
HOMOLOGY OF PSEUDOMANIFOLDS

Definition. A finite simplicial complex M is an n-dimensional pseudo-
manifold if:

(a) Any simplex of M is a face of an n-dimensional simplex;
(b) Any (n− 1)-simplex of M is a common face of exactly two simplices

(no ‘branching’).
(c) Any two n-simplices s, t of M can be connected by a chain of n-

simplices s0 = s, s1, . . . .sk = t (si ∩ si+1 is a common (n − 1)-dimensional
face.

Remark 1. In particular a point in an open n-simplex or (n−1) simplex
has a nbd. homeomorphic to Rn (‘manifold point’). The complement of this
set in M is a closed set of (Hausdorff) dimension ≤ n− 2.

Remark 2. Any triangulable manifold (in particular, any topological
manifold of dimension ≤ 3, or differentiable manifolds of any dimension)
admits a triangulation with a pseudomanifold structure. To see that not ev-
ery pseudomanifold is a manifold, consider a triangulated orientable surface,
and the quotient space obtained by identifying two vertices that are not ver-
tices of the same 2-simplex. The quotient inherits a natural triangulation,
which can be seen to have a pseudomanifold structure.

Remark 3. Pseudomanifolds admit a similar definition in the setting of
CW complexes. Recall a CW complex is regular if for each n-cell en, n > 0,
there exists a characteristic map Φ : Dn → en which is a homeomorphism
(Dn is the closed n-disk.) That is, we require the attaching map to be
a homeomorphism of Sn−1 into the (n − 1)-skeleton. A finite, regular, n-
dimensional CW complex is an n-dimensional pseudomanifold if it satisfies:
(1) every cell is a face of some n-cell; (2) every (n − 1)-cell is the face of
exactly two n-cells; (3) Given any two n-cells ena , e

n
b , there exist a chain of

n-cells en0 = ena , . . . e
n
k = enb , so that eni−1 and eni have a common (n − 1)-

dimensional face (possibly more than one.)

It can be shown that this condition on a CW space is topological, that
is, independent of a particular cell decomposition. (For more details on the
CW complex approach, see [Massey, p.249]).

Remark 4. (See [Fuks-Viro-Rokhlin p. 159.]) Not every homology
class of a smooth manifold can be realized by a smooth submanifold. This
is the classical Steenrod problem, on which a breakthrough was made by
[R. Thom, 1954]: for any homology class, an odd multiple can be realized
by a submanifold; any homology class in codimension two or greater can be
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realized by a smooth submanifold; and every homology class may be realized
by a submanifold with singularities of codimension ≥ 2, in particular by
pseudomanifolds (when triangulated.) Hence the interest of this topic.

Notation: in what follows, s denotes a simplex s with a given orientation.

Theorem 1. Let M be an n-dimensional pseudomanifold. With Z2

coefficients: Hn(M,Z2) = Z2 .
With Z coefficients: Hn(M) = Z (orientable case) or Hn(M) = 0 (un-

orientble.)

Proof. With Z2 coefficients. Let Γ =
∑

s∈M s ∈ Cn(M,Z2), the sum
of all n-dimensional simplices in M . Due to (b), ∂Γ = 2

∑
t∈M t (sum over

all (n − 1)-simplices of M), so ∂Γ = 0 (mod 2). Thus Γ ∈ Zn(M ;Z2) (not
homologous to 0).

Now, any x ∈ Cn(M ;Z2) has the form x = s1 + . . . + sk, where the
si are n-simplices. If ∂x = 0 and s is a term in this sum, ay adjacent n-
simplex s′ must also occur (to cancel in ∂x the coefficients of their common
(n − 1)-face.) Thus (from condition (c) ) either x = 0 or x = Γ. Thus
Hn(M ;Z2) = Zn(M ;Z2) = Z2, with Γ as a generator.

With Z coefficients. Suppose we may choose an orientation s for each
n-simplex of M so that adjacent n-simplices induce opposite orientations
on the common face (‘M is orientable’.) Then the chain Γ =

∑
s∈M s is a

cycle (not homologous to 0). And if z =
∑

s∈M mss is a cycle, we must have
ms = ms′ if s, s′ are adjacent (since ∂z =

∑
t ktt = 0 implies kt = 0∀t, by

(b)). Again it follows that ms = ms′ for all n-simplices s, s′; so z = mΓ for
some m ∈ Z. Thus Hn(M) = Z.

If M is not orientable: Let z =
∑

s∈M mss ∈ Zn(M ;Z). Then ∂z =∑
t∈M ktt = 0 (sum over all (n−1) simplices), so kt = 0∀t. Thus if t = s∩s′:

0 = kt = ±ms ±ms′ (signs depending on the orientations induced by s, s′

on t.) So |ms| = |ms′ | for any adjacent s, s′, and hence for any s, s′ ∈M .
Thus z is a sum of terms like ms and −ms′ (same m for all s), so changing

the orientation of some s, we have z = m
∑

s∈M s. Since ∂z = 0, m = 0
or

∑
s∈M s is an n-cycle, so with the new orientation any (n − 1) simplex

inherits opposite orientations from the n-simplices incident to it (and M
would be orientable). Thus m = 0, i.e. Hn(M ;Z) = 0.

Theorem 2. Let M be an n-dimensional pseudomanifold.
If M is orientable, Hn−1(M ;Z) is free (no torsion.)
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If M is non-orientable, Hn−1 has a unique torsion element α 6= 0, with
2α = 0; i.e. Hn−1(M ;Z) = F ⊕ Z2, F free.

Proof. (1) Assume M is orientable. By contradiction, let y ∈ Cn−1(M)
is such that for some p ≥ 0 we have py = ∂x. Fix an orientation for each n-
simplex s, such that Γ =

∑
s∈M s generates Hn(M). Pick also (arbitrarily)

an orientation for each (n− 1)-simplex t. So:

x =
∑
s

mss, y =
∑
t

ktt, (ms, kt ∈ Z).

Any adjacent n-simplices s′, s′′ induce opposite orientations on the common
(n − 1)-face t = s′ ∩ s′′. From ∂x = py follows ms′ − ms′′ = ±pkt , or
ms ≡ ms′ (mod p) if s′, s′′ are adjacent. From condition (c) it follows that
all coefficients ms are pairwise congruent mod p; i.e. there exists 0 ≤ r < p
such that for all s: ms = pqs + r. Then:

x =
∑
s

mss = p
∑
s

qss + r
∑
s

s = px′ + rΓ,

where x′ =
∑

s qss. So py = ∂x = p∂x′ (since ∂Γ = 0), or y = ∂x′.
We conclude that py = ∂x implies [y] = 0, so Hn−1(M) is torsion-free.

(2) Assume M is nonorientable. Fix arbitrary orientations on the n-
simplices, and let x =

∑
s s. Then ∂X = 2a, where a =

∑
t t is the sum

of the (n − 1)-dimensional oriented simplices t which inherit the same ori-
entation from 2 adjacent n-simplices meeting at t. Note a 6= 0 (since M is
non-orientable) and a ∈ Zn−1(M), since 2∂a = 2∂∂x = 0, but a is not a
boundary: if a = ∂x′, then ∂x = 2∂x′, or ∂(x − 2x′) = 0. So x = 2x′

(since Hn(M) = 0); impossible, since the coefficients of x in the basis
{s; s an n-simplex of M} of Cn(M) are all 1 (and we use Z coefficients.)

We conclude [a] 6= 0 in Hn−1(M,Z) (And 2[a] = 0. )

Remark. Note [a] is independent of the choice of orientations of the n-
simplices s. If instead we consider x′ =

∑
s s
′ (picking different orientations

for the s) , we have x−x′ = 2
∑

s (over some set of simplices), so 2(a−a′) =
∂(x− x′) = 2∂

∑
s, so [a] = [a′].

Claim. [a] is the only element of finite order in Hn−1(M ;Z).
Proof. Let y ∈ Zn−1(M,Z) such that py = ∂x, for some 0 6= p ∈ Z+. So:

x =
∑
s

mss, y =
∑
t

ktt, py =
∑
t

pktt.
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For each (n − 1)-simplex t = s ∩ s′, py = ∂x implies pkt = ms ± ms′ , so
ms′ ≡ ±ms (mod p) for any adjacent n-simplices, and hence (by condition
(c)) for any two n-simplices. Changing n-simplex orientations if needed, we
may assume ms ≡ ms′(p) for all s, s′. As before, write: ms = pqs + r, 0 ≤
r < p (r indep. of s), so:

x =
∑
s

mss = p
∑
s

qss + r
∑
s

s = px′ + rγ, γ :=
∑
s∈M

s,

the sum over all n-simplices. As before, we have ∂γ = 2a, where 0 6= a =∑
t, the sum over the (n−1)-simplices t on which the 2 adjacent n-simplices

induce opposite orientations; recall 2[a] = 0.

We claim [y] = q[a] for some q, and hence q = 0 or q = 1 (since [a] has
order 2). So either [y] = 0 or [y] = [a].

Proof. From ∂γ = 2a follows:

py = ∂x = p∂x′ + r∂γ = p∂x′ + 2ra,

or p(y − ∂x′) = 2ra. Since a is a sum of simplices with coefficients 1, it
follows that 2r is a multiple of p. So:

p(y − ∂x′) = pqa, or y − ∂x′ = qa, or [y] = q[a].
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