HOMOLOGY OF PSEUDOMANIFOLDS

Definition. A finite simplicial complex M is an n-dimensional pseudo-
manifold if:

(a) Any simplex of M is a face of an n-dimensional simplex;

(b) Any (n — 1)-simplex of M is a common face of ezactly two simplices
(no ‘branching’).

(¢c) Any two n-simplices s,t of M can be connected by a chain of n-
simplices sg = s, 81,....5k =t (8; N s;41 is a common (n — 1)-dimensional
face.

Remark 1. In particular a point in an open n-simplex or (n—1) simplex
has a nbd. homeomorphic to R" (‘manifold point’). The complement of this
set in M is a closed set of (Hausdorff) dimension < n — 2.

Remark 2. Any triangulable manifold (in particular, any topological
manifold of dimension < 3, or differentiable manifolds of any dimension)
admits a triangulation with a pseudomanifold structure. To see that not ev-
ery pseudomanifold is a manifold, consider a triangulated orientable surface,
and the quotient space obtained by identifying two vertices that are not ver-
tices of the same 2-simplex. The quotient inherits a natural triangulation,
which can be seen to have a pseudomanifold structure.

Remark 3. Psecudomanifolds admit a similar definition in the setting of
CW complexes. Recall a CW complex is regular if for each n-cell e, n > 0,
there exists a characteristic map ® : D™ — e” which is a homeomorphism
(D™ is the closed n-disk.) That is, we require the attaching map to be
a homeomorphism of S"~! into the (n — 1)-skeleton. A finite, regular, n-
dimensional CW complex is an n-dimensional pseudomanifold if it satisfies:
(1) every cell is a face of some n-cell; (2) every (n — 1)-cell is the face of
exactly two n-cells; (3) Given any two n-cells e}, e}, there exist a chain of
n-cells ef = ep,...e} = e}, so that e}’ | and e} have a common (n — 1)-
dimensional face (possibly more than one.)

It can be shown that this condition on a C'W space is topological, that
is, independent of a particular cell decomposition. (For more details on the
CW complex approach, see [Massey, p.249]).

Remark 4. (See [Fuks-Viro-Rokhlin p. 159.]) Not every homology
class of a smooth manifold can be realized by a smooth submanifold. This
is the classical Steenrod problem, on which a breakthrough was made by
[R. Thom, 1954]: for any homology class, an odd multiple can be realized
by a submanifold; any homology class in codimension two or greater can be



realized by a smooth submanifold; and every homology class may be realized
by a submanifold with singularities of codimension > 2, in particular by
pseudomanifolds (when triangulated.) Hence the interest of this topic.

Notation: in what follows, s denotes a simplex s with a given orientation.

Theorem 1. Let M be an n-dimensional pseudomanifold. With Zs
coefficients: Hy,(M,Zs) = Zs .

With Z coefficients: H, (M) = Z (orientable case) or H, (M) = 0 (un-
orientble.)

Proof. With Zy coefficients. Let I' = Y ;s € Cn(M,Zs2), the sum
of all n-dimensional simplices in M. Due to (b), o' =23, ,,t (sum over
all (n — 1)-simplices of M), so ' = 0 (mod 2). Thus I € Z,,(M;Zs) (not
homologous to 0).

Now, any = € C,(M;Zz) has the form © = s; + ... + s, where the
s; are n-simplices. If 0z = 0 and s is a term in this sum, ay adjacent n-
simplex s must also occur (to cancel in 9z the coefficients of their common
(n — 1)-face.) Thus (from condition (c) ) either x = 0 or x = I'. Thus
H,(M;Zs) = Z,(M;Zs) = Zo, with T as a generator.

With Z coefficients. Suppose we may choose an orientation s for each
n-simplex of M so that adjacent m-simplices induce opposite orientations
on the common face (‘M is orientable’.) Then the chain I' =} __, /s is a
cycle (not homologous to 0). And if z = ) _,, ms is a cycle, we must have
ms = my if 5,5 are adjacent (since 0z = ), kit = 0 implies k; = 0V¢, by
(b)). Again it follows that ms = mg for all n-simplices s, s’; so z = mI for
some m € Z. Thus H,(M) = Z.

If M is not orientable: Let z = ) ., mss € Z,(M;Z). Then 0z =
> e ket = 0 (sum over all (n—1) simplices), so ks = 0V¢. Thusif t = sNs':
0 = ky = £my = my (signs depending on the orientations induced by s, s’
on t.) So |ms| = |mg| for any adjacent s, s’, and hence for any s,s’ € M.

Thus z is a sum of terms like ms and —ms’ (same m for all s), so changing
the orientation of some s, we have z = m ) ,;s. Since dz = 0, m = 0
or » .S is an n-cycle, so with the new orientation any (n — 1) simplex
inherits opposite orientations from the n-simplices incident to it (and M
would be orientable). Thus m = 0, i.e. H,(M;Z) = 0.

Theorem 2. Let M be an n-dimensional pseudomanifold.
If M is orientable, H,,_1(M;Z) is free (no torsion.)



If M is non-orientable, H,,_1 has a unique torsion element a # 0, with
200 =0;1i.e. Hy_1(M;Z) = F @® Zy, F free.

Proof. (1) Assume M is orientable. By contradiction, let y € Cp,—1(M)
is such that for some p > 0 we have py = dx. Fix an orientation for each n-
simplex s, such that I' = }°__,, s generates H,(M). Pick also (arbitrarily)
an orientation for each (n — 1)-simplex ¢. So:

:L'ZZWLSS, y:Zktt, (mg, kt € 7).
s t

Any adjacent n-simplices s, s” induce opposite orientations on the common
(n — 1)-face t = s’ N s"”. From dx = py follows myg — mg = +pk; , or
ms = my (mod p) if ¢, s” are adjacent. From condition (c) it follows that
all coeflicients mg are pairwise congruent mod p; i.e. there exists 0 < r <p
such that for all s: mgs = pgs + r. Then:

x:sts:quss—l—rZs:px’—i-rF,
S S S

where 2’ =Y _gss. So py = 0x = pdz’ (since OI' = 0), or y = 0z'.
We conclude that py = dz implies [y] = 0, so H,_1(M) is torsion-free.

(2) Assume M is nonorientable. Fix arbitrary orientations on the n-
simplices, and let = ) s. Then 0X = 2a, where a = ), t is the sum
of the (n — 1)-dimensional oriented simplices t which inherit the same ori-
entation from 2 adjacent n-simplices meeting at ¢. Note a # 0 (since M is
non-orientable) and a € Z,_1(M), since 20a = 200z = 0, but a is not a
boundary: if a = 92/, then dx = 202, or d(x — 22') = 0. So x = 22/
(since H,(M) = 0); impossible, since the coefficients of x in the basis
{s;s an n-simplex of M} of C,,(M) are all 1 (and we use Z coefficients.)

We conclude [a] # 0 in H,,—1(M,Z) (And 2[a] = 0. )

Remark. Note [a] is independent of the choice of orientations of the n-
simplices s. If instead we consider 2’ = )" s’ (picking different orientations
for the s) , we have z—a’ = 2> s (over some set of simplices), so 2(a—a’) =

Iz —12') =20 s, so [a] = [d].

Claim. [a] is the only element of finite order in H,,_1(M;Z).
Proof. Let y € Z,—1(M,Z) such that py = dx, for some 0 # p € Z,.. So:

r=> mes, y=> kt, py=) pkt.
s t

t



For each (n — 1)-simplex t = s Ns', py = dz implies pky = ms + my, so
mgy = +ms (mod p) for any adjacent n-simplices, and hence (by condition
(c)) for any two n-simplices. Changing n-simplex orientations if needed, we
may assume mg; = my(p) for all s,s". As before, write: ms; = pgs + 7,0 <
r < p (r indep. of ), so:

r= ms=pY qs+ry s=pr+ry, yi=>_ s,
s s s seM

the sum over all n-simplices. As before, we have 9y = 2a, where 0 # a =
> t, the sum over the (n—1)-simplices ¢ on which the 2 adjacent n-simplices
induce opposite orientations; recall 2[a] = 0.

We claim [y] = q[a] for some ¢, and hence ¢ = 0 or ¢ = 1 (since [a] has
order 2). So either [y] =0 or [y] = [a].
Proof. From 9v = 2a follows:

py = 0x = pdzr’ +rdy = pdx’ + 2ra,

or p(y — 02') = 2ra. Since a is a sum of simplices with coefficients 1, it
follows that 2r is a multiple of p. So:

ply — 0x') = pqa, or y — 8z’ = qa, or [y] = g[a].



