HANKEL OPERATORS, INVARIANT SUBSPACES,
AND CYCLIC VECTORS IN THE DRURY-ARVESON
SPACE.

STEFAN RICHTER AND JAMES SUNKES

ABSTRACT. We show that every nonzero invariant subspace of the
Drury-Arveson space H> of the unit ball of C? is an intersection of
kernels of little Hankel operators. We use this result to show that
if fand 1/f € H2, then f is cyclic in H3.

1. INTRODUCTION

It follows from Beurling’s characterization of the invariant subspaces
of the unilateral shift acting on H? = H?(9D) of the unit circle that
every such invariant subspace equals the null space of a Hankel op-
erator. Since the symbols of bounded Hankel operators on H? are
given by BMOA functions, this observation ties the operator theory
surrounding the unilateral shift to the H*-BMO duality and its con-
nection with Carleson measures. In this paper we will exhibit an anal-
ogy of this for the d—shift and the Drury-Arveson space of the unit
ball By = {z € C¢: |2] < 1}, d > 1.

For some information about the significance of the Drury-Arveson
space, we direct the reader’s attention to the survey article [15]. The
Drury-Arveson space H? is the space of analytic functions on B, with
reproducing kernel k,(z) = Ti,w)’ where (z,w) = Z?:l z;w;. The
operator tuple M, = (M,,, .., M,,) acting on H3 is called the d-shift.

Let Rf = Z?:l Zi% denote the radial derivative of a holomorphic
function f. It is well-known and easy to check that an analytic function
f on By, isin H? if and only if de |R™f|>(1—|2]?)>""4dV < oo for some
(or equivalently for all) n > (d—1)/2. Here we have used dV to denote
normalized Lebesgue measure on By. In Section 2 of this paper, we
provide more detail about the norm on H? and its connection to the
norms of weighted Bergman spaces.
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We will write
Mgy = {p € Hol(By) : pf € H; for all f € H7}
for the multiplier algebra of H2. It was shown in [12] that
My = H>*(B;) NCHj,

where H>(B,;) denotes the algebra of bounded analytic functions on
B, and CH? is is the space of functions b € H3 such that |R"0[*(1 —
|2|2)?"=4dV is a Carleson measure for H> for some (or equivalently for
all) n > (d — 1)/2. Recall that a positive measure p on By is called a
Carleson measure for a Hilbert function space H if there is a C' > 0
such that [, |f[*du < C| f||? for all f € H; see Section 3 and Lemmas
3.1 and 3.2 for more information about the space CH3.

The results of this paper are based on the theory of Hankel operators
which map #H into H. Here H denotes a Hilbert space of analytic
functions on By such that Hol(By) is densely contained in #, and we
have written H = {f : f € H} for the space of complex conjugates of
H. The space H is a Hilbert space with inner product (f, §)z = (g, f)#,
frgeH.

As in [2] or [14] we define the space of Hankel symbols

X(H)={beH: IC>0[pv,b)] < Cllollllvll Vi, 9 € Hol(Ba)}.

Note that for every b € X (H) the map_(gp,%) — (1), b) extends to
be a bounded sesquilinear form on X x H. Thus with each b € X (H)
we may associate the Hankel operator H, € B(H,H),

<Hb907@>ﬁ = <g0w7 b)H? P, w € HOI(E)

If H = H?(OD), then this definition of Hankel operator differs by a
rank 1 operator from the common definition as operator H?(0D) —
H?(0D)* C L*(0D). For the Bergman space L2(B;) = {f € Hol(By) :
de |f]?dV < oo}, this definition coincides with what is typically re-
ferred to as little Hankel operator.

It is known that in many cases Carleson measures can be used to
describe X(#H). In particular, this is known to be true for H?(0By),
L%(B,), and the Dirichlet space of one variable, D = {f € Hol(D) :
'€ LZ(D)}. In fact, X(H?*(0B;)) = BMOA(B,) and this equals

{b € H?(0By) : |Rb|*(1 — |2|*)dV is a Carleson measure for H?(OBy)}

(see [6] or [18], Theorem 5.14). Similarly, X' (L?(B,)) is the Bloch space
B, which also can be described as

{b € L2(By) : |Rb|*(1 — |2|?)?dV is a Carleson measure for L?(B,)},
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(see, e.g. [18]). Furthermore, in [2] it was shown that for the Dirichlet
space

X(D)={be D:|V|*dA is a Carleson measure for D}.
For the Drury-Arveson space we will prove the following:
Theorem 1.1. CH2 C X(H?) C B.

This theorem implies that My C X(H3), and it is this observation
that will be important for the rest of the paper.

We use Lat(M,, H?) to denote the lattice of invariant subspaces of
the d-shift. One checks that for i =1, ..,d one has

(Hy(zif), )37 = (Hyf, 2:0)57 for all f € H and ¢ € Hol(D).

This implies for each b € X(H?) that ker H, € Lat(M,, H3). More-
over, we have the following theorem.

Theorem 1.2. If (0) # M € Lat(M,, H?), then there are {b,},>0 C
X(H2) such that

M = m keI‘an.

n>0

We mentioned before that it follows from Beurling’s theorem that
every invariant subspace of the unilateral shift (M., H?) equals the
kernel of a bounded Hankel operator. Similarly, it was shown in [10]
that every invariant subspace M of the Dirichlet shift (M., D) satisfies
M = ker H, for some b € X (D). For the Bergman space no direct ana-
log of such a theorem can hold (see [17]). We will present an example
showing that if d > 1 one cannot expect to represent every invariant
subspace as the null space of a single Hankel operator (see Example
4.3).

In the later parts of our paper, we will apply Theorem 1.2 together
with the insight from [6] that X'(#) is the dual of the space of weak
products of H. For a space H of analytic functions on By, the weak
product is defined as

HOH= {Zfigi g €M) N Fllgill < OO} :
i=1 =1

A norm on H ® H is given by

[[2]] . = inf {Z 1 fillllgsll = 7o = Zfigi} .
i=1 i=1
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It is known, for example, that H?(0B,;) © H*(0B;) = H'(0B,;) and
L3(By) ® L2(By) = L (By) (see [6]). We refer the reader to [6] and [2]
for details and further motivation for weak products.

For the Drury-Arveson space we don’t have a natural candidate for
what the weak product should be, thus we just define

H)=H;® Hj.
Note that since 1 € H3 we have H3 C H}. Furthermore, we have that
(Hy)* = X(Hj), where the duality is given by Ly(h) = (h,b)y2 for
be X(H?) and h = Y7 iy € Hol(By) C H} (see [14], Theorem
1.3).

If Y is a Banach space of analytic functions, then a function f is
called cyclic in ) if the polynomial multiples of f are dense in ). If
the polynomials are dense in ), then a function is cyclic if and only
if there is a sequence {p,} of polynomials such that p,f — 1. It is
thus obvious from the continuous inclusion H3 C H} that any f € H>
which is cyclic in H2 must also be cyclic in H}. The following corollary
implies that f € H3 is cyclic in H3 if and only if it is cyclic in H}. For
clarity, if S C H2, then we write clos1S for the closure of S in A, L

Corollary 1.3. Let M € Lat(M,, H?), then
M= Hin closgi M.

We note that this is analogous to Theorem 1.2 of [10], where the
corollary is proved for the Dirichlet space.

For H?(0D) with 1 < p < oo, the cyclic functions are the outer
functions. For other spaces, such as the Bergman space L?(ID) or the
Dirichlet space D, it is an open problem to characterize cyclicity. For
the Drury-Arveson space, we prove the following theorem.

Theorem 1.4. If f,g and fg € H3, then fg is cyclic in H3 if and
only if both f and g are cyclic in H3.

In particular, it follows that if f and 1/f € H3, then f is cyclic
in H2. It was shown by Borichev and Hedenmalm in [4] that there is
f € L%(D) such that 1/f € L?(D), but f is not cyclic in L2(D). We will
provide details in Section 4, but is easy to see that this result implies
Theorem 1.4 cannot hold for H?(dB,). For the Dirichlet space, the
analogue of Theorem 1.4 was proved in [13] by use of cut-off functions
and a formula of Carleson for the Dirichlet integral of an outer function.
Our current proof also reproves the Dirichlet space result and it avoids
all those technicalities.

By considering the first radial derivative, it is fairly easy to see that
for d < 3, whenever f € H? such that 1/f is bounded in B, then
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1/f € H2. Thus such f must be cyclic in H2. For d > 4 we were able
to show such a result only under the extra hypothesis that f be in the
Bloch space B.

Theorem 1.5. If f € HiNB, and if there is ¢ > 0 such that | f(z)| > ¢
for all z € By, then 1/f € H3, and f is cyclic in H3.

The Corona theorem is known to hold for My (see [7]), thus any
multiplier of H? that is bounded below must be cyclic. The inclusions
My C H*®(By) C B show that Theorem 1.5 generalizes this fact. In
Theorem 5.4, we prove another result that can be considered a general-
ization of the one function Corona Theorem (and the result is verified
for spaces that include cases for which the Corona theorem is not known
to hold).

In order to prove our results it is convenient to consider a one-
parameter family of Hilbert spaces H, for real v > 0. We define H,
to be the Hilbert space of analytic functions in B; with reproducing
kernel k) (z) = m As we will explain (and is well-known), this
family of includes certain weighted Bergman and Besov spaces. We
have chosen the somewhat non-standard notation for the parameter
because of our extensive use of reproducing kernel techniques. In this
paper our emphasis is on the Drury-Arveson space, but we note that
for 0 < 7 < 1 the reproducing kernels are complete Nevanlinna-Pick
kernels and all of our results hold in that setting as well.

2. EQUIVALENCE OF BILINEAR FORMS

The family of spaces H, defined above includes several well stud-
ied spaces such as H; = H2, Hq = H*(0B,), and Hgy = L3(By).
Furthermore, for v > d, the norm on H, can be expressed as follows

||fH»2y = Cy /|<1 |f(Z>|2(l . |Z|2>7_d_1dv(z)7cV _ (’y — 1) d‘ (’7 - d)’

(see [18]). In particular, we see that for v > d, the space H, is a
weighted Bergman space.

We will need to make some precise calculations with the inner prod-
uct on H., and we will make use of multiindex notation. Let v > 0,
set ap, = 1, and for k > 1 let

_(y+E=1\ _ 20+ --(y k1)
Pom\ k)T K

(2.1)
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Then
al!
B = Yoo = Y, 3 2o
k>0 k>0 lal=k
Hence for f(z) =), f(a)z™ we have

al |«
112 =3 3 i

k=0 F |al=k

Note that if f = Zkzo fr, where f; is a homogeneous polynomial of
degree k, then

1
(2:2) Hf|!3=Z|!ka3=Za—|!fk\|?-

k>0 k>0 R

It follows from the definition of the radial derivative R = Zl L Zine az
that for any multiindex o we have that Rz® = |a|z®. Hence Rf =

Zkzo kf, and

(Rf,g)y = (. Roby = 3 Uil

k>0 k.

whenever the series converges.

We further note that (2.1) implies that an analytic function f € H,
if and only if Rf € H,42. Thus if n > 1, then f € H3 if and only if
R'f € Hiton.

Lemma 2.1. Let b € H3. Then the following are equivalent:
(a) be X(H]),
(b) there is an integer n > 0 and a C' > 0 such that
{0, R"b)nia] < Cliglhll¥lly for all 0,4 € Hol(Ba),
(c) for all integers m > 0 there is a C' > 0 such that
(v, B"b)nsa| < Cliglhll¥lly for all @, 4 € Hol(Ba).

Proof. 1t is trivial that (c) implies (a) and that (a) implies (b), hence
we only need to show the implication (b) = (¢). This will follow, if we
show that for each integer n > 0 there is a ¢ > 0 such that

1
(2.3)  |{pt, BO)nar — = (99, R b) 2| < cllollull ]Il

Let f € Hol(By), and let b = Yoesobr and f = 7, o fi be the

homogeneous expansions of b and f. We know that R"b € H!™?" for
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each n > 0, thus the series (f, R"b)n11 = D15 %(fk, bi)1 converges
absolutely. ’

Since Z:—:ﬁ =1+ niﬂ one easily proves from (2.2) that

1
(B Bner = (s B D) + g (L B D)

Thus
U R — ——(f R ) in] < 57— [ fella ]
) n+1 n+1 3 n+2| > g2 klll k|1
k>0 ’
1/2
ak72k2n
<[ £]l2 (Z - ||bk||%)
>0 Ak 2
< ¢l £llbll
< ol llallbls

for some ¢ > 0. The second to last inequality followed since for each n
we have ay 41 ~ (k+1)" as k — oo (see e.g. [16], p. 58.) Thus there

2n
is a ¢ > 0 such that for all £k > 0 one has a’;‘Qk < i
A n+2 +1

In [14] (see Theorem 1.4), it was shown that for any reproducing ker-
nel Hilbert space H (k) with reproducing kernel k one has a contractive
inclusion H (k) ®H (k) C H(k?). We apply this with k& = k', the Drury-
Arveson kernel, to obtain [l < ||¢||1]j2]|1 for all ¢,¢ € Hol(By).
Inequality 2.3 then follows by substituting f = (1 in the earlier esti-
mate. [

3. HANKEL OPERATORS AND CARLESON EMBEDDINGS

We start by stating a special case of a theorem from [5]. Note that
ifneN,n>(d—1)/2and b € Hol(By), then the Carleson measure
condition

[ FPIRSP(L= PP tav < Ol

By
says that the function R"b defines a bounded multiplication operator
from H? to Hapy1. It was shown in [5] that this condition on b is
independent of n, that one may even take any n € N, and that the
analogous statement holds for all A, v > 0.

Lemma 3.1. (Special case of Proposition 3.6 of [5]) Let v > 0 and
be H,. The following are equivalent:
(a) There is n > 1 and a constant ¢ > 0 such that

HfRanw—I—Qn < C||f||7 Jor all f € HV'
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(b) For every n > 1 there is a constant ¢ > 0 such that

HfRan%i—?n < CHva Jor all f € HW'

We define the space CH, to be the collection of functions that satisfy
(a) and (b) of the Lemma. They are the functions that satisfy a Car-
leson embedding condition that is appropriate for the space H,. Also
note that the space CH? equals CH;. Furthermore, in [5], they prove
the following inequalities regarding CH,, that will be useful for us.

Lemma 3.2. (Special case of Proposition 3.6 of [5]) Let v > 0. If
b € CH,, then b is in the Bloch space B and for each n > 1 and
0 <k <n there is ¢ > 0 such that

IR FR"0)[las2n < cllfll,
forall f € H,.

Proof. (of Theorem 1.1) We start by proving the second inclusion. Let
k., be the reproducing kernel for the Drury-Arveson space and Ry be
the radial derivative with respect to the w variables. Then Rgk, =
(kw — 1)ky, hence for b € X(H3) we have

C

_ _ < 2o —
[ Bb(w)] = [((kw = Dkw, )] < cllkull” = 7— wl?

It follows that b € B.
We will show now that for b € CH? = CH, and for sufficiently large
n one has

[(R*"(@v), R™b)sn1| < Cllllllr-

Then the first inclusion of the theorem will follow from Lemma 2.1 and
the identity (i, R*"b)sn i1 = (R*(¢1)), R"b)3p 1.

Let n be a natural number such that n > %2, Then (R*™(pv)), R"b)3,41
is an inner product for a weighted Bergman space and

2n

n n 2 n— n

(R (1), B0 = 3 () (R Ry, B
k=0

The theorem will follow, if we can bound each term of the sum. By
symmetry, it suffices to consider 0 < k < n. In this case we have
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2(n+k)—d>—1and 2(2n — k) —d > —1, hence

(REFR g, Bayer| S [ IRFRGRM(1 — [2) v
B
’ 1/2

5 ( |kaRnb|2(1 . |Z|2)2(n+k)—ddv>
By

1/2
( ’R2nfkg|2(1 . ’2‘2)2(2nk)ddV)
Bg

~ ||kaRan2(n+k)+lHR2n7kgH2(2n—k)+1
S I lllglls

where the last inequality follows from Lemma 3.2. [ |

Remark: In [5] the authors characterize certain Toeplitz and Hankel
operators on weighted Besov spaces. The Hankel operators are big
Hankel operators, and they are different from the operators considered
here. However, it is notable that for H = H? the characterization of
the Hankel operators in [5] also involves the space CH3.

4. INVARIANT SUBSPACES AND HANKEL OPERATORS

The following Lemma is elementary, see [10], Lemma 2.2 (a).

Lemma 4.1. Ifb € X(H?2), then ker H, = [b]}+, where we have written

* J

b« for the smallest M} -invariant subspace containing b.

Theorem 4.2. Let M € Lat(M,, H3), M # (0), then there are
{bp}ns0 C X(H3) such that

M = ﬂ ker Hy, .

n>0

Proof. Let Py be the projection onto M, then since k) is a complete
Nevanlinna-Pick kernel it follows from a theorem of McCullough and
Trent [11] (also see [3]) that [\(z) = %(*Z()Z) is positive definite, and
that if {¢,} is any orthonormal basis of the Hilbert function space #H(()
with reproducing kernel [)(z), then each ¢, is a multiplier of H3 and
Py =39 My, M7 . Thus, every function in H([) is a multiplier of
H2,

Of course, for each A € By we have [, € H(l), hence [, € M. Since
k) € M, this implies that

PMLI{?)\ =ky— Puky =k, — k), e My C X(Hs)
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Then M* =/, g [PrrFal. Tt is now clear that there is a countable
set {A\,} C B, such that

M= [Pk )F = (ker Hp s, .

n>0 n>0

Example 4.3. Let d > 2 and consider
of
m={senz: 0=

Then M € Lat(M,, H?) and dim M+ = d + 1 > 3. The functions in
M+ are the polynomials of degree less than or equal to 1. If b is any
such polynomial, then for each ¢ we have M} b is a constant function,
hence ker H;- = [b], is at most two-dimensional. Hence M cannot be
the kernel of a single Hankel operator.

Recall from the Introduction that (H})* = X(H3), where for each
b € X(H2) and ¢,v € Hol(B,) the duality is given by Ly(pt) =
(e, b).
Lemma 4.4. Let f € H2 b€ X(H?), and p € Hol(B,). Then
ALbOpj) ::<¢j:b>Hg ::<]7bf7Q»}f?

Proof. Let 1, be a sequence of polynomials such that ¢, — f in H3.
Then ¢v, — ¢f in H and Hy,, — H,f in H3. Hence the lemma
follows by approximation since it is true by definition if f replaced by

Up. |
Theorem 4.5. Let M € Lat(M,, H3), then
M= Hin closgi M.

(0) =0 for i = L...,d}.

Consequently, a function f € H? is cyclic in H? if and only if it is
cyclic in HJ.

Proof. Tt is clear that M C Hj N closyiM. Let f ¢ M. Then by
Theorem 4.2 there is a b € X (H3) such that M C ker H, and H,f # 0.
Thus there is a multiindex a such that (H, f,2%) # 0. If f € clos;n M,
then there are f, € M such that f, — f in H}. This implies that
2%f, — 2°f in HY. Hence 0 = (Hyf,,2%) = Ly(2°f,) — Lp(22f) =
(Hpf,2%). This contradiction shows that f ¢ closyi M. |

Theorem 4.6. Let f,g € H3.

(a) If fg € Hy, then fg € [f]N]g].
(b) If fg € H? and if f is cyclic in H?, then [fg] = [g].
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(c) If fg € H3, then fg is cyclic in H3, if and only if both f and g
are cyclic in H3.
(d) If f,1/f € H3, then f is cyclic in H3.

Note that if f,g € H® N H3, then fg € H3. One can check this by
verifying that for n > (d — 1)/2

2n

2 _
R2nf9 = Z ( ]?) kaRQn kg € Hupta.

k=0

Indeed, it is enough to verify the inclusion for each summand individu-
ally, and by symmetry, one only needs to consider the cases 0 < k < n.
In those cases one can use | R***g[|4n_opy1 = [lg]1 and H> C B and
hence (1 — |2|?)*|R* f(2)] < ¢ (see [18]).

Similarly, we note that if f,g € CHy, then fg € HZ. In this case we
have [R(fg)lls < lgRflls + | FRglls < o0, hence R(fg) € Hs.

Proof. (a) Suppose that f,g and fg € H3. Since the polynomials are
dense in H?, there is a sequences p,, of polynomials such that p, — f

in H2. Then ||p,g — fgll« < |lpn — f||H§||g||H§, hence p,g — fg in H).
Thus

fg€ Hin closylg] = [g].

Similarly fg € [f].

(b) Now additionally suppose that f is cyclic in H3. By (a) we have
(fg] C [g] and it suffices to show that g € [fg]. Since f is cyclic,
there is a sequence of polynomials p, such that p,f — 1 in H2. Then
as in part (a) of the proof it follows that p,fg — ¢ in H). Hence
g € HiN closy(fg] = [fg].

(c) If fg is cyclic in H2, then by (a) H2 = [fg] C [f] N [g]. Hence
both f and ¢ must be cyclic. Conversely, if both f and g are cyclic,
then by (b) [fg] = [g] = H2.

(d) follows from (c) by taking g =1/f. ]

Remark: We now show that Theorem 4.6 (d) does not hold for Hs.
The reproducing kernel for the single variable Bergman space L2 is
kw(z) = (1 —wz)"2 By use of the kernel it is easy to see that the
operator T : L? — Hy given by (Tf)(z1,...,24) = f(21) is isometric.
Now let f € L? be a function such that 1/f € L2, but f is not cyclic
in L2. The existence of such functions is due to [4]. It is easy to see
that then g = T'f satisfies g,1/g € H,, but g is not cyclic in Hs.
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5. FUNCTIONS THAT ARE BOUNDED BELOW IN By

It is clear that the case v = 1 of the following Theorem when com-
bined with Theorem 4.6 (d) implies Theorem 1.5.

Theorem 5.1. Let v > 0. If f € H,N B and % € H>, then % € H,.

In order to verify the conclusion of this theorem we will need to
work with R™ (%) for sufficiently large m. For this we will need some

preliminary remarks and a lemma.
Let f € Hol(By) and m € N. We define A,, to be the set of all
m-tuples n = (11, ..., N,) which satisfy > ", in; = m, and we write

T,(f) = [ (R
i=1
Then Faa di Bruno’s formula for the higher order derivatives of a
composition (see [9]) gives

1 m! (=) A (1)’“
e (2) - 3 MU (1 5
7= F e LG
Since ||%HV ~ ||Rm%||,y+2m and the assumption of the theorem implies

that % is a multiplier of H.,9,,, whenever v + 2m > d, it follows that
the next lemma implies Theorem 5.1.

Lemma 5.2. Let v >0 and m € N. If f € H, N B, then

1T (f)lly2m < 00
for any m-tuple n = (N1, ..., M) € Ap.

Proof. Fix n = (m,...,mm) € An. For j € N, let B; be those |n|-tuples
B = (b1, ..., Biy) which satisfy |5] = j. Then by writing powers as prod-
ucts of single terms, one sees that there is a function g : {1,...,|n|} —
{1,...,m} which satisfies T,,(f) = Hlﬂl RID . Note that this implies
that 3217, g(i) = S i = m.

Now choose j > @, and for each 8 € B; choose an index ig such that
Bis > ‘f7—| > d/2. This is possible since |3| = j. Then 2(8;,+g(ig))+v >
d. Since f € B, for any n € N we have that (1 — |2]?)"|R"f(2)] is
bounded in By (see [18], Theorem 3.5), hence there is a C' > 0 such
that

||
(1-— |z|2>(j+m) H |R6i+g(i)f(z)| <C(1— |z|2)5i5+9(i5)|Rﬁiﬁ+g(i5)f(z)|.

=1
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Here we also used that Z'z":'l Bi+g(i) =7 +m.
Finally, by the Leibniz rule, we have that

1T (Nllrszm =~ NRT () ls20me)

Y+2(m+7)
I
< Z HR,BH-Q(Z)]‘
per = Y 2(m+5)
< RPts +9(t,6)f
~ 56% Y+2(Beg+a(ts))
and the result follows since f € H,. [ |

We mentioned in the Introduction that in the special case of the pre-
vious theorem where f € My and 1/f € H*, then by the one function
case of Corona theorem for My one has 1/f € My (see [7]). That
result was also proved by Fang and Xia in [8]. The next theorem es-
tablishes the same conclusion in the context of H.,, v > 0, and without
assuming that f be bounded. The proof is also significantly shorter
than [8].

Lemma 5.3. If 0 <y < (3, then CH, C CHg.

Proof. Set e = f —~ > 0 and let b € CH,. By Lemma 3.1 with n =1
this implies that Mg, : H, — H, 5 is bounded. Using adjoints and
reproducing kernels, we see that this is equivalent to the existence of
C > 0 such that Ck)%(2) — Rb(z)Rb(w)k] (2) is positive definite. We
multiply this by &5 (z) and apply the Schur product theorem (see [1],

Theorem A.1) and obtain that Ck?*2(2) — Rb(2) Rb(w)k? () is positive
definite. This implies that b € CHp. |

Theorem 5.4. If f € CH.,, and if there is a constant ¢ > 0 such that
|f(2)| > ¢ for all z € By, then % is a multiplier for H..

Proof. If f € CH, then by Lemma 5.3 we have that f € CH,,, for all
n € Ny. Since for large n the space H,, is a weighted Bergman space
the hypothesis implies that 1/ f is a multiplier of H.,, for sufficiently
large n. Thus the theorem will follow inductively from the claim:
Claim: If f € CH 4, and if 1/f is a multiplier of H,4,40, then 1/f
is a multiplier of H,,,.
Let g € H,4y. Then
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|2 ()l.....=171... %7
Y+n f Y+n+2 f y+n+2 f

SRl ynve + 9B f [hns2 S N9llyn.
Here the last inequality followed from Lemma 3.1.

I
f

v+n+2
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