MEASURABLE FUNCTIONS

Notation. F is the o-algebra of Lebesgue-measurable subsets of X = R".
Given E € F, f : E — R (the extended real line) and oo € R we adopt the
notation:

E{f>a}={z € B;f(x) > a} = f((a, +0)).

In this handout we adopt the notations m(E), m*(E), m«(E) for Lebesgue
measure, outer and inner Lebegue measure (resp.)

Definition. f is measurable if for any o € R, E{f > a} is in F.

It is easy to see that this is equivalent to requiring measurability of one
of the following types of sets, for any «:

E{fza}, E{f<a}, E{f<a}.

It is also equivalent to requiring;:

(i) For each open set A C R, f~(A) € F,
or to requiring

(i) For each closed set F' C R, f~(F) € F.

Recall that an algebra of subsets of X is a family F of subsets with the
properties (i) X and 0 are in F; (ii) If A € F, the complement A° = X \ A
is also in F; (iii) If A, B € F, then AU B,AN B and A\ B are also in F.

A family of subsets of X is a g-algebra if it is an algebra and is closed
under countable union:

ApeFlorn=12..=|]A, eF

n>1
(It follows that F is also closed under countable intersection.)

Given any family G of subsets of X, consider the intersection of all o-
algebras containing G. This is again a o-algebra, the o-algebra generated
by G. The Borel subsets of R™ is the o-algebra generated by the family of
open subsets of R™. (Note this depends only on the topology, not on any
measure.) Since open sets are Lebesgue-measurable, it follows that the Borel
o-algebra is contained in the o-algebra of Lebesgue-measurable sets. In fact
we have:

Fact: E C R" is (Lebesgue) measurable if and only if there exists a Borel
set B D E with m*(B\ E) = 0, if and only if there exists a Borel set C C E
with m*(E'\ C) = 0.



Problem 1. (Preimages behave nicely.) (i) Let f : E — R be a function.
Show that the family of subsets {A C R;f~'(A) € F} is a o-algebra of
subsets of R.

(ii) Show that if f : E — R is measurable, then for every Borel set
B C R we have f~!(B) € F.

Surprisingly, we have:

Ezample. There are measurable functions f : R — R and (Lebesgue)
measurable sets £ C R such that f~1(F) is not measurable.

Let ¢ : [0,1] — [0,1] be Lebesgue’s singular function. The function
g(x) =+ ¢(z) : [0,1] — [0, 2] is invertible, and maps the standard Cantor
set (which has measure zero) onto a set of positive measure. And it is a fact
that any set of positive measure contains a non-measurable set.

In fact, the following is true: a function f : R — R maps measurable
sets to measurable sets if, and only if, f maps sets of measure zero to sets
of measure zero. ([Natanson, p.248, Theorem 2]).

Problem 2. (i) Let f,¢g : E — R be measurable. Then max{f, g} and
min{ f, g} are measurable. In particular, f = max{f,0}, f- = max{—f,0}
and |f| = fy + f- are measurable.

(i) Let f : E — R be measurable and ¢ : R — R be continuous. Then
the composition ¢ o f is measurable. (In particular |f|? (for any p € R) and
ef are measurable.)

Pointwise and a.e. limits. Let f,,f : E — R. Suppose f,(z) — f()
pointwise in E. Then f is measurable if each f, is. To see this, let

1 o0
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Then it is easy to see that:

E{f>a}= |J B,

m>1,n>1

and the set on the right is clearly measurable.

The same holds if we only know f, — f a.e. in E: there is a null set
N C E such that f, — fin E'\ N. Thus f is measurable in F'\ N, and also
in N (since m(N) =0, so f is measurable in E.

Proposition 1. (Lebesgue). Let E C X be measurable, with m(E) < oco.
Suppose f, — f a.e. in F, where f,, f are measurable in £ and finite a.e.



Then we have, for each o > 0;

limm(E,(c)) =0, where E,(0) = {x € E;|fu(z) — f(x)| > o}.

n

Remark: m(E) < oo is needed here: consider f,, : R — R, f,(z) = 0 for
x<n, folr)=1ifz >n.

Proof. Consider the “bad sets”:
A=F{f=xx}; A,=EFE{fy,=xx}; B=EFE{f./f}

Then @ = AU (Up>14,) U B has measure zero. Fixing o > 0, let
Ru(0) = | Bx(o), M=) Ru(o),
k=n n=1

a decreasing intersection. Since m(E) < oo, we have m(M) = lim,, m(R,(0)).
But it is easy to see that M C Q. So lim,, m(R,(c)) = 0, which is even
stronger than the claim, since E,(c) C R,(c). This concludes the proof.

A small extension of the proof leads to a stronger result:

Egorov’s theorem. Let f, f: E — R, where m(E) < co. Then for any
0 > 0 we may find ' C E measurable with m(F) < §, so that f, — f
uniformly on E\ F.

Proof. We showed earlier that, for any o > 0, m(R,(c)) — 0. Let
(0i)i>1 be any decreasing sequence of positive numbers converging to zero.
Given 6 > 0, we find n; so that:

0
m(Ry,(0i)) < % Vi > 1.
Then letting

F = U Rni(Ui)v m(F) < Zm(Rm(o-l)) <9,
=1 =1

it is easy to see that f, — f uniformly in E'\ F. Indeed given € > 0 choose
ip > 1 so that o;, < e. Then if k > n;, and = € E \ F, one verifies easily
that:

| fr(x) = f(2)] < oy < €.



Proposition 1 motivates the following definition.
Definition. Let f,, f : E — R be measurable and a.e. finite. We say
fn converges to f in measure if for all o > 0 lim, m(E,(c)) = 0, where

En(0) ={z € E;[fu(z) - f(z)| 2 0}

Remark. The limit in measure of a sequence (f,,) is not unique, but any
two limits coincide a.e. ([Natanson, p.97]).

We showed in Proposition 1 that pointwise convergence implies conver-
gence in measure (for functions defined on a set of finite measure). Con-
versely, if f, — f in measure, then a subsequence of (f,) converges to f
pointwise a.e.

Proposition 2. Let f,, f: E — R, where m(E) < co. Assume f, — f in
measure. Then a subsequence (f,,) converges to f a.e. in FE.

Proof. With notations as before, we have m(E,(c)) — 0. Let o; > 0 be
a decreasing sequence with limit zero. For each i > 1 we may find n; > 1 so
that:

1 1 >
m(En, (o)) < >0 and hence m(Ry) < 2R where R, = U E, (0i).
i=k
Thus, defining:
oo
N =) R
k=1
the decreasing intersection property implies m(N) = 0. We claim that

fn;(x) = f(x) for x € E\ N.

To see this, let € > 0 be given, and let € E'\ N. This means for some
k> 1 we have: x € E\ Ry, so for all i« > k: x € E\ E,,(0;). Choosing
ip > k so that o;, < €, we have for all i > ig: | fp, () — f(x)| < €, as claimed.

The next result says that any given any measurable function f we may
find a closed subset of its domain whose complement has arbitrarily small
measure, so that the restriction of f to this closed set is continuous.

Luzin’s theorem. Let f : E — R be a measurable function. Then for any
d > 0 we may find I C F closed so that the restriction f|p is continuous on
F and m(E\ F) <.

Proof. (i) Assume first m(E) < oo. For each integer k > 1, we let
{Ii n}n>1 denote the partition of R into countably many intervals (left-
closed, right-open) of length 1/k, and consider the partition of E by their



preimages,

oo
E=||Ein Ein=1"Tin)

For each n > 1 we may find Fj , C Ej , compact, so that m(Ej, \ Fin) <
Q,C%H, in particular:
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for some Nj > 1 sufficiently large. Note the Fj are closed sets, hence their
intersection ' = Ny>1F}, is also closed, and its complement in E has measure
estimated by:

m(E\F)=m(| J E\ F) <

k>1
Now define ¢y, : F, — R by:
or(x) = ypn for x € Fy, p,

where yp. ,, € Iy, p, is the left endpoint of the interval I}, ,,. This is well-defined,
since the F},, for different n are disjoint. Further, since ¢y is constant on
disjoint closed sets, it is continuous in F}.

It is easy to see we have, for each z € Fj,

—

in particular, for each z € F"

k‘\)—t

| () — f(2)] <

This shows ¢ — f uniformly in F, hence f is continuous when restricted
to F, as claimed in the statement of the theorem.

(ii) To extend this to the case when m(FE) is not finite, consider the
partition of R™ into countably many cubes (Q;);>1, say of side length one.
We may apply part (i) to conclude the existence of F; C ENQ; with:

m[(ENQj)\ Fj] <

<5 Ji F; continuous .

Since the family of cubes {Q;} is locally finite, the countable union of closed
sets I = Uj>1Fj is also closed. (Check this.) Thus fr is continuous and we
estimate the measure of E \ F' by:

m(E\ F) < E:m<EﬂQﬂ\F}

7=1



as we wished to show.

Problem 3. Prove the converse: if f : E — R is a function with the
property that for any 6 > 0 one may find a closed set F' C F so that the
restriction fp is continuous and m(E \ F') < 4, then f is measurable.

Corollary 1. If f : E — R is measurable, for any § > 0 we may find
gs + B — R continuous in E, so that m({z € E; f(z) # gs(z)}) < d. If
|f(z)| < K in E, then also |gs(z)] < K in E.

This follows from Tietze’s extension theorem in Topology (which says
we can extend continuous functions defined on a closed subset to continuous
functions on the whole space, without increasing its sup norm): extending
the function f from the closed set F' given by Luzin’s theorem to all of £
yields gs.

Corollary 2. Let f : E — R be measurable. Then there exists a sequence
fn 1 E— R of functions continuous in E so that f, — f a.e. in E.

Proof. Assume first m(E) < oco. Letting d, be any sequence converging
to 0 and considering the functions f, = gs, (continuous in E) given by
Corollary 1, we see that f, — f in measure. Thus by Proposition 2 a
subsequence f,; converges to f a.e. in E.

It is easy to extend this to the case m(E) = oo (left to the reader.)



