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CARL G. WAGNER 

GENERALIZED PROBABILITY KINEMATICS* 

ABSTRACT. Jeffrey conditionalization is generalized to the case in which new evidence 

bounds the possible revisions of a prior below by a Dempsterian lower probability. 
Classical probability kinematics arises within this generalization as the special case in 

which the evidentiary focal elements of the bounding lower probability are pairwise 

disjoint. 

1. NEW EVIDENCE AND PARTIAL PROBABILITY 

Let p be a probability measure on the possibility set 0,1 and suppose 
that new evidence suggests the desirability of revising/?. Suppose that 

the total evidence determines a family % of nonempty, pairwise disjoint 
subsets of ? and a collection {fxE :EEl^\ of positive real numbers 

summing to 1, restricting the possible revisions of p to those probability 
measures q satisfying 

(1) VEE%[q(E) 
= 

fiE]. 

Unless each E E % is a singleton, there are infinitely many probability 
measures q satisfying (1). Suppose, however, that there is reason to 

judge that any acceptable revision q should also satisfy 

(2) VA ? ?, V?G % [q(AIE) =p(A/E)].2 

As is easily proved, (1) and (2) jointly determine a uniquely acceptable 
revision q, defined for all A C ? by 

(3) q(A) = 2 HeP(A/E), 

a generalization of ordinary conditionalization first explored by Jeffrey 

(1965).3 
It is worth asking how, in the initial step of revising p according to 

the above scheme, one might come to fix the values of a possible 
revision q on members of the family %. In an interesting class of cases, 
to be explored in depth in this paper, it appears that one arrives at 

restrictions of this type indirectly, first using the total evidence to 

construct a (fully specified) probability measure u on a related possibil 
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ity set O, and then inferring certain restrictions on q from an entailment 

relation between outcomes in ?? and events in ?. 

Jeffrey's famous mudrunner4 example is a case in point. In that 

example, ? = 
{01? 02, 03, 04}, with outcomes corresponding to a certain 

horse's winning on a muddy track (0i), losing on a muddy track (02), 

winning on a dry track (03), and losing on a dry track (04). A gambler's 

prior p is defined on all subsets of ?, including the (for him) important 
event ?" = 

{01,02} that the track is muddy. New evidence now arrives 

in the form of a "fresh weather forecast (which) leads him to change 
his degree of belief"5 in members of the family % = 

{E, ?} to the new 

values ?jle 
= 0.6 and ??e 

= 0.4. 

Since weather forecasts assign probabilities to meteorological, not 

racetrack, conditions, this reassessment of the probabilities of E and ? 

clearly takes place indirectly, in something like the following way: The 

forecast assigns probability 0.6 to rain (a^) and 0.4 to clear weather 

(c?2), and the gambler adopts these probabilities in the form of the 

probability measure u on ?1 = 
{co1, o)2}, with u(o)i) 

= 0.6 and u(co2) 
= 

0.4. Assuming that rain entails a muddy track and clear weather entails 

a dry track implies for any reasonable revision q of p that q(E) ^ u((x)i) 
and q(E) ^ u( 2), and the fact that u(o)i) + u((o2) 

= 1 = 
q(E) + q(E) 

then implies that q(E) 
= 

u(?)^) and q(?) 
= 

u((o2). Note that this analysis 
leaves the values of q on other nonempty proper subsets of ? undeter? 

mined.6 

In the foregoing example the fact that % is a disjoint family makes 

the inference from u on ?! to q on % so trivial as to be almost uncon? 

scious. In the following section, however, we shall examine a generaliza? 
tion of this sort of evidentiary situation in which the events in a possibil? 

ity set ? entailed by the individual outcomes in a related possibility set 

ii may be arbitrary nonempty subsets of ?. As we shall see, evidence 

of this sort circumscribes the possible revisions of a prior by placing a 

lower bound on the revised probability of each event E C ?. 

2. NEW EVIDENCE AND LOWER PROBABILITY 

Suppose that the total evidence relevant to revising some prior probabil? 

ity on ? allows us to assess on a related possibility set Cl a probability 
measure u which is positive on all nonempty subsets of il. Suppose that 

our understanding of the relationship between outcomes in ?1 and those 

in ? is expressed by a function T : ?1 ?> 20 
- 

{0}, with T(co) denoting 
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the narrowest event in ? presently understood to be entailed by the 

outcome (o E ??.7 How do u and T constrain the possible revisions of 

the prior in question? 

Following Dempster (1967), let us consider the mappings m, b, and 

a, defined for all E ? ? by 

(4) m(E) 
= u{(oEil: T( ) 

= 
E}, 

(5) b(E)= 2 m(H) 
= 

u{coE(l:T( )CE}, 
HQE 

and 

(6) a(E) 
= u{o)Eil: T((o) H E + 0}. 

Clearly, m(0) 
= 

6(0) 
= 

a(0) 
= 0, and 

(7) a(&) 
= 

b(@)= 2 m(E) 
= l. 

EQ& 

Since {<o E il : T(co) ? ?} and {a> E f? : T( ) Pi E ? 0} partition il, it fol? 
lows from (5) and (6) that 

(8) VE?@[a(E) 
= 

l-b(?)]. 

We shall call members of the family 

(9) % = 
{EC@:m(E)>0} 

evidentiary focal elements. As one might expect, the mapping b is a 

probability measure (and thus, by (8), identical with a) just when every 

evidentiary focal element is a singleton subset of ? (Shafer, 1976, 
Theorem 2.8). 

Since b(E) (respectively, a(E))is the sum of the probabilities of all 

those outcomes in f? which entail (respectively, do not preclude) the 

event E, it is clear that u and T restrict the possible revisions of the 

prior in question to those probability measures q satisfying 

(10) V? ? 0 [b(E) ̂  q(E) ^ a(E)]. 

It follows from (8) that it is redundant to postulate both the lower 

bound b and the upper bound a on q, and thus (10) may be replaced 
with the simpler, equivalent restriction 

(11) \/EC?[b(E)^q(E)]. 

It should be noted that the set of probability measures q satisfying 
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(11) is always nonempty. As indicated by the folllowing lemma, such 
measures arise by allocating each of the quantities m(E) among ele? 

ments of E in arbitrary fashion. 

LEMMA 1. Given m and b, as defined by (4) and (5), a probability 
measure q satisfies (11) if and only if there exists a mapping 

A:@x20-+[0,1] such that 

(i) EC? and 0 ? ? => A(0, E) 
= 0, 

(ii) ?J A(0, E) 
= 1 for all nonempty E C ?, and 

(iii) q(6) 
= 2 A(0, E)m(E) for every 0 E ?. 

EQS 

Proof: See Dempster (1967, pp. 327-330). O 

Lemma 1 yields yet another construction of those q satisfying (11), a 

construction which further supports the intuition that (11) is the approp? 
riate embodiment of the evidence manifested in u and T. Imagine the 

possibility of going beyond the specification of u and T and assessing a 

joint probability measure Q on ? x il. Such a Q would of course be 

compatible with u and Y in the sense that 

(12) V0 E ?, Vco E ft [0 ? T(co) -* Q(6, to) 
= 

0] 

and 

(13) ?n 
= u, 

where Qn denotes the marginalization of Q to ft.8 Were we possessed 
of such a Q the solution to our revision problem would be at hand. We 

would simply update the prior in question to Q@, the marginalization 
of Q to ?.9 The following theorem is therefore of considerable interest. 

THEOREM 1. A probability measure q on ? satisfies (11), with b 

defined by (5), if and only if there exists a probability measure Q on 

? x ft satisfying (12) and (13) such that q 
= 

Q0, the marginalization of 

Qto?. 

Proof: lfq 
= 

Q&, where Q satisfies (12) and (13), then for all E C ?, 

q(E) 
= 

QB(E) =11 Q(0, co) 
weft e&E 



GENERALIZED PROBABILITY KINEMATICS 249 

> 2 2 ?(0, ?) = 2 S Q(o,(o) 
co Cl e^E co fl: 0S0 

T(io)QE r(io)QE 

= 1 Qn(co)= 1 u(co) = b(E). 
coGEfl: (o fl: 

r(<o)QE r(co)QE 

Suppose, conversely, that q satisfies (11). For all 0 E ? and to E ft, let 

g(0, to) = 
A(0, Y(to))u(to), where A satisfies (i), (ii), and (iii) of Lemma 

1. It is easy to show that Q satisfies (12) and (13) and that Q? 
= 

q. O 

Theorem 1 establishes that, from the standpoint of u and Y, the possible 
revisions of some prior may be construed either as probability measures 

on ? bounded below by b, or as marginalizations to ? of probability 
measures on ? x ft compatible with u and Y. We shall find the latter 

characterization particularly useful in the next section. 

We conclude this section by identifying the special case of our 

(u, Y)-evidentiary model previously treated by Jeffrey. 

THEOREM 2. If % = {EC?: m(E) > 0} is a pairwise disjoint family 
and q is a probability measure on ?, then q(E) ^ b(E) for all EC? if 
and only if q(E) 

= 
m(E) for all EE%. 

Proof: If q(E) ^ b(E) for all EC?, then, since b(E) ^ m(E) by (5), 
it follows from (7), the pairwise disjointness of <?, and the additivity 

of q, that 1 = 
?<E(E%m(E) ^ ^E^%q(E) ^ 1, and hence that q(E) 

= 

m(E) for all EE%. (Note that if E E %, no proper subset of E has 

positive m-measure, and so, for such E, m(E) 
= 

b(E).) 
Suppose, on the other hand, that q(E) 

= 
m(E) for all EC%. 

Given an arbitrary EC?, let (M={HE%:HCE}. Clearly, 
q(E) ^ LH^q(H) 

= 
Y.H**m(H) 

= 
2HC? m(H) 

= 
b(E). O 

Theorem 2 establishes that when the family % of evidentiary focal 

elements is pairwise disjoint (equivalently, when for all to1, to2Eil, 
either Y(tot) 

= 
Y(to2) or Y(toi) n Y(co2) 

= 
0) the "lower probability" 

restriction (11) is equivalent to Jeffrey's "partial probability" restriction 

(1), with /jle 
= 

m(E). In the next section we proffer generalizations of 

Jeffrey's condition (2) and formula (3). 
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3. A NATURAL GENERALIZATION OF JEFFREY 

CONDITIONALIZATION 

With respect to the task of identifying a uniquely acceptable revision 

of a prior p on ?, the restrictions delineated in the previous section, 

arising solely from consideration of the probability measure u on ft and 

the entailment mapping T?> 2s 
- 

{0}, are rarely decisive. To arrive at 

such a revision we require an additional condition, generalizing Jeffrey's 

(2), specifying the extent to which the uncertainty assessments incorpor? 
ated in the heretofore ignored prior p are still judged to be operative. 

It is useful at this point to introduce some additional notation. For 

all EC?, let ?* 
= 

{to E ft : Y(to) 
= 

E}, so that, for example, m(E) 
= 

u(E+). For all A ? ? and all B ? ft, let "A" = A x ft and "fl" = 

?xB, so that, for example, ?("A") 
= 

Q&(A) for all AC? and 

Q("B") 
= 

Qn(B) for all B ? ft. As in the previous section, % = 

{E C ?:m(E) > 0}, the family of evidentiary focal elements. 

Suppose now that we avail ourselves of Theorem 1, construing the 

possible revisions of p as marginalizations to ? of probability measures 

Q on ? x ft satisfying (12) and (13). And suppose that, upon reflection, 
we judge that only those Q satisfying the additional condition 

(14) VAC?, VEE%[Q('iA")/"E+")=p(A/E)]10 

would be reasonable candidates for marginalization. To adopt (14) is 

to judge that the total impact of the occurrence of the event E+ is to 

preclude the occurrence of any outcome 0 (? E, and that, within E, p 
remains operative in the assessment of relative uncertainties. 

Conditions (12), (13), and (14) may well admit of an infinite number11 

of probability measures on ? x ft, but, happily for our enterprise, their 

marginalizations to ? are identical. 

THEOREM 3. If Q is any probability measure on ? x ft satisfying 

(12), (13) and (14) and Q& is the marginalization of Q to ?, then Q@ 
= 

q, where 

(15) q(A)= 1 m(E)p(AIE) 

for all AC?. 

Proof: The family {"?*": E E %\ is a partition of ? x ft, and 

Q("?*") 
= 

?n(?*) 
= 

"(?*) 
= 

ME) for all E E %. Hence, for all 
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AC?, Qe(A) 
= 

Q("A") 
= 

2? E* Q("E+" H "A") 
= 

2*e* Q("E+") 

?("A'7'\E*") 
= 

^E^m(E)p(AIE). O 

It is to be emphasized that probability measures on ? x ft enter the 

preceding discussion as formal, conceptual tools, there being no presup? 

position (and no need, given Theorem 3) that a fully defined probability 
measure on ? x ft be attainable. Indeed, formula (15) involves only 

uncertainty measures on ?, the prior p, and the measure m induced 

by u and Y according to (4). 

Along with Theorem 1, Theorem 3 establishes that restricting the 

possible revisions of a prior p to those probability measures satisfying 

(11), and thus formally realizable as the marginalization to ? of some 

Q satisfying (12) and (13), determines, under the additional restriction 

(14), a unique revision q defined by (15). The striking resemblance of 

(15) to Jeffrey's updating formula (3), along with Theorem 2, estab? 

lishing the equivalence of (11) with Jeffrey's (1) when % is a disjoint 

family, indicates the naturalness of our proffered generalization of 

Jeffrey conditionalization. The argument for this naturalness is com? 

pleted by the following elaboration of Theorem 2, which establishes 

the equivalence of (14) with Jeffrey's (2), when evidentiary focal ele? 

ments are pairwise disjoint. 

THEOREM 4. // %, as defined by (9), is a pairwise disjoint family, 
then stipulating of a probability measure q on ? that q 

= 
Q? for some 

probability measure Q on? x ft satisfying (12), (13) and (14) is equiva? 
lent to stipulating that q(E) 

= 
m(E) for all E E % and that q(AIE) 

= 

p(A/E) for all AC? and all EE%. 

Proof: We note first that the pairwise disjointness of % implies for 

any Q satisfying (12), for all A ? 0, and for all EE% that 

(16) Q("A" H "?*") 
= 

Q(A x E+) 
= 

Q((A H E) x E+) = 
Q((A H E) x ft) 

= 
QS(A H E) 

In particular, setting A = E in (16) yields 

(17) Qe(E) 
= 

Q(E x E+) 
= 

?(0 x E+) 
= 

Q("E+"). 

From (16) and (17), it follows for all Q satisfying (12), for all AC?, 
and for all ?6?, that 

(18) Q("A"I"E+") 
= 

Qe(A/E). 
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Now if q = Q@, where Q satisfies (12), (13), and (14), (18) and (14) 
imply that q(AIE) =p(AIE) for all A E ? and all E E %. By Theorem 
1, (12) and (13) imply (11), which, along with Theorem 2, implies 
q(E) 

= 
m(E) for all E E %. 

Suppose, on the other hand, that q(E) 
= 

m(E) for all EE% and 

that q(AIE) 
= 

p(AIE) for all A ? ? and all EE%. The former con? 

dition, along with Theorem 2, implies (11), which, with Theorem 1, 

implies the existence of some Q satisfying (12) and (13) such that Q@ 
= 

q. That Q satisfies (14) follows from (18) and the equality q(AIE) 
= 

p(AIE). O 

4. EXAMPLES 

The Linguist. You encounter a native of a certain foreign country and 

wonder whether he is a Catholic northerner (0i), a Catholic southerner 

(02), a Protestant northerner (03), or a Protestant southerner (04). Your 

prior probability p over these possibilities (based, say, on population 
statistics and the judgment that it is reasonable to regard this individual 
as a random representative of his country) is given by p(0i) 

= 
0.2, 

p(62) 
= 

0.3, p(63) 
= 

0.4, and p(64) 
= 0.1. The individual now utters a 

phrase in his native tongue which, due to the aural similarity of the 

phrases in question, might be a traditional Catholic piety (c?>i), an 

epithet uncomplimentary to Protestants (to2), an innocuous southern 

regionalism (to3), or a slang expression used throughout the country in 

question (to4). After reflecting on the matter you assign subjective 

probabilities m(c?i)=0.4, u(to2)=03, u(to3)=0.2, and u(to4)=0.1 to these 

alternatives. In the light of this new evidence how should you revise 

Under the assumption that no Protestant would utter tox or a^ and 

no northerner to3, the entailment mapping Y from members of ft = 

{tox, to2, to3, to4), to subsets of ? = 
{0X, 02, 03, 04}, is given by Y(<?i) 

= 

Y(to2) 
= 

{0x, 02}, Y(to3) 
= 

{02, 04}, and Y(to4) 
= 0. From (4) it follows 

that the nonzero values of m are ra{0i, 02} 
= 

0.7, m{02,04} 
= 

0.2, and 

m(0) 
= 

0.1, and from (5) it follows that the nonzero values of b are 

b{0u e2} 
= 

He,, 02,03} 
= 

0.7, b{e1, e2, e4} 
= 

0.9, b{e2, e4} 
= 

b{e2, e3, e4} 
= 0.2 and of course b(?) 

= 1. These, along with the zero values of b, 
establish a lower bound on the possible revisions of p. 

To decide to further circumscribe such revisions by (14) amounts in 

this case to judging that the class of utterances {to1, to2}, taken as a 
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whole, provides no information (differing from assessments incorpor? 
ated inp) with respect to the speaker's geographical origins, that to3 is 

similarly uninformative with respect to the speaker's religion, and that 

to3 is similarly uninformative with respect to any nonempty proper 
subset of ?. If you so judge,12 Theorem 3 will then warrant your 

updating p to q, as defined by (15). As an illustration, p{0i, 03} 
= 

0.6, 
the prior probability that the speaker is a northerner, will be revised 

to qi?t, 03} = 
(0.7)(0.4) + (0.2)(0) + (0.1)(0.6) 

= 0.34. 

The Toxic Waste Dump. A small dump is found on the premises of an 

abandoned chemical factory. This factory is known to have produced 
toxic wastes of type 01, 02, and 03, with p(B\) 

= 
0.4, p(d2) 

= 
0.3, and 

p(03) 
= 0.3 being the proportions of the total mass of wastes attribu? 

table to the three types. Without aditional evidence one might adopt 
the quantities p(6?) as estimates of the proportions of these types of 

wastes in the dump. 

Suppose that we now learn that the dump resulted from shipments 
tou to2, to3, and to4, with the proportions of the total mass of the 

dump attributable to these shipments given by u(to^) 
= 

0.1, u(to2) 
= 

0.2, u(to3) 
= 

0.5, and u(to4) 
= 0.2. The specific composition of these 

shipments is unknown, but fragmentary records indicate that shipments 
toi and to2 contained no wastes of type 0X, and shipment to3 contained 

no wastes of type 03. 

Along with r(^i) 
= 

Y(to2) 
= 

{02, 03}, Y(to3) 
= 

{0X, 02}, and Y(to4) 
= 

? = 
{0i5 Q2, 03}, u yields by (4) the function m on 20 with nonzero 

values m({02, 03}) 
= 

0.3, m({0i, 02}) 
= 

0.5, and m(?) 
= 0.2. The associ? 

ated set function b, defined by (5), takes the nonzero values 

b({02, 03}) 
= 

0.3, 6({0l5 02}) 
= 

0.5, and b(?) 
= 1. Note that for every 

EC?, b(E) is a lower bound on the proportion of the total mass of 
the dump comprised of wastes in the class E. 

To judge in this case that (14) holds is to judge that within the 

aggregate of shipments tox and to2 the wastes of type 02 and 03 may 

reasonably be assumed to be represented in proportion to the quantities 

p(02) and/?(03)13 and, similarly, that within shipment to3 wastes of type 
0i and 02 are represented in proportion to the quantities p(B\) and 

p(02), and within shipment to4 wastes of type 0/ are represented in 

proportion to the quantities p(0i) for / = 
1,. . . , 3. So judging, one is 

warranted in employing (15) to construct an updated estimate q(0?) of 
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the fraction of the total mass of the dump comprised of wastes of type 
ft. For example q(63) 

= 
(0.3)(0.5) + (0.5)(0) + (0.2)(0.3) 

= 0.21. 

5. DISCUSSION 

Theorems 1 and 3, elaborated by Theorems 2 and 4, constitute a natural 

generalization of Jeffrey conditionalization to a class of evidentiary 
situations in which evidentiary focal elements need not be, as in Jef? 

frey's model, disjoint. The problem of updating a prior probability in 

the light of such evidence is of practical, as well as theoretical, impor? 
tance. (We encountered it in the process of designing a diagnostic 

expert system.) Are there feasible alternatives to our approach to this 

problem? 
Dempster's Rule. Students of the theory of belief functions (of which 

the mapping b, defined by (5), is an example) may wonder whether 

one could not simply update p to p ? b, the result of combining p and 

b by Dempster's rule (see Shafer, 1976, Chapter 3). As is easily seen, 

however, p?b, while always a probability measure on ?, may well 

fail to be bounded below by b, in violation of the basic restrictive 

condition (11). Moreover, p and b are not reasonably combined by 

Dempster's rule, since they do not satisfy Shafer's criterion of being 
based on "entirely distinct bodies of evidence,"14 p based on the old 

evidence, and b on the total evidence, old as well as new. 

It is perhaps of mathematical interest to note, however, that one can 

always formally reconstruct formula (15) by means of Dempster's rule. 

THEOREM 5. Suppose that p is a probability measure on ?, that 

m:2@ ?>[0,1] such that m(<f)) 
= 0 and ^Eq?m(E) 

= 
1, and that 

p(E) >0forallEE%= {E C?:m(E) > 0}. If we define M(E) 
= 

0for 
all E<?% and 

(19) M(E) = ?MME) forallEe% 
lm(F)/p(F) 

and let B(A) 
= 

^Eqa M(E) be the belief function induced by M, then, 

for all AC?, 

(20) q(A) = S m(E)p(A\E)=p@B(A), 
def E^% 
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where p?B denotes the result of combining p and B by Dempster's 
rule. 

Proof: Let a EA. By Dempster's rule (see Shafer 1976, pp. 59-60), 

p@B(a)=p(a) 1 M(E) 1 p(6) 1 M(E) 
E^% I 060 E^% 
a E 6 E 

E % p(E) I 6 0 EG.% p (E) a&E r x ' o<EE V 7 

= 
q(a)/ 1 q(9) = q(a). 

Since q and p ? B are additive, (20) follows for all A C ?. O 

Note that when % is a pairwise disjoint family the above method 

furnishes a particularly simple formal reconstruction of Jeffrey's rule 

by means of Dempster's rule (cf., Shafer 1981). 
Maxent. Students of maximum entropy approaches to probability re? 

vision may recall that the probability measure defined by Jeffrey's 
formula (3) minimizes the Kullback-Leibler information number 

I(<1>P) 
~ 

^oq(O) ^og(q(6)/p(9)) over all probability measures q satisfy? 
ing (1), and wonder if the probability measure defined by our formula 

(15) similarly minimizes I(q, p) over all probability measures q bounded 
below by b. The answer is negative, as shown by just about any case 
in which it happens that the prior p is itself bounded below by b. 

Convinced by Skyrms (1987), among others, that maxent is not a 

tenable updating rule, we are undisturbed by this fact. Indeed we take 
it as additional evidence against maxent that (15), firmly grounded on 

evidence establishing the lower bound b and a considered judgement 
that (14) holds, might violate maxent.15 From this point of view, the 
fact that Jeffrey's rule coincides with maxent is simply a misleading 
fluke, put in its proper perspective by the natural generalization of 

Jeffrey conditionalization described in this paper. 
That what Diaconis and Zabell (1982) call "mechanical updating" 

schemes fail to ground the revision formula (15) is fortunate from 
another perspective as well. For without the temptations of mechanical 

updating, we are left with the hard work of judging whether the crucial 
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condition (14), which generalizes Jeffrey's (2), is reasonably assumed. 

And it is worth being reminded that conditionalization needs to be 

grounded both on new evidence and on a judgement about the con? 

tinued relevance of our prior assessments of uncertainty. 
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* Research supported by grants from the University of Tennessee and the National 

Science Foundation (DIR 
- 

8921269). Portions of this work were completed while the 

author was a Visiting Fellow in the Department of Philosophy at Princeton University. 
1 

In this paper all possibility sets are assumed to be finite. A probability measure on 0 

is a mapping p: 2? -> 
[0,1], where 2? is the set of all subsets of 0, such that p(<f>) 

= 
0, 

/?(0) 
= 1, and VA, B?? [A H B = 

<?>-+p(A\J B) 
= 

p(A) + p(B)]. When 0E0, we 
shall abuse notation and write p(6) rather than the correct, but cumbersome, p({0}). As 

usual, elements of 0 are called outcomes and subsets of 0 are called events. An event is 

said to occur if one of its constituent outcomes occurs. 
2 

It is implicit in (2) that, in the words of Van Fraassen (1980), "zeros are not raised" 

on members of <?, i.e., that p(E) > 0 for all EE.%. 
3 

Strictly speaking (3) represents a mild generalization of Jeffrey's original rule, which 

requires % to be a partition of 0. This stipulation has the slightly odd consequence that 

ordinary conditionalization is not a special case, but only a limiting case, of Jeffrey 
conditionalization. Formula (3), on the other hand, is a genuine generalization of ordinary 

conditionalization, reducing to the latter when % has just one member. 
4 

Jeffrey, 1965, pp. 158-59. 
5 

Jeffrey, 1965, p. 158. 
6 

However, lower bounds on the values of q on subsets other than E and ? are derivable, 
it being one aim of this paper to elaborate on just this observation. See, especially, ?2. 
7 

To assert that the event E = 
{6l9. . . , dk} Q 0 is entailed by the outcome eu E ? is to 

assert that "o> occurs" entails "0i occurs v v 6k occurs." If o) entails E and E CF, 

then (o also entails F. The event T((o) may be equivalently described as the set of those 

6 E 0 which are not inconsistent with (o, it being assumed that no o> E ?1 is inconsistent 

with every 0E 0, i.e., that every a> E ?1 entails 0. 
8 For all ECU, Qn(E) =dei?(0 x ?). The set of Q satisfying (12) and (13) is clearly 
nonempty. 9 For all E C 0, QB(E) =def Q(E x il). 
10 

It is implicit in (14) that "zeros are not raised" on %, i.e., that p(E) >0 for every 

evidentiary focal element E. 
11 

Of course, (12), (13), and (14) are always satisfied by at least one probability measure 

Q on 0 x O, namely, the measure Q defined by Q(d, ) 
= 

u(?))p(6\T((o)). If, for all i, 

?)2 E il, ?>! + ?>2 implies that T^) ? r(w2), then this is the only probability measure Q 

satisfying (12), (13), and (14). For in this case, (14) asserts that for all A ? 0 and all 

weft, ?("A'7"{a>}") 
= 

p(A/T(?))). Along with (12) and (13), this implies that ?(0, o) 
= 

u(a>)p(6\r(?>)). 
12 

You may, of course, not so judge. You may, for example, have evidence that utterers 

of o?3 are overwhelmingly Protestant. 
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13 
This condition will of course be met if in each of the separate shipments coi and co2 

wastes of type 02 and 03 are represented in proportion to the quantities p(02) andp(03). 
But an assumption of this strength is not necessary in order to support (14). 
14 

Shafer, 1976, p. 57. 
15 

Of course the probability measure defined by (15) does minimize I(q,p) over all those 

q which are marginalizations to 0 of some Q on 0 x il that satisfies (12) and (13) (this 
being equivalent to b =s= 

q) and in addition satisfies (14). For by Theorem 3 there is only 
one such q. But the counterpart of getting Jeffrey's (3) from (1) and the minimization 

of I(q,p) alone, on which maxent enthusiasts pride themselves, would clearly be to get 

(15) from (11) (equivalently, (12) and (13)) and the minimization of I(q,p) alone, ignoring 
(14) just as they ignore Jeffrey's (2). And this they cannot do. 
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