A quantitative version of Mnëv's theorem

Dustin Cartwright
University of Tennessee, Knoxville

April 11, 2015

Mnëv's principle

Combinatorial realization spaces can be arbitrarily complicated. Such as, realization spaces of:

- Polytopes
- Matroids
- Algebraic geometry moduli spaces (Murphy's law, for smooth surfaces, curves with linear systems)

Polytope realizations

Can these points of a polytope be chosen to have rational coordinates (up to combinatorial equivalence)? For $n=3$, yes (Steinitz).

Theorem (Perles)
There exists a polytope in \mathbb{R}^{8} where the coordinates can be chosen to be in $\mathbb{Q}[\sqrt{5}]$, but not in \mathbb{Q}.

Theorem (Mnëv)
For any finite extension K of \mathbb{Q}, there exists a polytope in \mathbb{R}^{4} where the coordinates can be chosen to be in K, but not in any smaller field.

Idea: Give combinatorial encoding for minimal polynomial of the field extension K in the structure of the polytope.

Matroids

Given vectors v_{1}, \ldots, v_{n} spanning a d-dimensional vector space V, the matroid of this vector configuration answers any of the following equivalent questions:

- Which subsets of v_{1}, \ldots, v_{m} are a basis for V ?
- For each subset of v_{1}, \ldots, v_{m}, what is the dimension of their span?

Matroid realizations

The realization scheme C_{M} of a matroid M parametrizes the vector configurations in V (up to scaling the vectors and changing coordinates on V) having the matroid M, i.e. the same answers to the basis and dimension-of-span questions.
Equivalently:

- Take the Grasmannian $\operatorname{Gr}(d, n)$ in its Plücker embedding.
- Intersect with a torus orbit from the ambient projective space, i.e.

$$
\operatorname{Gr}(d, n) \cap \bigcap_{I \in B}\left\{p_{I} \neq 0\right\} \cap \bigcap_{I \notin B}\left\{p_{I}=0\right\}
$$

- Take the quotient by $\left(K^{*}\right)^{n}$.

Mnëv's theorem

Theorem (Mnëv, Sturmfels, Richter-Gebert, Lafforgue, ...)
If p_{1}, \ldots, p_{m} are integral polynomials, then then there exists a rank 3 matroid M with realization space C_{M} such that:

$$
\begin{array}{cc}
C_{M} & \xrightarrow{\text { open imm. }} \\
\text { surj. } \mid & \\
& \\
X & = \\
& \\
& \\
& \\
\text { spec } \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left\langle p_{1}, \ldots, p_{m}\right\rangle
\end{array}
$$

Quantitative Mnëv's theorem

Theorem (C)
The matroid M in Mnëv's theorem can be chosen with

$$
3 f+7 a+7 o+6 m+6 e+3
$$

vectors where

- f is the number of variables,
- a is the number of additions of two variables,
- 0 is the number of additions of a variable and 1 ,
- m is the number of multiplications, and
- e is the number of equalities and inequalities
in an elementary monic representation of the affine scheme X from before.

Elementary monic representation

The x_{1}, \ldots, x_{n} are the variables for p_{1}, \ldots, p_{m}. We start with the change of coordinates:

$$
\begin{aligned}
& y_{0}=t \\
& y_{1}=t+x_{1} \\
& \vdots \\
& y_{n}=t+x_{n}
\end{aligned}
$$

For $i>n$, each y_{i} is defined in terms of previous variables by:

- Addition of two variables: $y_{i}=y_{j}+y_{k}$ where y_{j} and y_{k} have different degrees as polynomials of t.
- Addition of one: $y_{i}=y_{j}+1$.
- Multiplication of two variables: $y_{i}=y_{j} y_{k}$.

Each y_{i} will be monic polynomial as a polynomial of t.

Example

We can't construct $x_{1}+x_{2}$ or $t+x_{1}+x_{2}$, but we can construct $t^{2}+2 t+x_{1}+x_{2}$ (positive powers of t will go away in the end):

$$
\begin{aligned}
& y_{0}=t \\
& y_{1}=t+x_{1} \\
& y_{2}=t+x_{2} \\
& y_{3}=y_{0} y_{0}=t^{2} \\
& y_{4}=y_{1}+y_{3}=t^{2}+t+x_{1} \\
& y_{5}=y_{2}+y_{4}=t^{2}+2 t+x_{1}+x_{2}
\end{aligned}
$$

Equalities and inequalities

The elementary monic representation also comes with equalities $y_{i}=y_{j}$ for $(i, j) \in E$ and inequalities $y_{i} \neq y_{j}$ for $(i, j) \in I$ such that:

- For each equality or inequality, $f_{i j}=y_{i}-y_{j}$ is in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We then say that this elementary monic representation represents $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]\left[f_{i j}^{-1}\right]_{i j \in I} /\left\langle f_{i j}\right\rangle_{i j \in E}$.

Proposition (C)
Every scheme of finite type over \mathbb{Z} can be has an elementary monic representation.

Example continued

We want to represent $x_{1}+x_{2} \neq 0$.

$$
\begin{aligned}
& y_{0}=t \\
& \quad \vdots \\
& y_{5}=y_{2}+y_{4}=t^{2}+2 t+x_{1}+x_{2} \\
& y_{6}=y_{0}+1=t+1 \\
& y_{7}=y_{6}+1=t+2 \\
& y_{8}=y_{6} y_{0}=t^{2}+2 t
\end{aligned}
$$

The equality $y_{5} \neq y_{8}$ represents $x_{1}+x_{2} \neq 0$.

Elementary monic representation to matroid

- Variables y_{i} become cross-ratios on parallel lines (not 0 or 1)
- Addition, multiplication, equality, inequality, such as the following figure for addition:

For any x_{1}, \ldots, x_{n}, we can always choose t so that $y_{i} \neq 0,1$ and we avoid certain other coincidences.

Second example

Let p be a prime number and we want to represent the equation $p=0$:

$$
\begin{aligned}
& y_{0}=t \\
& y_{1}=y_{0}+1=t+1 \\
& \quad \vdots \\
& y_{p}=y_{p-1}+1=t+p
\end{aligned}
$$

With the equality $y_{0}=y_{p}$.

Second example: more efficiently

Write $p=m^{2}+\ell$ (we can take $\ell \leq 2 m$).

$$
\begin{aligned}
& y_{0}=t \\
& y_{1}=y_{0}+1=t+1 \\
& \vdots \\
& y_{m}=y_{m-1}+1=t+m \\
& y_{m+1}=y_{m} y_{m}=t^{2}+2 m t+m^{2} \\
& y_{m+2}=y_{m+1}+1=t^{2}+2 m t+m^{2}+1 \\
& \vdots \\
& y_{m+\ell+1}=y_{m+\ell}+1=t^{2}+2 m t+p
\end{aligned}
$$

We've now constructed p modulo t, but in order to get a legal equality, we need to construct $t^{2}+2 m t$.

Second example: more efficiently

So far:

$$
\begin{aligned}
& y_{m}=t+m \\
& \vdots \\
& y_{m+\ell+1}=t^{2}+2 m t+p \\
& y_{m+\ell+2}=y_{m}+1=t+m+1 \\
& \vdots \\
& y_{m+\ell+m+1}=y_{m+\ell+m}+1=t+2 m \\
& y_{m+\ell+m+2}=y_{0} y_{m+\ell+m+1}=t^{2}+2 m t
\end{aligned}
$$

and then $y_{m+\ell+1}=y_{m+\ell+m+2}$ is a legal equality defining $p=0$. More complicated than before, but we've only used $O(\sqrt{p})$ steps.

Application: $\mathbb{Z}\left[p^{-1}\right]$ and \mathbb{Z} / p

Proposition (C.)

For the affine schemes $\mathbb{Z}\left[p^{-1}\right]$ and \mathbb{Z} / p with p a prime, the matroid M in Mnëv's theorem has $O(\sqrt{p})$ elements.
In particular, if $p \geq 443$, then M has fewer than p elements.

Corollary
Lifting a rank 2 divisor of degree d on a tropical curve can depend on the characteristic p, even when $p>d$.

In contrast, lifting a rank 1 divisor can depend on the characteristic p, but only when $p \leq d$.

