowly varying step trains, in which case
one would anticipate terms involving hxx to appear
in the continuum model.

In Figs. 8a–c, the central figure has an imposed
current J chosen to balance the effects of the ES
barrier (which is nonzero for this sequence of
figures). The first and third figures have imposed

Fig. 6. (a) The quasi-equilibrium adatom density for a 200-site lattice and (b) for a 400-site lattice, all other parameters being

equal. Ignoring end effects the first of these is well-approximated by a linear function; the second is linear up until around the 250th

lattice site.
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currents that slightly over and under-compensate
for the inherent drift due to the ES barrier. The
first figure provides an example of how the present
theory over-predicts the departure from a linear
step train when curvatures are large.

6. Extension to 2+1 dimension and multi-species

growth

Replacing the spatial derivative in Eq. (5) with a
gradient operator, suggests the 2+1 dimensional
analog

�rt ¼ Dr2rÿ SrðrrhÞ ÿ ar rhj j þ F ; ð18Þ

ht ¼ ar rhj j; ð19Þ

where �r and r are related by a result analogous to
Eq. (12).

The principal advantage of this model is its
ability to move beyond single-component crystals.
In the multi-species setting, there is an analog to
Eq. (18) for each relevant species, which may
include a variety of intermediate species as well as
the materials that are eventually incorporated into
the crystal. The resulting system of reaction–
diffusion equations is coupled to a generalized
form of Eq. (19)

rit ¼ Dir2ri ÿ SirðrirhÞ þSi ÿ Ei rhj j þFi;

ð20Þ

ht ¼ ~E rhj j þ ~S: ð21Þ

Fig. 8. The surface profile hðxÞ for an imposed surface current

J ¼ 0, 3F=4 and 3F=2. The smooth curve corresponds to the

analytic solution (17); the stepped curve is the result of

simulation. For the chosen parameter values, the imposed

current J ¼ 3F=4 should balance the ES-barrier-induced drift,

producing a linear surface.

Fig. 7. The surface profile hðxÞ for imposed surface currents

J ¼ F , J ¼ 0 and J ¼ ÿF . The smooth curve corresponds to

the analytic solution (17); the stepped curve is the result of

simulation.
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The terms Fi, Si and Ei represent the flux of each
species onto the substrate, terms due to surface
reactions and terms due to edge reactions; the
latter two are made more explicit below. Note that
the species arriving onto the film/substrate may
not be the same species incorporated into the film.
For example, in metal-organic CVD, metallic
compounds are carried to the surface attached to
highly volatile organic precursors, which may
decompose at or near the film surface, depending
on temperature conditions.

We have made the assumption that the
number density of each species is much smaller
than the density of available lattice sites,
which represent temporary resting points for a
diffusing adatom. This allows us to use diffusion
coefficients Di that are characteristic of the
behavior of each species measured independently
of the others and avoids complicated cross-
diffusion effects. This is a realistic assumption for
most growth processes.

Unlike the single species case, the sink and
source terms must now be distinguished. Surface
reactions, including surface-building reactions
(nucleation), surface decomposition and the for-
mation of intermediate species are represented by

Si ¼
X
j

Kij

Y
k

½rk�Gikj ; ~S ¼
X
i;j

~Kij

Y
k

½rk�
Gikj ;

where the exponents Gikj are determined via
stoichiometry and Kij are pairwise reaction rates.
Similarly, the edge-building reactions take the
form

Ei ¼
X
j

kij
Y
k

½rk�gikj ; ~E ¼
X
j

~kij
Y
k

½rk�gikj :

A general surface model can contain an over-
whelming number of undetermined parameters,
with no practical means of measuring most of
them. Ultimately, this necessitates the develop-
ment of reduced models that rely on simplifica-
tions, such as rate-determining reactions.

7. Summary

In this paper, we have proposed a new model for
epitaxial film growth appropriate for the step-flow

regime. The model is in many respects a hybrid
between the existing continuum models of the
BCF-type and those using height evolution equa-
tions. The principal features of the model are that
it is readily extended to multi-species systems, it
can be applied over large length scales and that the
coefficients can be expressed in terms of para-
meters used in KMC simulations, allowing quan-
titative comparisons to be made. For comparison
purposes we introduced – but will discuss at length
elsewhere – a new simulation tool, the atomistic
difference scheme (ADS), that serves as a fast
version of KMC simulations. Comparisons be-
tween ADS and analytic solutions to the single-
species version of our continuum model were seen
to agree.

The model is readily extended in many different
ways. With an appropriate nucleation model one
can use these equations to simulate island-growth
mode. While we have assumed a uniform deposi-
tion of adatoms, there is no reason this could not
be stochastically driven or coupled to a deposition
process like chemical vapor deposition. Indeed,
both of these extensions are actively being
pursued. One of the principal aims of this
formulation is to extend its application to surface
chemistry and other multi-species effects. In this
framework one can separately account for bulk
surface reactions, reactions which are coupled to
the edge density and reactions involving precur-
sors or intermediate species. Modifications specific
to a 2+1 dimensional version of this model
include the incorporation of kink densities and
anisotropic growth effects. One anticipates that
when all of the various types of step-edge
interactions are properly accounted for, Eq. (20)
will naturally take on a four-fold anisotropy for
the case of cube-on-cube epitaxy. Finally, the
potential f which determines the hopping rates
could be coupled to equations that model the
large-scale elastic behavior of the crystal.
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