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The Basic Issue

An accelerating point charge radiates electromagnetic

energy and momentum. Therefore, there must be some

“back reaction” force on the charge associated with this

radiation. This can be understood as resulting from the

effects of the point charge’s own electromagnetic field on

itself. However, the electromagnetic field of a point

charge is singular at the charge itself, and its

self-electromagnetic energy is infinite, so it is not obvious

how to do a proper self-force or energy conservation

argument. For more than a century, there has been much

discussion and debate about this issue.



Classical Electrodynamics as Taught in Courses

At least 95% of what is taught in electrodynamics

courses at all levels focuses on the following two separate

problems: (i) Given a distribution of charges and/or

currents, find the electric and magnetic fields (i.e., solve

Maxwell’s equations with given source terms). (ii) Given

the electric and magnetic fields, find the motion of a

point charge (possibly with an electric and/or magnetic

dipole moment) by solving the Lorentz force equation

(possibly with additional dipole force terms).

Problem (i): Since Maxwell’s equations are linear, it

makes perfectly good mathematical sense to allow

distributional sources, such as a point charge (i.e., a



3-dimensional δ-function, non-zero only on a timelike

worldline). Indeed, the general solution for continuous

sources can be found by “superposition” of the solution

obtained for 4-dimensional δ-function sources (i.e., the

Green’s function), so even if one is interested in

continuous sources, it is extremely useful to consider

Maxwell’s equations for distributional sources.

Problem (ii): There are no mathematical difficulties in

solving for the motion of a point charge in a given

electromagnetic field.

Thus, for most of what is done in courses in

electromagnetism, one could take the view that

electrodynamics is formulated at a fundamental level in



terms of point charges, as normally is done in elementary

electrodynamics courses. Continuous charge distributions

could be viewed as a limit of many small point charges.

However, the situation changes dramatically when one

tries to consistently solve problems (i) and (ii)

simultaneously. The coupled system of Maxwell’s

equations and the motion of charges is nonlinear, and

point charges simply don’t make mathematical sense!

The difficulties associated with the fact that the field of a

point charge is singular at the location of the charge and

that the point charge has infinite self-energy—which can

be ignored when solving (i) or (ii) separately—cannot be

ignored in the coupled Maxwell-motion problem. This



kind situation is very familiar to people who work in

general relativity: Einstein’s equation is nonlinear, and

the notion of a “point mass” makes no sense.



How Has the Self-Force Problem Been Analyzed?

One approach—starting with Abraham (1903) and

Lorentz (1904)—is to consider a finite-sized body for

which the coupled Maxwell-motion problem is well

defined. A simple model for a charged body, such as a

rigid shell, is usually considered. One then makes

approximations corresponding to a small size of the body

and derives equations of motion. Among the problems

with this approach are: (1) Rigid motion is not consistent

with special relativity for a body undergoing non-uniform

acceleration. (2) It is far from obvious that the motion of

the body is independent of the matter model. (3) Since

one can’t take the limit of zero size without introducing



infinite self-energy and other problems, it isn’t obvious

what the range of validity of the approximations are.

Another approach—starting with Dirac (1938)—is to

work with a point charge and analyze conservation of

energy-momentum in a small “worldtube” surrounding

the point charge. One encounters singular expressions in

this approach, but these can be regularized/renormalized.

However, although these regularizations are relatively

natural looking, it is far from obvious that they are

correct. Also, if a point charge really had finite total

energy as assumed here, it would really have to have

infinitely negative “bare mass”.

Both approaches lead to a “radiation reaction” or



“self-force”, known as the Abraham-Lorentz-Dirac (ALD)

force, which, in the non-relativistic limit, takes the form

~F =
2

3
q2 d~a

dt
.

This results in serious difficulties. The equation ~F = m~a

is now third order in time, so to specify initial conditions,

one needs to give not only the initial position and

velocity but also the initial acceleration. Worse yet, even

with no external field, this equation admits “runaway”

solutions, where the position of the charge grows

exponentially with time. The issue of how

exclude/eliminate this runaway behavior has been

debated extensively during the past century.



Another Strange Feature of the ALD Force

As is well known, a uniformly accelerating charge radiates

energy to infinity. However, a uniformly accelerating

charge does not have any associated ALD force.

t
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No ADL force



If it doesn’t take any extra work to keep a charge in

uniformly acceleration, doesn’t one get the radiated

energy “for free”? In fact, it is not difficult to show that

if the charge begins and ends in inertial motion, then the

total work done overcoming the ALD force is equal to the

total energy radiated. However, it might seem that

energy is only conserved “on average” and that one can

get local violations of conservation of energy. This is

difficult to analyze on account of the infinte self-energy of

a point charge.



Our Approach

We will use only Maxwell’s equations and (exact, local)

conservation of energy and momentum. In this way, we

can be certain that any general results we derive are

independent of the composition of the body, and that

energy and momentum are always exactly conserved.

Maxwell’s equations:

∇νFµν = 4πJµ

∇[µFνρ] = 0



Conservation of energy and momentum:

∇µTµν = 0, Tµν = TM
µν + TEM

µν

Stress energy tensor of the electromagnetic field:

TEM
µν =

1

4π

(

FµαFα
ν −

1

4
gµνFαβFαβ

)



The Key Idea of Our Approach

If we do not take a limit of zero size for the body, we will

have to consider the internal dynamics of the body. The

motion will be complicated and will depend on the details

of the composition of the body. No simple, universal

equations can arise. However, if we take the usual point

particle limit (zero size at fixed charge and mass), we will

encounter the serious problems associated with a singular

electromagnetic field and infinite self-energy that have

plagued analyses for the past century.

Our approach: Consider a modified point particle limit,

wherein the body shrinks to zero size in an

asymptotically self-similar manner, so that not only the



size of the body goes to zero, but its charge and mass also

go to zero in proportion to its size. Note that the body

disappears completely at λ = 0, but, like the Cheshire

Cat in Alice in Wonderland, its “smile” (i.e, the worldline

that the body shrinks down to) remains behind. This

“smile” provides the leading order description of motion;

by working perturbatively off the “smile”, we obtain the

self-force (and dipole) corrections to motion.



How the Charge Density Scales

We want the body to shrink down to a worldline, γ, given

by xi = zi(t). In the usual point particle limit, the total

charge would remain fixed as we shrink the body down. If

we want the body to keep its shape exactly as it shrinks

down, we would want to consider a one-parameter family

of charge distributions, ρ(λ; t, xi) that behaves like

ρ(λ; t, xi) = λ−3ρ̃(t,
xi − zi(t)

λ
)

with ρ̃ as smooth function of all of its arguments.

Instead, we want the charge distribution to go to zero

proportionally to the size of the body as λ → 0. We also

only demand that it retain its shape asymptotically as



λ → 0. Thus, we require

ρ(λ; t, xi) = λ−2ρ̃(λ; t,
xi − zi

λ
)

Delta function:

Our scaling:



Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family

{Fµν(λ), Jµ(λ), TM
µν (λ)} of solutions to Maxwell’s

equations and conservation of total stress-energy such

that

•

Jµ(λ, t, xi) = λ−2J̃µ(λ, t, [xi − zi(t)]/λ)

and

TM
µν (λ, t, xi) = λ−2T̃µν(λ, t, [xi − zi(t)]/λ)

with J̃µ and T̃µν smooth.



• We have Fµν = F ext
µν + F ret

µν , where F ret
µν is the retarded

solution of Maxwell’s equations with source Jµ(λ)

and F ext
µν is a homogeneous solution of Maxwell’s

equation that is jointly smooth function of λ and the

spacetime point.

We want to know (1) What are the possible worldlines

zi(t) and (2) What are the perturbative corrections to

zi(t) that arise from self-field and finite size effects?



Two Key Properties of F ret
µν

In global inertial coordinates, we have

Aret
µ (λ, t, xi) =

∫

d3x′

[

Jµ(λ, t − |xi − x′i|, x′j)

|xi − x′i|

]

.

Plugging in Jµ(λ, t, xi) = λ−2J̃µ(λ, t, [xi − zi(t)]/λ) with

J̃µ smooth, it is not difficult to show that

F ret
µν (λ, t, xi) = λ−1F̃µν(λ, t, [xi − zi(t)]/λ) ,

where F̃ is a smooth function of its arguments. (This

general form is preserved under smooth coordinate

transformations.) Thus, F ret
µν also behaves in an

asymptotically self-similar manner near the worldline as

λ → 0.



Define β = λ/r, where r =
√

∑

[xi − zi(t)]2. A much

lengthier argument proves that

λF ret
µν = β2Fµν(t, β, r, θ, φ)

where Fµν is smooth in all of its arguments at

r = β = 0. This means that we can approximate F ret
µν by

F ret
µν (t, r, θ, φ) =

λ

r2

N
∑

n=0

M
∑

m=0

rn

(

λ

r

)m

(Fµν)nm(t, θ, φ)

This gives a “far zone” expansion of F ret
µν , valid near

r = 0. Alternatively, defining r̄ = r/λ, and t̄ = (t − t0)/λ,



we can rewrite this as a “near-zone” expansion

λ−1F ret
µ̄ν̄ (t̄, r̄, θ, φ) =

N
∑

n=0

M
∑

m=0

(λr̄)n 1

r̄(m+2)
(Fµν)nm(t0+λt̄, θ, φ)

which is valid at large r̄.



The “Near-Zone” and “Far-Zone” Limits

gamma

lambda 0



“Far Zone” Limit and Unperturbed Motion

Let λ → 0 at fixed xµ. Then Jµ(λ, t, xi) can be expanded

in a distributional series. We find that

J (0)µ ≡ limλ→0 Jµ(λ) = 0 and

J (1)µ ≡ lim
λ→0

∂

∂λ
Jµ(λ) = J µ(t)δ(xi − zi(t))

Conservation of Jµ then yields

J (1)µ = quµδ(xi − zi(t))
dτ

dt
.

Similarly,

TM,(1)
µν = T M

µν (t)δ(xi − zi(t)) .



If we write,

TEM
µν = T ext

µν + T cross
µν + T self

µν ,

then, remarkably, we find

T self,(1)
µν ≡ lim

λ→0

∂

∂λ
T self

µν (λ) = T self
µν (t)δ(xi − zi(t)) .

Define Tµν ≡ TM
µν + T self

µν . Conservation of total stress

energy then yields

T (1)
µν (t) = muµuνδ(x

i − zi(t))
dτ

dt
,

muν∇νuµ = quνF ext
µν (λ = 0, t, zi(t)) .



Thus, to first order in λ, the description of any body is is

precisely that of a classical point charge/mass moving on

a Lorentz force trajectory of the external field. Note that

the electromagnetic self-energy of the body contributes to

its mass.



“Near Zone” Limit and Perturbed Motion

As λ → 0, the body shrinks down to the worldline γ

defined by xi = zi(t), which satisfies the Lorentz force

equation. However, at any λ > 0, the body is of finite

size, so in order to find the “correction” to γ at finite λ,

we would need to have a notion of the “center of mass

worldline” γ(λ) of the body to represent its motion. This

is highly nontrivial since “electromagnetic self-energy”

must be included, but one does not want to include

electromagnetic radiation that was emitted in the past.

Fortunately, this can be done straightforwardly to the

order needed to obtain first-order perturbed motion.

It is convenient to work in Fermi normal coordinates



based on the worldline γ(λ)—so zi(λ, t) = 0. To take the

near-zone limit, we let λ → 0 at fixed x̄µ rather than at

fixed xµ, where t̄ ≡ (t − t0)/λ, x̄i ≡ xi/λ. We also rescale

the fields as follows:

ḡµν ≡ λ−2gµν

J̄µ ≡ λ3Jµ

T̄M
µν ≡ TM

µν

F̄µν ≡ λ−1Fµν

The rescaled fields then approach well defined, finite

limits as λ → 0. At λ = 0, the rescaled fields are

stationary.



Center of Mass

Define

T̄µ̄ν̄ ≡ T̄M
µ̄ν̄ + T̄ self

µ̄ν̄ ,

define the zeroth order near-zone mass by

m(t0) ≡

∫

T̄
(0)
00 d3x̄

and define the zeroth order near zone center of mass by

X̄ i
CM(t0) =

1

m

∫

T̄
(0)
00 x̄id3x̄ .

The perturbed motion is defined by the condition

X̄ i
CM = 0.



Other Body Parameters

Spin tensor:

S0j = −Sj0 =

∫

T̄ (0)00x̄jd3x̄ = 0

Sij(t0) ≡ 2

∫

T̄
(0)i

0x̄
jd3x̄

Spin vector:

Si =
1

2
ǫijkS

jk

Perturbed mass:

δm(t0) ≡ δ

∫

Σ

T̄µ0dΣµ



Charge:

q ≡

∫

J̄ (0)0d3x̄

Perturbed charge:

δq = δ

∫

Σ

J̄µdΣµ

Electromagnetic dipole tensor:

Qµj(t0) ≡

∫

J̄ (0)µx̄j

Electric dipole moment:

pi = Q0i



Magnetic dipole moment:

µi = −
1

2
ǫijkQ

jk



Derivation of Motion

Strategy: We write down the equations arising from

conservation of total stress-energy and conservation of

charge-current at 0th, 1st, and 2nd order in the near-zone

expansion. We multiply these relations by various powers

of x̄i and integrate over space to systematically obtain all

relationships holding for the body parameters defined

above.

• At 0th order, we obtain various relationships, such as

the antisymmetry of the spatial components of the

spin and electromagnetic dipole tensors.



• At 1st order, we obtain other relationships including

d

dt0
m = 0 ,

d

dt0
Sij = −Qµ

[iF
ext
j]µ , mai = qF ext

0i .

• At 2nd order, we obtain

mδai = −(δm)ai + (δq)F ext
0i + qδF ext

0i +
2

3
q2ȧi +

+
1

2
Qµν∂iF

ext
µν +

d

dt0

(

ajSji + 2Qj

[iF
ext
0]j

)

d

dt0
δm =

1

2
Qµν∂0F

ext
νµ −

∂

∂t0

(

Qµ0F ext
0µ

)

Note that there is no evolution equation for Qµν .



Perturbed Equations of Motion in Covariant Form

Define

δm̂ ≡ δm − ubu
cQbdF ext

cd .

Then, we have

δ[m̂aa] = δ[qF ext
ab ub] +

(

g b
a + uau

b
)

{

2

3
q2 D

dτ
ab

+
1

2
Qcd∇bF

ext
cd +

D

dτ

(

acScb + 2udQc
[bF

ext
d]c

)

}

D

dτ
Sab = −2 (ga

c + uauc)
(

gb
d + ubud

)

Qe
[cF

ext
d]e − 2acSc[aub]

D

dτ
δm̂ = −

1

2
Qab D

dτ
F ext

ab − 4Q b
a F ext

bc a[cua]



Non-Relativistic Form of Perturbed Force

δ ~F ≡ δ(m~a) =
2

3
q2d~a

dt
+ (~p · ~E)~a + pi

~∇Ei + µi
~∇Bi

+
d

dt

(

~S × ~a + ~µ × ~E + ~p × ~B
)

The first term is the usual ALD force, which we have

now derived as a perturbative correction to Lorentz force

motion. The other terms are corrections due to the finite

size of the body. The second term could be incorporated

into the definition of δm. The remaining two terms on

the first line are the standard electric and magnetic dipole

forces. The terms on the second line are associated with

“hidden momentum”, i.e., the failure of pi to equal mvi.



The quantities on the right side of the perturbed

equations of motion are to be evaluated on the zeroth

order solution. Thus, the perturbed equations of motion

remain second order in time and admit no “runaway”

solutions.



Self-Consistent Motion

The equations we have just derived should provide a

good description of the perturbative corrections to the

Lorentz force, provided, of course, that they are locally

small. However, even if the perturbative corrections are

locally small, the effects they have on solutions will build

up over time, and a perturbative description based on

perturbing off of a single, fixed Lorentz force trajectory

will be a poor approximation at late times. Can one

improve upon the purely perturbative description given

here so as to obtain a much better global in time

description of motion? Note that going to any finite

order in perturbation theory will not really help!



To improve the description of motion so that it remains

accurate at late times, we would like to invent a self

consistent perturbative equation that corrects the Lorentz

force trajectory “as one goes along.” In physics, people

do this kind of thing all the time, usually without

noticing. It should be OK to do this provided that the

new equation satisfies the following properties: (1) It

should have a well posed initial value formulation. (2) It

should have the same number of degrees of freedom as the

first order perturbative system, so that a correspondence

can be made between initial data for the self-consistent

perturbative equation and the first order perturbative

system. (3) For corresponding initial data, the solutions



to the self-consistent perturbative equation should be

close to the corresponding solutions of the first order

perturbative system over the time interval for which the

first order perturbative description should be accurate.

I do not know of any reason why, for any given system,

there need exist a self-consistent perturbative equation

satisfying these criteria. In cases where a self-consistent

perturbative equation satisfying these criteria does exist,

I would not expect it to be unique.

The obvious thing to try is to combine the 0th and 1st

order equations into a single equation that is then treated

as though it were “exact.” However, in the present case,

we get (in the non-relativistic approximation and



neglecting dipole terms):

m~a = q
(

~E + ~v × ~B
)

+
2

3
q2 d~a

dt

However, this is clearly unacceptable, since it changes

the differential order of the system and introduces

spurious solutions. A perfectly good alternative is to take

this equation but replace d~a/dt and ~a on the right side by

(q/m)[ ~E + ~v × ~B]. This “reduced order” version of the

ALD equation should give an accurate description of the

motion of a “point charge”.



An application of Our Results to Freshman Physics

Release a magnetic dipole ~µ from rest in the non-uniform

field ~B of a magnet. For appropriate choice of alignment

of the dipole, the force µi
~∇Bi will be non-zero, so the

dipole will start to move. Its kinetic energy will therefore

increase. Normally, one accounts for this increase in

kinetic energy by a compensating loss in “magnetic dipole

interaction energy” −~µ · ~B. However, this explanation

cannot be correct: A magnetic field can “do no work” on

a body, so the energy of the body itself (not counting any

interaction energy with the external field) cannot change.

Where does the kinetic energy of the body come from?



Answer: It comes from the rest mass of the body!


