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Abstract. We show that every nonzero invariant subspace of the
Drury-Arveson space H2

d of the unit ball of Cd is an intersection of
kernels of little Hankel operators. We use this result to show that
if f and 1/f ∈ H2

d , then f is cyclic in H2
d .

1. Introduction

It follows from Beurling’s characterization of the invariant subspaces
of the unilateral shift acting on H2 = H2(∂D) of the unit circle that
every such invariant subspace equals the null space of a Hankel op-
erator. Since the symbols of bounded Hankel operators on H2 are
given by BMOA functions, this observation ties the operator theory
surrounding the unilateral shift to the H1-BMO duality and its con-
nection with Carleson measures. In this paper we will exhibit an anal-
ogy of this for the d−shift and the Drury-Arveson space of the unit
ball Bd = {z ∈ Cd : |z| < 1}, d ≥ 1.

For some information about the significance of the Drury-Arveson
space, we direct the reader’s attention to the survey article [15]. The
Drury-Arveson space H2

d is the space of analytic functions on Bd with

reproducing kernel kw(z) = 1
1−〈z,w〉 , where 〈z, w〉 =

∑d
i=1 ziwi. The

operator tuple Mz = (Mz1 , ..,Mzd) acting on H2
d is called the d-shift.

Let Rf =
∑d

i=1 zi
∂f
∂zi

denote the radial derivative of a holomorphic
function f . It is well-known and easy to check that an analytic function
f on Bd is in H2

d if and only if
∫
Bd
|Rnf |2(1−|z|2)2n−ddV <∞ for some

(or equivalently for all) n > (d−1)/2. Here we have used dV to denote
normalized Lebesgue measure on Bd. In Section 2 of this paper, we
provide more detail about the norm on H2

d and its connection to the
norms of weighted Bergman spaces.
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We will write

Md = {ϕ ∈ Hol(Bd) : ϕf ∈ H2
d for all f ∈ H2

d}

for the multiplier algebra of H2
d . It was shown in [12] that

Md = H∞(Bd) ∩ CH2
d ,

where H∞(Bd) denotes the algebra of bounded analytic functions on
Bd and CH2

d is is the space of functions b ∈ H2
d such that |Rnb|2(1 −

|z|2)2n−ddV is a Carleson measure for H2
d for some (or equivalently for

all) n > (d − 1)/2. Recall that a positive measure µ on Bd is called a
Carleson measure for a Hilbert function space H if there is a C > 0
such that

∫
Bd
|f |2dµ ≤ C‖f‖2 for all f ∈ H; see Section 3 and Lemmas

3.1 and 3.2 for more information about the space CH2
d .

The results of this paper are based on the theory of Hankel operators
which map H into H. Here H denotes a Hilbert space of analytic
functions on Bd such that Hol(Bd) is densely contained in H, and we
have written H = {f : f ∈ H} for the space of complex conjugates of
H. The spaceH is a Hilbert space with inner product 〈f, g〉H = 〈g, f〉H,
f, g ∈ H.

As in [2] or [14] we define the space of Hankel symbols

X (H) = {b ∈ H : ∃ C > 0 |〈ϕψ, b〉| ≤ C‖ϕ‖‖ψ‖ ∀ϕ, ψ ∈ Hol(Bd)}.

Note that for every b ∈ X (H) the map (ϕ, ψ) → 〈ϕψ, b〉 extends to
be a bounded sesquilinear form on H×H. Thus with each b ∈ X (H)
we may associate the Hankel operator Hb ∈ B(H,H),

〈Hbϕ, ψ〉H = 〈ϕψ, b〉H, ϕ, ψ ∈ Hol(Bd).

If H = H2(∂D), then this definition of Hankel operator differs by a
rank 1 operator from the common definition as operator H2(∂D) →
H2(∂D)⊥ ⊆ L2(∂D). For the Bergman space L2

a(Bd) = {f ∈ Hol(Bd) :∫
Bd
|f |2dV < ∞}, this definition coincides with what is typically re-

ferred to as little Hankel operator.
It is known that in many cases Carleson measures can be used to

describe X (H). In particular, this is known to be true for H2(∂Bd),
L2
a(Bd), and the Dirichlet space of one variable, D = {f ∈ Hol(D) :

f ′ ∈ L2
a(D)}. In fact, X (H2(∂Bd)) = BMOA(Bd) and this equals

{b ∈ H2(∂Bd) : |Rb|2(1− |z|2)dV is a Carleson measure for H2(∂Bd)}

(see [6] or [18], Theorem 5.14). Similarly, X (L2
a(Bd)) is the Bloch space

B, which also can be described as

{b ∈ L2
a(Bd) : |Rb|2(1− |z|2)2dV is a Carleson measure for L2

a(Bd)},
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(see, e.g. [18]). Furthermore, in [2] it was shown that for the Dirichlet
space

X (D) = {b ∈ D : |b′|2dA is a Carleson measure for D}.

For the Drury-Arveson space we will prove the following:

Theorem 1.1. CH2
d ⊆ X (H2

d) ⊆ B.

This theorem implies that Md ⊆ X (H2
d), and it is this observation

that will be important for the rest of the paper.
We use Lat(Mz, H

2
d) to denote the lattice of invariant subspaces of

the d-shift. One checks that for i = 1, .., d one has

〈Hb(zif), ψ〉H = 〈Hbf, ziψ〉H for all f ∈ H and ψ ∈ Hol(D).

This implies for each b ∈ X (H2
d) that kerHb ∈ Lat(Mz, H

2
d). More-

over, we have the following theorem.

Theorem 1.2. If (0) 6=M ∈ Lat(Mz, H
2
d), then there are {bn}n≥0 ⊆

X (H2
d) such that

M =
⋂
n≥0

kerHbn .

We mentioned before that it follows from Beurling’s theorem that
every invariant subspace of the unilateral shift (Mz, H

2) equals the
kernel of a bounded Hankel operator. Similarly, it was shown in [10]
that every invariant subspaceM of the Dirichlet shift (Mz, D) satisfies
M = kerHb for some b ∈ X (D). For the Bergman space no direct ana-
log of such a theorem can hold (see [17]). We will present an example
showing that if d > 1 one cannot expect to represent every invariant
subspace as the null space of a single Hankel operator (see Example
4.3).

In the later parts of our paper, we will apply Theorem 1.2 together
with the insight from [6] that X (H) is the dual of the space of weak
products of H. For a space H of analytic functions on Bd, the weak
product is defined as

H�H =

{
∞∑
i=1

figi : fi, gi ∈ H,
∞∑
i=1

‖fi‖‖gi‖ <∞

}
.

A norm on H�H is given by

‖h‖∗ = inf

{
∞∑
i=1

‖fi‖‖gi‖ : h =
∞∑
i=1

figi

}
.
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It is known, for example, that H2(∂Bd) � H2(∂Bd) = H1(∂Bd) and
L2
a(Bd)� L2

a(Bd) = L1
a(Bd) (see [6]). We refer the reader to [6] and [2]

for details and further motivation for weak products.
For the Drury-Arveson space we don’t have a natural candidate for

what the weak product should be, thus we just define

H1
d = H2

d �H2
d .

Note that since 1 ∈ H2
d we have H2

d ⊆ H1
d . Furthermore, we have that

(H1
d)∗ = X (H2

d), where the duality is given by Lb(h) = 〈h, b〉H2
d

for

b ∈ X (H2
d) and h =

∑n
i=1 ϕiψi ∈ Hol(Bd) ⊆ H1

d (see [14], Theorem
1.3).

If Y is a Banach space of analytic functions, then a function f is
called cyclic in Y if the polynomial multiples of f are dense in Y . If
the polynomials are dense in Y , then a function is cyclic if and only
if there is a sequence {pn} of polynomials such that pnf → 1. It is
thus obvious from the continuous inclusion H2

d ⊆ H1
d that any f ∈ H2

d

which is cyclic in H2
d must also be cyclic in H1

d . The following corollary
implies that f ∈ H2

d is cyclic in H2
d if and only if it is cyclic in H1

d . For
clarity, if S ⊆ H2

d , then we write closH1
d
S for the closure of S in H1

d .

Corollary 1.3. LetM∈ Lat(Mz, H
2
d), then

M = H2
d ∩ closH1

d
M.

We note that this is analogous to Theorem 1.2 of [10], where the
corollary is proved for the Dirichlet space.

For Hp(∂D) with 1 ≤ p < ∞, the cyclic functions are the outer
functions. For other spaces, such as the Bergman space L2

a(D) or the
Dirichlet space D, it is an open problem to characterize cyclicity. For
the Drury-Arveson space, we prove the following theorem.

Theorem 1.4. If f, g and fg ∈ H2
d , then fg is cyclic in H2

d if and
only if both f and g are cyclic in H2

d .

In particular, it follows that if f and 1/f ∈ H2
d , then f is cyclic

in H2
d . It was shown by Borichev and Hedenmalm in [4] that there is

f ∈ L2
a(D) such that 1/f ∈ L2

a(D), but f is not cyclic in L2
a(D). We will

provide details in Section 4, but is easy to see that this result implies
Theorem 1.4 cannot hold for H2(∂B2). For the Dirichlet space, the
analogue of Theorem 1.4 was proved in [13] by use of cut-off functions
and a formula of Carleson for the Dirichlet integral of an outer function.
Our current proof also reproves the Dirichlet space result and it avoids
all those technicalities.

By considering the first radial derivative, it is fairly easy to see that
for d ≤ 3, whenever f ∈ H2

d such that 1/f is bounded in Bd, then
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1/f ∈ H2
d . Thus such f must be cyclic in H2

d . For d ≥ 4 we were able
to show such a result only under the extra hypothesis that f be in the
Bloch space B.

Theorem 1.5. If f ∈ H2
d ∩B, and if there is c > 0 such that |f(z)| ≥ c

for all z ∈ Bd, then 1/f ∈ H2
d , and f is cyclic in H2

d .

The Corona theorem is known to hold for Md (see [7]), thus any
multiplier of H2

d that is bounded below must be cyclic. The inclusions
Md ⊆ H∞(Bd) ⊆ B show that Theorem 1.5 generalizes this fact. In
Theorem 5.4, we prove another result that can be considered a general-
ization of the one function Corona Theorem (and the result is verified
for spaces that include cases for which the Corona theorem is not known
to hold).

In order to prove our results it is convenient to consider a one-
parameter family of Hilbert spaces Hγ for real γ > 0. We define Hγ

to be the Hilbert space of analytic functions in Bd with reproducing
kernel kγλ(z) = 1

(1−〈z,λ〉)γ . As we will explain (and is well-known), this

family of includes certain weighted Bergman and Besov spaces. We
have chosen the somewhat non-standard notation for the parameter
because of our extensive use of reproducing kernel techniques. In this
paper our emphasis is on the Drury-Arveson space, but we note that
for 0 < γ ≤ 1 the reproducing kernels are complete Nevanlinna-Pick
kernels and all of our results hold in that setting as well.

2. Equivalence of bilinear forms

The family of spaces Hγ defined above includes several well stud-
ied spaces such as H1 = H2

d , Hd = H2(∂Bd), and Hd+1 = L2
a(Bd).

Furthermore, for γ > d, the norm on Hγ can be expressed as follows

‖f‖2γ = cγ

∫
|z|<1

|f(z)|2(1− |z|2)γ−d−1dV (z), cγ =
(γ − 1) · · · (γ − d)

d!
,

(see [18]). In particular, we see that for γ > d, the space Hγ is a
weighted Bergman space.

We will need to make some precise calculations with the inner prod-
uct on Hγ, and we will make use of multiindex notation. Let γ > 0,
set a0,γ = 1, and for k ≥ 1 let

ak,γ =

(
γ + k − 1

k

)
=
γ(γ + 1) · · · (γ + k − 1)

k!
.(2.1)
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Then

kγλ(z) =
∑
k≥0

ak,γ〈z, λ〉k =
∑
k≥0

ak,γ
∑
|α|=k

|α|!
α!

zαλ
α
.

Hence for f(z) =
∑

α f̂(α)zα we have

‖f‖2γ =
∞∑
k=0

1

ak,γ

∑
|α|=k

α!

|α|!
|f̂(α)|2.

Note that if f =
∑

k≥0 fk, where fk is a homogeneous polynomial of
degree k, then

‖f‖2γ =
∑
k≥0

‖fk‖2γ =
∑
k≥0

1

ak,γ
‖fk‖21.(2.2)

It follows from the definition of the radial derivative R =
∑d

i=1 zi
∂
∂zi

that for any multiindex α we have that Rzα = |α|zα. Hence Rf =∑
k≥0 kfk and

〈Rf, g〉γ = 〈f,Rg〉γ =
∑
k≥0

k

ak,γ
〈fk, gk〉1,

whenever the series converges.
We further note that (2.1) implies that an analytic function f ∈ Hγ

if and only if Rf ∈ Hγ+2. Thus if n ≥ 1, then f ∈ H2
d if and only if

Rnf ∈ H1+2n.

Lemma 2.1. Let b ∈ H2
d . Then the following are equivalent:

(a) b ∈ X (H2
d),

(b) there is an integer n ≥ 0 and a C > 0 such that

|〈ϕψ,Rnb〉n+1| ≤ C‖ϕ‖1‖ψ‖1 for all ϕ, ψ ∈ Hol(Bd),

(c) for all integers n ≥ 0 there is a C > 0 such that

|〈ϕψ,Rnb〉n+1| ≤ C‖ϕ‖1‖ψ‖1 for all ϕ, ψ ∈ Hol(Bd).

Proof. It is trivial that (c) implies (a) and that (a) implies (b), hence
we only need to show the implication (b)⇒ (c). This will follow, if we
show that for each integer n ≥ 0 there is a c > 0 such that∣∣∣∣〈ϕψ,Rnb〉n+1 −

1

n+ 1
〈ϕψ,Rn+1b〉n+2

∣∣∣∣ ≤ c‖ϕ‖1‖ψ‖1‖b‖1.(2.3)

Let f ∈ Hol(Bd), and let b =
∑

k≥0 bk and f =
∑

k≥0 fk be the

homogeneous expansions of b and f . We know that Rnb ∈ H1+2n for
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each n ≥ 0, thus the series 〈f,Rnb〉n+1 =
∑

k≥0
kn

ak,n+1
〈fk, bk〉1 converges

absolutely.
Since

ak,n+2

ak,n+1
= 1 + k

n+1
one easily proves from (2.2) that

〈f,Rnb〉n+1 = 〈f,Rnb〉n+2 +
1

n+ 1
〈f,Rn+1b〉n+2.

Thus∣∣∣∣〈f,Rnb〉n+1 −
1

n+ 1
〈f,Rn+1b〉n+2

∣∣∣∣ ≤∑
k≥0

kn

ak,n+2

‖fk‖1‖bk‖1

≤ ‖f‖2

(∑
k≥0

ak,2k
2n

a2k,n+2

‖bk‖21

)1/2

≤ c‖f‖2‖b‖2
≤ c‖f‖2‖b‖1

for some c > 0. The second to last inequality followed since for each n
we have ak,n+1 ∼ (k + 1)n as k →∞ (see e.g. [16], p. 58.) Thus there

is a c > 0 such that for all k ≥ 0 one has
ak,2k

2n

a2k,n+2
≤ c

k+1
.

In [14] (see Theorem 1.4), it was shown that for any reproducing ker-
nel Hilbert space H(k) with reproducing kernel k one has a contractive
inclusion H(k)�H(k) ⊆ H(k2). We apply this with k = k1, the Drury-
Arveson kernel, to obtain ‖ϕψ‖2 ≤ ‖ϕ‖1‖ψ‖1 for all ϕ, ψ ∈ Hol(Bd).
Inequality 2.3 then follows by substituting f = ϕψ in the earlier esti-
mate. �

3. Hankel operators and Carleson embeddings

We start by stating a special case of a theorem from [5]. Note that
if n ∈ N, n > (d − 1)/2 and b ∈ Hol(Bd), then the Carleson measure
condition ∫

Bd
|f |2|Rnb|2(1− |z|2)2n−ddV ≤ C‖f‖2H2

d

says that the function Rnb defines a bounded multiplication operator
from H2

d to H2n+1. It was shown in [5] that this condition on b is
independent of n, that one may even take any n ∈ N, and that the
analogous statement holds for all Hγ, γ > 0.

Lemma 3.1. (Special case of Proposition 3.6 of [5]) Let γ > 0 and
b ∈ Hγ. The following are equivalent:

(a) There is n ≥ 1 and a constant c > 0 such that

‖fRnb‖γ+2n ≤ c‖f‖γ for all f ∈ Hγ.
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(b) For every n ≥ 1 there is a constant c > 0 such that

‖fRnb‖γ+2n ≤ c‖f‖γ for all f ∈ Hγ.

We define the space CHγ to be the collection of functions that satisfy
(a) and (b) of the Lemma. They are the functions that satisfy a Car-
leson embedding condition that is appropriate for the space Hγ. Also
note that the space CH2

d equals CH1. Furthermore, in [5], they prove
the following inequalities regarding CHγ that will be useful for us.

Lemma 3.2. (Special case of Proposition 3.6 of [5]) Let γ > 0. If
b ∈ CHγ, then b is in the Bloch space B and for each n ≥ 1 and
0 ≤ k < n there is c > 0 such that

‖(Rkf)(Rn−kb)‖γ+2n ≤ c‖f‖γ

for all f ∈ Hγ.

Proof. (of Theorem 1.1) We start by proving the second inclusion. Let
kw be the reproducing kernel for the Drury-Arveson space and Rw be
the radial derivative with respect to the w variables. Then Rwkw =
(kw − 1)kw, hence for b ∈ X (H2

d) we have

|Rb(w)| = |〈(kw − 1)kw, b〉| ≤ c‖kw‖2 =
c

1− |w|2
.

It follows that b ∈ B.
We will show now that for b ∈ CH2

d = CH1 and for sufficiently large
n one has

|〈R2n(ϕψ), Rnb〉3n+1| ≤ C‖ϕ‖1‖ψ‖1.

Then the first inclusion of the theorem will follow from Lemma 2.1 and
the identity 〈ϕψ,R3nb〉3n+1 = 〈R2n(ϕψ), Rnb〉3n+1.

Let n be a natural number such that n > d−1
2

. Then 〈R2n(ϕψ), Rnb〉3n+1

is an inner product for a weighted Bergman space and

〈R2n(fg), Rnb〉3n+1 =
2n∑
k=0

(
2n
k

)
〈RkfR2n−kg,Rnb〉3n+1.

The theorem will follow, if we can bound each term of the sum. By
symmetry, it suffices to consider 0 ≤ k ≤ n. In this case we have
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2(n+ k)− d > −1 and 2(2n− k)− d > −1, hence

|〈RkfR2n−kg,Rnb〉3n+1| .
∫
Bd
|RkfR2n−kgRnb|(1− |z|2)3n−ddV

.

(∫
Bd
|RkfRnb|2(1− |z|2)2(n+k)−ddV

)1/2

(∫
Bd
|R2n−kg|2(1− |z|2)2(2n−k)−ddV

)1/2

≈ ‖RkfRnb‖2(n+k)+1‖R2n−kg‖2(2n−k)+1

. ‖f‖1‖g‖1,

where the last inequality follows from Lemma 3.2. �

Remark: In [5] the authors characterize certain Toeplitz and Hankel
operators on weighted Besov spaces. The Hankel operators are big
Hankel operators, and they are different from the operators considered
here. However, it is notable that for H = H2

d the characterization of
the Hankel operators in [5] also involves the space CH2

d .

4. Invariant subspaces and Hankel operators

The following Lemma is elementary, see [10], Lemma 2.2 (a).

Lemma 4.1. If b ∈ X (H2
d), then kerHb = [b]⊥∗ , where we have written

[b]∗ for the smallest M∗
z -invariant subspace containing b.

Theorem 4.2. Let M ∈ Lat(Mz, H
2
d), M 6= (0), then there are

{bn}n≥0 ⊆ X (H2
d) such that

M =
⋂
n≥0

kerHbn .

Proof. Let PM be the projection onto M, then since kλ is a complete
Nevanlinna-Pick kernel it follows from a theorem of McCullough and

Trent [11] (also see [3]) that lλ(z) = PMkλ(z)
kλ(z)

is positive definite, and

that if {ϕn} is any orthonormal basis of the Hilbert function space H(l)
with reproducing kernel lλ(z), then each ϕn is a multiplier of H2

d and
PM =

∑
n≥0MϕnM

∗
ϕn . Thus, every function in H(l) is a multiplier of

H2
d .
Of course, for each λ ∈ Bd we have lλ ∈ H(l), hence lλ ∈Md. Since

kλ ∈Md this implies that

PM⊥kλ = kλ − PMkλ = kλ − kλlλ ∈Md ⊆ X (H2
d).
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ThenM⊥ =
∨
λ∈Bd [PM⊥kλ]∗. It is now clear that there is a countable

set {λn} ⊆ Bd such that

M =
⋂
n≥0

[PM⊥kλn ]⊥∗ =
⋂
n≥0

kerHPM⊥kλn
.

�

Example 4.3. Let d ≥ 2 and consider

M =

{
f ∈ H2

d : f(0) =
∂f

∂zi
(0) = 0 for i = 1, ..., d

}
.

Then M ∈ Lat(Mz, H
2
d) and dimM⊥ = d + 1 ≥ 3. The functions in

M⊥ are the polynomials of degree less than or equal to 1. If b is any
such polynomial, then for each i we have M∗

zi
b is a constant function,

hence kerH⊥b = [b]∗ is at most two-dimensional. Hence M cannot be
the kernel of a single Hankel operator.

Recall from the Introduction that (H1
d)∗ = X (H2

d), where for each
b ∈ X(H2

d) and ϕ, ψ ∈ Hol(Bd) the duality is given by Lb(ϕψ) =
〈ϕψ, b〉.

Lemma 4.4. Let f ∈ H2
d , b ∈ X (H2

d), and ϕ ∈ Hol(Bd). Then
Lb(ϕf) = 〈ϕf, b〉H2

d
= 〈Hbf, ϕ〉H2

d
.

Proof. Let ψn be a sequence of polynomials such that ψn → f in H2
d .

Then ϕψn → ϕf in H1
d and Hbψn → Hbf in H2

d . Hence the lemma
follows by approximation since it is true by definition if f replaced by
ψn. �

Theorem 4.5. LetM∈ Lat(Mz, H
2
d), then

M = H2
d ∩ closH1

d
M.

Consequently, a function f ∈ H2
d is cyclic in H2

d if and only if it is
cyclic in H1

d .

Proof. It is clear that M ⊆ H2
d ∩ closH1

d
M. Let f /∈ M. Then by

Theorem 4.2 there is a b ∈ X (H2
d) such thatM⊆ kerHb and Hbf 6= 0.

Thus there is a multiindex α such that 〈Hbf, zα〉 6= 0. If f ∈ closH1
d
M,

then there are fn ∈ M such that fn → f in H1
d . This implies that

zαfn → zαf in H1
d . Hence 0 = 〈Hbfn, zα〉 = Lb(z

αfn) → Lb(z
αf) =

〈Hbf, zα〉. This contradiction shows that f /∈ closH1
d
M. �

Theorem 4.6. Let f, g ∈ H2
d .

(a) If fg ∈ H2
d , then fg ∈ [f ] ∩ [g].

(b) If fg ∈ H2
d and if f is cyclic in H2

d , then [fg] = [g].
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(c) If fg ∈ H2
d , then fg is cyclic in H2

d , if and only if both f and g
are cyclic in H2

d .
(d) If f, 1/f ∈ H2

d , then f is cyclic in H2
d .

Note that if f, g ∈ H∞ ∩H2
d , then fg ∈ H2

d . One can check this by
verifying that for n > (d− 1)/2

R2nfg =
2n∑
k=0

(
2n
k

)
RkfR2n−kg ∈ H4n+1.

Indeed, it is enough to verify the inclusion for each summand individu-
ally, and by symmetry, one only needs to consider the cases 0 ≤ k ≤ n.
In those cases one can use ‖R2n−kg‖4n−2k+1 ≈ ‖g‖1 and H∞ ⊆ B and
hence (1− |z|2)k|Rkf(z)| ≤ c (see [18]).

Similarly, we note that if f, g ∈ CH1, then fg ∈ H2
d . In this case we

have ‖R(fg)‖3 ≤ ‖gRf‖3 + ‖fRg‖3 <∞, hence R(fg) ∈ H3.

Proof. (a) Suppose that f, g and fg ∈ H2
d . Since the polynomials are

dense in H2
d , there is a sequences pn of polynomials such that pn → f

in H2
d . Then ‖png − fg‖∗ ≤ ‖pn − f‖H2

d
‖g‖H2

d
, hence png → fg in H1

d .
Thus

fg ∈ H2
d ∩ closH1

d
[g] = [g].

Similarly fg ∈ [f ].
(b) Now additionally suppose that f is cyclic in H2

d . By (a) we have
[fg] ⊆ [g] and it suffices to show that g ∈ [fg]. Since f is cyclic,
there is a sequence of polynomials pn such that pnf → 1 in H2

d . Then
as in part (a) of the proof it follows that pnfg → g in H1

d . Hence
g ∈ H2

d ∩ closH1
d
[fg] = [fg].

(c) If fg is cyclic in H2
d , then by (a) H2

d = [fg] ⊆ [f ] ∩ [g]. Hence
both f and g must be cyclic. Conversely, if both f and g are cyclic,
then by (b) [fg] = [g] = H2

d .
(d) follows from (c) by taking g = 1/f . �

Remark: We now show that Theorem 4.6 (d) does not hold for H2.
The reproducing kernel for the single variable Bergman space L2

a is
kw(z) = (1 − wz)−2. By use of the kernel it is easy to see that the
operator T : L2

a → H2 given by (Tf)(z1, ..., zd) = f(z1) is isometric.
Now let f ∈ L2

a be a function such that 1/f ∈ L2
a, but f is not cyclic

in L2
a. The existence of such functions is due to [4]. It is easy to see

that then g = Tf satisfies g, 1/g ∈ H2, but g is not cyclic in H2.
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5. Functions that are bounded below in Bd
It is clear that the case γ = 1 of the following Theorem when com-

bined with Theorem 4.6 (d) implies Theorem 1.5.

Theorem 5.1. Let γ > 0. If f ∈ Hγ ∩ B and 1
f
∈ H∞, then 1

f
∈ Hγ.

In order to verify the conclusion of this theorem we will need to

work with Rm
(

1
f

)
for sufficiently large m. For this we will need some

preliminary remarks and a lemma.
Let f ∈ Hol(Bd) and m ∈ N. We define Am to be the set of all

m-tuples η = (η1, ..., ηm) which satisfy
∑m

i=1 iηi = m, and we write

Tη(f) =
m∏
i=1

(Rif)ηi .

Then Faa di Bruno’s formula for the higher order derivatives of a
composition (see [9]) gives

Rm

(
1

f

)
=
∑
η∈Am

m!

η!

(−1)|η||η|!
f |η|+1

m∏
j=1

(
1

j!

)ηj
Tη(f).

Since ‖ 1
f
‖γ ∼ ‖Rm 1

f
‖γ+2m and the assumption of the theorem implies

that 1
f

is a multiplier of Hγ+2m, whenever γ + 2m > d, it follows that

the next lemma implies Theorem 5.1.

Lemma 5.2. Let γ > 0 and m ∈ N. If f ∈ Hγ ∩ B, then
‖Tη(f)‖γ+2m <∞

for any m-tuple η = (η1, ..., ηm) ∈ Am.

Proof. Fix η = (η1, ..., ηm) ∈ Am. For j ∈ N, let Bj be those |η|-tuples
β = (β1, ..., β|η|) which satisfy |β| = j. Then by writing powers as prod-
ucts of single terms, one sees that there is a function g : {1, ..., |η|} →
{1, ...,m} which satisfies Tη(f) =

∏|η|
i=1R

g(i)f . Note that this implies

that
∑|η|

i=1 g(i) =
∑m

i=1 iηi = m.

Now choose j ≥ d|η|
2

, and for each β ∈ Bj choose an index iβ such that

βiβ ≥
j
|η| ≥ d/2. This is possible since |β| = j. Then 2(βiβ+g(iβ))+γ >

d. Since f ∈ B, for any n ∈ N we have that (1 − |z|2)n|Rnf(z)| is
bounded in Bd (see [18], Theorem 3.5), hence there is a C > 0 such
that

(1− |z|2)(j+m)

|η|∏
i=1

|Rβi+g(i)f(z)| ≤ C(1− |z|2)βiβ+g(iβ)|Rβiβ+g(iβ)f(z)|.
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Here we also used that
∑|η|

i=1 βi + g(i) = j +m.
Finally, by the Leibniz rule, we have that

‖Tη(f)‖γ+2m ≈ ‖RjTη(f)‖γ+2(m+j)

=

∥∥∥∥∥∥
∑
β∈Bj

j!

β!

|η|∏
i=1

Rβi+g(i)f

∥∥∥∥∥∥
γ+2(m+j)

.
∑
β∈βj

∥∥∥∥∥∥
|η|∏
i=1

Rβi+g(i)f

∥∥∥∥∥∥
γ+2(m+j)

.
∑
β∈βj

∥∥∥Rβtβ+g(tβ)f
∥∥∥
γ+2(βtβ+g(tβ))

and the result follows since f ∈ Hγ. �

We mentioned in the Introduction that in the special case of the pre-
vious theorem where f ∈Md and 1/f ∈ H∞, then by the one function
case of Corona theorem for Md one has 1/f ∈ Md (see [7]). That
result was also proved by Fang and Xia in [8]. The next theorem es-
tablishes the same conclusion in the context of Hγ, γ > 0, and without
assuming that f be bounded. The proof is also significantly shorter
than [8].

Lemma 5.3. If 0 < γ < β, then CHγ ⊆ CHβ.

Proof. Set ε = β − γ > 0 and let b ∈ CHγ. By Lemma 3.1 with n = 1
this implies that MRb : Hγ → Hγ+2 is bounded. Using adjoints and
reproducing kernels, we see that this is equivalent to the existence of
C > 0 such that Ckγ+2

w (z)− Rb(z)Rb(w)kγw(z) is positive definite. We
multiply this by kεw(z) and apply the Schur product theorem (see [1],

Theorem A.1) and obtain that Ckβ+2
w (z)−Rb(z)Rb(w)kβw(z) is positive

definite. This implies that b ∈ CHβ. �

Theorem 5.4. If f ∈ CHγ, and if there is a constant c > 0 such that
|f(z)| ≥ c for all z ∈ Bd, then 1

f
is a multiplier for Hγ.

Proof. If f ∈ CHγ, then by Lemma 5.3 we have that f ∈ CHγ+n for all
n ∈ N0. Since for large n the space Hγ+n is a weighted Bergman space
the hypothesis implies that 1/f is a multiplier of Hγ+n+2 for sufficiently
large n. Thus the theorem will follow inductively from the claim:

Claim: If f ∈ CHγ+n and if 1/f is a multiplier of Hγ+n+2, then 1/f
is a multiplier of Hγ+n.

Let g ∈ Hγ+n. Then
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∥∥∥∥ gf
∥∥∥∥
γ+n

≈
∥∥∥∥R( gf

)∥∥∥∥
γ+n+2

≤
∥∥∥∥Rgf

∥∥∥∥
γ+n+2

+

∥∥∥∥gRff 2

∥∥∥∥
γ+n+2

. ‖Rg‖γ+n+2 + ‖gRf‖γ+n+2 . ‖g‖γ+n.
Here the last inequality followed from Lemma 3.1. �



HANKEL OPERATORS ON H2
d 15

References

[1] Jim Agler and John E. McCarthy. Pick interpolation and Hilbert function
spaces, volume 44 of Graduate Studies in Mathematics. American Mathemati-
cal Society, Providence, RI, 2002.

[2] Nicola Arcozzi, Richard Rochberg, Eric Sawyer, and Brett D. Wick. Bilinear
forms on the Dirichlet space. Anal. PDE, 3(1):21–47, 2010.

[3] William Arveson. Subalgebras of C∗-algebras. III. Multivariable operator the-
ory. Acta Math., 181(2):159–228, 1998.

[4] Alexander Borichev and H̊akan Hedenmalm. Harmonic functions of maximal
growth: invertibility and cyclicity in Bergman spaces. J. Amer. Math. Soc.,
10(4):761–796, 1997.
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