A quantitative version of Mnëv's theorem

Dustin Cartwright

University of Tennessee, Knoxville

April 11, 2015

Mnëv's principle

Combinatorial realization spaces can be arbitrarily complicated. Such as, realization spaces of:

- Polytopes
- Matroids
- Algebraic geometry moduli spaces (Murphy's law, for smooth surfaces, curves with linear systems)

Polytope realizations

Can these points of a polytope be chosen to have rational coordinates (up to combinatorial equivalence)? For n = 3, yes (Steinitz).

Theorem (Perles)

There exists a polytope in \mathbb{R}^8 where the coordinates can be chosen to be in $\mathbb{Q}[\sqrt{5}]$, but not in \mathbb{Q} .

Theorem (Mnëv)

For any finite extension K of \mathbb{Q} , there exists a polytope in \mathbb{R}^4 where the coordinates can be chosen to be in K, but not in any smaller field.

Idea: Give combinatorial encoding for minimal polynomial of the field extension K in the structure of the polytope.

Matroids

Given vectors v_1, \ldots, v_n spanning a d-dimensional vector space V, the matroid of this vector configuration answers any of the following equivalent questions:

- Which subsets of v_1, \ldots, v_m are a basis for V?
- For each subset of v_1, \ldots, v_m , what is the dimension of their span?

Matroid realizations

The realization scheme C_M of a matroid M parametrizes the vector configurations in V (up to scaling the vectors and changing coordinates on V) having the matroid M, i.e. the same answers to the basis and dimension-of-span questions.

Equivalently:

- Take the Grasmannian Gr(d, n) in its Plücker embedding.
- Intersect with a torus orbit from the ambient projective space, i.e.

$$\operatorname{Gr}(d,n) \cap \bigcap_{I \in B} \{p_I \neq 0\} \cap \bigcap_{I \notin B} \{p_I = 0\}$$

• Take the quotient by $(K^*)^n$.

Mnëv's theorem

Theorem (Mnëv, Sturmfels, Richter-Gebert, Lafforgue, ...)

If p_1, \ldots, p_m are integral polynomials, then then there exists a rank 3 matroid M with realization space C_M such that:

$$egin{array}{cccc} C_M & \stackrel{open \; imm.}{\longrightarrow} & X imes \mathbb{A}^N \\ surj. & & & & & & \downarrow \\ X & = & & & X := \operatorname{\mathsf{Spec}} \mathbb{Z}[x_1, \dots, x_n]/\langle p_1, \dots, p_m
angle \end{array}$$

Quantitative Mnëv's theorem

Theorem (C)

The matroid M in Mnëv's theorem can be chosen with

$$3f + 7a + 7o + 6m + 6e + 3$$

vectors where

- f is the number of variables,
- a is the number of additions of two variables,
- o is the number of additions of a variable and 1,
- m is the number of multiplications, and
- e is the number of equalities and inequalities

in an elementary monic representation of the affine scheme X from before.

Elementary monic representation

The x_1, \ldots, x_n are the variables for p_1, \ldots, p_m . We start with the change of coordinates:

$$y_0 = t$$

$$y_1 = t + x_1$$

$$\vdots$$

$$y_n = t + x_n$$

For i > n, each y_i is defined in terms of previous variables by:

- Addition of two variables: $y_i = y_i + y_k$ where y_i and y_k have different degrees as polynomials of t.
- Addition of one: $y_i = y_i + 1$.
- Multiplication of two variables: $y_i = y_i y_k$.
- Each y_i will be monic polynomial as a polynomial of t.

Example

We can't construct $x_1 + x_2$ or $t + x_1 + x_2$, but we can construct $t^2 + 2t + x_1 + x_2$ (positive powers of t will go away in the end):

$$y_0 = t$$

$$y_1 = t + x_1$$

$$y_2 = t + x_2$$

$$y_3 = y_0 y_0 = t^2$$

$$y_4 = y_1 + y_3 = t^2 + t + x_1$$

$$y_5 = y_2 + y_4 = t^2 + 2t + x_1 + x_2$$

Equalities and inequalities

The elementary monic representation also comes with equalities $y_i = y_j$ for $(i,j) \in E$ and inequalities $y_i \neq y_j$ for $(i,j) \in I$ such that:

• For each equality or inequality, $f_{ij} = y_i - y_j$ is in $\mathbb{Z}[x_1, \dots, x_n]$.

We then say that this elementary monic representation represents $\mathbb{Z}[x_1,\ldots,x_n][f_{ij}^{-1}]_{ij\in I}/\langle f_{ij}\rangle_{ij\in E}$.

Proposition (C)

Every scheme of finite type over $\mathbb Z$ can be has an elementary monic representation.

Example continued

We want to represent $x_1 + x_2 \neq 0$.

$$y_0 = t$$

 \vdots
 $y_5 = y_2 + y_4 = t^2 + 2t + x_1 + x_2$
 $y_6 = y_0 + 1 = t + 1$
 $y_7 = y_6 + 1 = t + 2$
 $y_8 = y_6y_0 = t^2 + 2t$

The equality $y_5 \neq y_8$ represents $x_1 + x_2 \neq 0$.

Elementary monic representation to matroid

- Variables y; become cross-ratios on parallel lines (not 0 or 1)
- Addition, multiplication, equality, inequality, such as the following figure for addition:

For any x_1, \ldots, x_n , we can always choose t so that $y_i \neq 0, 1$ and we avoid certain other coincidences.

Second example

Let p be a prime number and we want to represent the equation p = 0:

$$y_0 = t$$

 $y_1 = y_0 + 1 = t + 1$
 \vdots
 $y_p = y_{p-1} + 1 = t + p$

With the equality $y_0 = y_p$.

Second example: more efficiently

Write
$$p = m^2 + \ell$$
 (we can take $\ell \le 2m$).
$$y_0 = t$$

$$y_1 = y_0 + 1 = t + 1$$

$$\vdots$$

$$y_m = y_{m-1} + 1 = t + m$$

$$y_{m+1} = y_m y_m = t^2 + 2mt + m^2$$

$$y_{m+2} = y_{m+1} + 1 = t^2 + 2mt + m^2 + 1$$

$$\vdots$$

$$y_{m+\ell+1} = y_{m+\ell} + 1 = t^2 + 2mt + p$$

We've now constructed p modulo t, but in order to get a legal equality, we need to construct $t^2 + 2mt$.

Second example: more efficiently

So far:

$$y_{m} = t + m$$

$$\vdots$$

$$y_{m+\ell+1} = t^{2} + 2mt + p$$

$$y_{m+\ell+2} = y_{m} + 1 = t + m + 1$$

$$\vdots$$

$$y_{m+\ell+m+1} = y_{m+\ell+m} + 1 = t + 2m$$

$$y_{m+\ell+m+2} = y_{0}y_{m+\ell+m+1} = t^{2} + 2mt$$

and then $y_{m+\ell+1} = y_{m+\ell+m+2}$ is a legal equality defining p = 0. More complicated than before, but we've only used $O(\sqrt{p})$ steps.

Application: $\mathbb{Z}[p^{-1}]$ and \mathbb{Z}/p

Proposition (C.)

For the affine schemes $\mathbb{Z}[p^{-1}]$ and \mathbb{Z}/p with p a prime, the matroid M in Mnëv's theorem has $O(\sqrt{p})$ elements.

In particular, if $p \ge 443$, then M has fewer than p elements.

Corollary

Lifting a rank 2 divisor of degree d on a tropical curve can depend on the characteristic p, even when p > d.

In contrast, lifting a rank 1 divisor can depend on the characteristic p, but only when $p \leq d$.