
MEASURABLE FUNCTIONS

Notation. F is the σ-algebra of Lebesgue-measurable subsets of X = Rn.
Given E ∈ F , f : E → R̄ (the extended real line) and α ∈ R we adopt the
notation:

E{f > α} = {x ∈ E; f(x) > α} = f−1((α,+∞)).

In this handout we adopt the notations m(E),m∗(E),m∗(E) for Lebesgue
measure, outer and inner Lebegue measure (resp.)

Definition. f is measurable if for any α ∈ R, E{f > α} is in F .

It is easy to see that this is equivalent to requiring measurability of one
of the following types of sets, for any α:

E{f ≥ α}, E{f < α}, E{f ≤ α}.

It is also equivalent to requiring:
(i) For each open set A ⊂ R, f−1(A) ∈ F ,

or to requiring
(ii) For each closed set F ⊂ R, f−1(F ) ∈ F .

Recall that an algebra of subsets of X is a family F of subsets with the
properties (i) X and ∅ are in F ; (ii) If A ∈ F , the complement Ac = X \A
is also in F ; (iii) If A,B ∈ F , then A ∪B,A ∩B and A \B are also in F .

A family of subsets of X is a σ-algebra if it is an algebra and is closed
under countable union:

An ∈ F for n = 1, 2, . . .⇒
⋃
n≥1

An ∈ F .

(It follows that F is also closed under countable intersection.)

Given any family G of subsets of X, consider the intersection of all σ-
algebras containing G. This is again a σ-algebra, the σ-algebra generated
by G. The Borel subsets of Rn is the σ-algebra generated by the family of
open subsets of Rn. (Note this depends only on the topology, not on any
measure.) Since open sets are Lebesgue-measurable, it follows that the Borel
σ-algebra is contained in the σ-algebra of Lebesgue-measurable sets. In fact
we have:

Fact: E ⊂ Rn is (Lebesgue) measurable if and only if there exists a Borel
set B ⊃ E with m∗(B \E) = 0, if and only if there exists a Borel set C ⊂ E
with m∗(E \ C) = 0.
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Problem 1. (Preimages behave nicely.) (i) Let f : E → R̄ be a function.
Show that the family of subsets {A ⊂ R; f−1(A) ∈ F} is a σ-algebra of
subsets of R.

(ii) Show that if f : E → R̄ is measurable, then for every Borel set
B ⊂ R we have f−1(B) ∈ F .

Surprisingly, we have:

Example. There are measurable functions f : R → R and (Lebesgue)
measurable sets E ⊂ R such that f−1(E) is not measurable.

Let φ : [0, 1] → [0, 1] be Lebesgue’s singular function. The function
g(x) = x+ φ(x) : [0, 1]→ [0, 2] is invertible, and maps the standard Cantor
set (which has measure zero) onto a set of positive measure. And it is a fact
that any set of positive measure contains a non-measurable set.

In fact, the following is true: a function f : R → R maps measurable
sets to measurable sets if, and only if, f maps sets of measure zero to sets
of measure zero. ([Natanson, p.248, Theorem 2]).

Problem 2. (i) Let f, g : E → R be measurable. Then max{f, g} and
min{f, g} are measurable. In particular, f+ = max{f, 0}, f− = max{−f, 0}
and |f | = f+ + f− are measurable.

(i) Let f : E → R be measurable and φ : R → R be continuous. Then
the composition φ ◦ f is measurable. (In particular |f |p (for any p ∈ R) and
ef are measurable.)

Pointwise and a.e. limits. Let fn, f : E → R̄. Suppose fn(x) → f(x)
pointwise in E. Then f is measurable if each fn is. To see this, let

Akm = E{fk ≥ α+
1

m
}, Bn

m =

∞⋂
k=n

Akn.

Then it is easy to see that:

E{f > α} =
⋃

m≥1,n≥1
Bn
m,

and the set on the right is clearly measurable.
The same holds if we only know fn → f a.e. in E: there is a null set

N ⊂ E such that fn → f in E \N . Thus f is measurable in E \N , and also
in N (since m(N) = 0, so f is measurable in E.

Proposition 1. (Lebesgue). Let E ⊂ X be measurable, with m(E) <∞.
Suppose fn → f a.e. in E, where fn, f are measurable in E and finite a.e.
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Then we have, for each σ > 0;

lim
n
m(En(σ)) = 0, where En(σ) = {x ∈ E; |fn(x)− f(x)| ≥ σ}.

Remark: m(E) <∞ is needed here: consider fn : R → R, fn(x) = 0 for
x < n, fn(x) = 1 if x ≥ n.

Proof. Consider the “bad sets”:

A = E{f = ±∞}; An = E{fn = ±∞}; B = E{fn 6→ f}.

Then Q = A ∪ (∪n≥1An) ∪B has measure zero. Fixing σ > 0, let

Rn(σ) =

∞⋃
k=n

Ek(σ), M =

∞⋂
n=1

Rn(σ),

a decreasing intersection. Sincem(E) <∞, we havem(M) = limnm(Rn(σ)).
But it is easy to see that M ⊂ Q. So limnm(Rn(σ)) = 0, which is even

stronger than the claim, since En(σ) ⊂ Rn(σ). This concludes the proof.

A small extension of the proof leads to a stronger result:

Egorov’s theorem. Let fn, f : E → R, where m(E) < ∞. Then for any
δ > 0 we may find F ⊂ E measurable with m(F ) ≤ δ, so that fn → f
uniformly on E \ F .

Proof. We showed earlier that, for any σ > 0, m(Rn(σ)) → 0. Let
(σi)i≥1 be any decreasing sequence of positive numbers converging to zero.
Given δ > 0, we find ni so that:

m(Rni(σi)) <
δ

2i
∀i ≥ 1.

Then letting

F =
∞⋃
i=1

Rni(σi), m(F ) ≤
∞∑
i=1

m(Rni(σi)) ≤ δ,

it is easy to see that fn → f uniformly in E \ F . Indeed given ε > 0 choose
i0 ≥ 1 so that σi0 < ε. Then if k ≥ ni0 and x ∈ E \ F , one verifies easily
that:

|fk(x)− f(x)| ≤ σi0 < ε.

3



Proposition 1 motivates the following definition.
Definition. Let fn, f : E → R̄ be measurable and a.e. finite. We say

fn converges to f in measure if for all σ > 0 limnm(En(σ)) = 0, where
En(σ) = {x ∈ E; |fn(x)− f(x)| ≥ σ}.

Remark. The limit in measure of a sequence (fn) is not unique, but any
two limits coincide a.e. ([Natanson, p.97]).

We showed in Proposition 1 that pointwise convergence implies conver-
gence in measure (for functions defined on a set of finite measure). Con-
versely, if fn → f in measure, then a subsequence of (fn) converges to f
pointwise a.e.

Proposition 2. Let fn, f : E → R, where m(E) <∞. Assume fn → f in
measure. Then a subsequence (fni) converges to f a.e. in E.

Proof. With notations as before, we have m(En(σ))→ 0. Let σi > 0 be
a decreasing sequence with limit zero. For each i ≥ 1 we may find ni ≥ 1 so
that:

m(Eni(σi)) ≤
1

2i
, and hence m(Rk) ≤

1

2k
, where Rk =

∞⋃
i=k

Eni(σi).

Thus, defining:

N =
∞⋂
k=1

Rk,

the decreasing intersection property implies m(N) = 0. We claim that
fni(x)→ f(x) for x ∈ E \N .

To see this, let ε > 0 be given, and let x ∈ E \N . This means for some
k ≥ 1 we have: x ∈ E \ Rk, so for all i ≥ k: x ∈ E \ Eni(σi). Choosing
i0 ≥ k so that σi0 < ε, we have for all i ≥ i0: |fni(x)−f(x)| < ε, as claimed.

The next result says that any given any measurable function f we may
find a closed subset of its domain whose complement has arbitrarily small
measure, so that the restriction of f to this closed set is continuous.

Luzin’s theorem. Let f : E → R be a measurable function. Then for any
δ > 0 we may find F ⊂ E closed so that the restriction f|F is continuous on
F and m(E \ F ) ≤ δ.

Proof. (i) Assume first m(E) < ∞. For each integer k ≥ 1, we let
{Ik,n}n≥1 denote the partition of R into countably many intervals (left-
closed, right-open) of length 1/k, and consider the partition of E by their
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preimages,

E =

∞⊔
n=1

Ek,n, Ek,n = f−1(Ik,n).

For each n ≥ 1 we may find Fk,n ⊂ Ek,n compact, so that m(Ek,n \ Fk,n) <
δ

2k+n+1 , in particular:

m(E \
∞⊔
n≥1

Fk,n) ≤ δ

2k+1
, so m(E \ Fk) ≤

δ

2k
, where Fk =

Nk⊔
n=1

Fk,n,

for some Nk ≥ 1 sufficiently large. Note the Fk are closed sets, hence their
intersection F = ∩k≥1Fk is also closed, and its complement in E has measure
estimated by:

m(E \ F ) = m(
⋃
k≥1

E \ Fk) ≤ δ.

Now define φk : Fk → R by:

φk(x) = yk,n for x ∈ Fk,n,

where yk,n ∈ Ik,n is the left endpoint of the interval Ik,n. This is well-defined,
since the Fk,n for different n are disjoint. Further, since φk is constant on
disjoint closed sets, it is continuous in Fk.

It is easy to see we have, for each x ∈ Fk (in particular, for each x ∈ F :

|φk(x)− f(x)| ≤ 1

k
.

This shows φk → f uniformly in F , hence f is continuous when restricted
to F , as claimed in the statement of the theorem.

(ii) To extend this to the case when m(E) is not finite, consider the
partition of Rn into countably many cubes (Qj)j≥1, say of side length one.
We may apply part (i) to conclude the existence of Fj ⊂ E ∩Qj with:

m[(E ∩Qj) \ Fj ] ≤
δ

2j
, f|Fj

continuous .

Since the family of cubes {Qj} is locally finite, the countable union of closed
sets F = ∪j≥1Fj is also closed. (Check this.) Thus f|F is continuous and we
estimate the measure of E \ F by:

m(E \ F ) ≤
∞∑
j=1

m[(E ∩Qj) \ Fj ] ≤ δ,
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as we wished to show.

Problem 3. Prove the converse: if f : E → R is a function with the
property that for any δ > 0 one may find a closed set F ⊂ E so that the
restriction f|F is continuous and m(E \ F ) < δ, then f is measurable.

Corollary 1. If f : E → R is measurable, for any δ > 0 we may find
gδ : E → R continuous in E, so that m({x ∈ E; f(x) 6= gδ(x)}) < δ. If
|f(x)| ≤ K in E, then also |gδ(x)| ≤ K in E.

This follows from Tietze’s extension theorem in Topology (which says
we can extend continuous functions defined on a closed subset to continuous
functions on the whole space, without increasing its sup norm): extending
the function f from the closed set F given by Luzin’s theorem to all of E
yields gδ.

Corollary 2. Let f : E → R be measurable. Then there exists a sequence
fn : E → R of functions continuous in E so that fn → f a.e. in E.

Proof. Assume first m(E) <∞. Letting δn be any sequence converging
to 0 and considering the functions fn = gδn (continuous in E) given by
Corollary 1, we see that fn → f in measure. Thus by Proposition 2 a
subsequence fnj converges to f a.e. in E.

It is easy to extend this to the case m(E) =∞ (left to the reader.)
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