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Jeffrey has devised a probability revision method that increases the probability of hy-
pothesis H when it is discovered that H implies previously known evidence E. A natural
extension of Jeffrey’s method likewise increases the probability of H when E has been
established with sufficiently high probability and it is then discovered, quite apart from
this, that H confers sufficiently higher probability on E than does its logical negation H.

1. Introduction.

1.1 Old Explanation and New Evidence. If hypothesis H is known to
imply the less-than-certain proposition E, the subsequent discovery
that E is true ought to confirm (i.e., raise the probability of) H. There
is a straightforward Bayesian account of such confirmation, for from
P(EIH) = 1 > p(E) it follows immediately that p(H|E) > p(H).

Indeed, if H is merely positively relevant to F under the prior p and
new evidence prompts a revision of p to p* by probability kinematics
(Jeffrey 1983, 1988) on the partition {E, E}, with p*(E) > p(E), then
p*(H) > p(H). For

P*H) — p(H) = (p*(E) — p(E)p(HIE) + (p*(E) — p(E)p(HIE)
= (p*(E) — p(E)Xp(HIE) — p(H|E)) > 0,
the first factor being positive by assumption and the second by the
positive relevance of H to E (hence, of E to H). Confirmation here is
simply a matter of the symmetry of positive relevance.
More generally, one may prove the following theorem.
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678 CARL G. WAGNER

Theorem 1. Let {E;} be a finite or countably infinite partition of the set
of possible states of the world, with p(H) > 0 and p(E,) > 0 for all i.
Let I be a nonempty, proper subset of the set of indices i, with p( E|H)
>p(E)ifi€ land p(EJH) = p(E,) if i € I Let p* come from p by
probability kinematics on the partition {E}. Suppose that p*(E,) =
p(E;) ifi € I with p*(E,) > p(E,) for some i € I, and that p*(E,) =
P(E)ifi &L Thenp*(H) > p(H).
Proof: Clearly,

P*(H) — p(H) = 2 (p*(E) — p(E))p(HIE)
= > (p*(E) — pE)p(HIE) + 2, (pX(E) — p(E)p(HIE),

el =3¢
so it suffices to show that

% (p¥(E) — p(E)p(HIE) > é (p(E) — p*(ENp(HIE). (1)
By the symmetry of positive relevance it follows that p(H|E) > p(H)
ifi € I and p(H |E) < p(H) if i & I Hence,
2 (p*(E) ~ pE)P(HIE) > p(H) 2, (P*(E) — p(E))
= p(H) 2, (P(E) — p*(E)) = 2 (p(E) — p*(E))p(HIE),

[=34 gl

which establishes (1). [

1.2 Old Evidence and New Explanation. Suppose that we first attain
certainty regarding E and subsequently discover, quite apart from this
certainty, that H implies E.! Just as it does when explanation precedes
observation, this explanation of the previously known fact E by the
hypothesis H ought to increase the probability of H. As Clark Glymour
(1980) has noted, however, such an increase cannot come about by
conditioning on E, for p(H|E) = p(H) if, as would here be the case for
the prior p, p(£) = 1. Glymour has termed this dilemma the problem
of old evidence,* and views it as a major challenge to Bayesian confir-
mation theory.

One proposed solution to this problem, due to Daniel Garber (1983),

1. The canonical example here is Einstein’s explanation of the previously observed
advance in the perihelion of Mercury in terms of the general theory of relativity. See,
e.g., Weinberg 1992, 94.

2. Glymour actually identified more than one problem of old evidence. The problem
we consider here is what Garber (1983), influenced by Skyrms, calls the historical prob-
lem of old evidence. Jeffrey (1991, 1995), on the other hand, calls it the problem of new
explanation.
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OLD EVIDENCE AND NEW EXPLANATION 679

extends the algebra on which probabilities -are defined to include the
proposition A + E that H implies E, and then conditions on H | E.
Under certain conditions, p(H|H + E) > p(H). Richard Jeffrey (1991,
1995) has proposed a solution that retains the original algebra, but
revises probabilities by an entirely new method called reparation. A key
feature of Jeffrey’s solution is the imaginative reconstruction of a prob-
ability distribution (the ur-distribution) that predates both our certainty
regarding F and our discovery that H implies E.

In this paper Jeffrey’s method is extended to give an account of
confirmation in the case of old probable evidence and new probabilistic
explanation. The extended method increases the probability of H when
E has been established with sufficiently high probability and it is then
discovered, quite apart from this, that H confers sufficiently higher
probability on E than does its logical negation H.

In what follows, I describe Jeffrey’s method in §2 and extend it to
the case of probable evidence and probabilistic explanation in §3, con-
cluding in §3.5 with a discussion of the case in which the evidence
bearing on H comprises an arbitrary finite partition of the set of pos-
sible states of the world. As in Jeffrey’s analysis, the proposed revision
of a prior based on new probabilistic explanation can be derived from
either of two appealing heuristic principles, the uniformity principle or
the commutativity principle. The first of these dictates (in one of its
several equivalent formulations) that explanation-based probability re-
visions should preserve certain ratios of new-to-old odds. The second
specifies that revisions based on observation and explanation should
result in the same outcome, regardless of the order in which they are
applied.

2. Jeffrey’s Solution. Suppose that p is a probability distribution on the
algebra of propositions generated by E and H and that p(E) = 1,
reflecting our certainty about the truth of E:
HE HE HE HE
P o« 0 1 —a O 2)
We then discover, quite apart from this certainty, that H implies E.
Jeffrey’s strategy for revising p in the light of this discovery accordingly

has us imagine a distribution p, (the ur-distribution) that predates both
our certainty about £ and our discovery that A/ implies E:

Poo a b ¢ d 3)

It is assumed that g, b, ¢, and 4 are positive, and that p has come from
D, by conditioning on E, so that
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680 CARL G. WAGNER

a=gla+candl — a = cla + c. %

If p, were our prior and we discovered that H implies E, but nothing
new about the relation between H and E, or about the probability of
H, it would be reasonable to revise p, to a distribution p, satisfying

p(EH) =1 S)
pi(ElH) = p(E|H),* and (6)
pi(H) = p(H). )

Jeffrey (1991) expresses conditions (5)—(7) in the alternative, equiva-
lent* form

pl(EIE)/Px(EI_{) =, o (8)
P(EIH)Ip(EIH) = p(EIH)Ipy(ElH ), and 9)
P(HE)p(HIE) = p(HE)p(H|E)p(E|H). (10)

There is exactly one distribution p, satisfying (5), (6), and (7) or, equiv-
alently, (8), (9), and (10):

p: a+b 0 ¢ d (11)

Jeffrey now reasons that the revision of p (call it p*) prompted by
the discovery that H implies F should bear the same relation to p as

3. That one must judge, case-by-case, whether (6) is appropriately assumed was first
emphasized by Diaconis (Jeffrey 1991, 106). If, for example, H included alternative
hypotheses which also implied or conferred high probability on E, this assumption
might not be appropriate.

4. The proof that the conjunction of conditions (5)—(7) is equivalent to the conjunction
of conditions (8)—(10) goes as follows: Clearly, (5) implies (8), and (6) implies (9). Fur-
thermore, by the odds form of Bayes’ rule,

P GHIE) _ pUD)  p(ELH)
p (B ~ p() p(EH)

_bH) 1
= o pm Y (> ) and (©
_pHD 1

Po(HE) p(EHY
which establishes (10). Conversely, it is clear that (8) implies (5), and (9) implies (6).
Finally,

p, (H) _ pHIE) px(E]ﬁ)
p(H)  p(HE) p(EH)
- PAHE) . Po(EH)
Po(—IT—IIE) P(E\H)

_ pfH)

po(ﬁ))

by (10), (6), and (5)

which yields 7.
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OLD EVIDENCE AND NEW EXPLANATION 681

the explanation-based revision p, of p, does to p,, the latter as captured
by the conditions (8)-(10). Thus p* should satisfy the conditions

PHEH)p*EH) =, (12)
PH(E\H)p*(EH) = p(E\H)/p(E]H), and (13)
P (H|E)p*(H|E) = p(H|E)/p(H|E)p,(EH). (14)

As detailed in §3 below, conditions (12)-(14) represent a special case
of a uniformity principle for certain conditional Bayes factors (i.e.,
ratios of new-to-old conditional odds) associated with explanation-
based probability revisions. In any case, there is exactly one distribu-
tion p* satisfying (12), (13), and (14):

. a+b c
Po A b+ e a+b+c (15
To wrap things up, we need only check that, as desired,
a+b a
P*H) = > = p(H). (16)

a+b+c¢c a+c

Jeffrey observes that p* can also be derived from a principle of com-
mutativity, to the effect that probability revisions based on observation
and explanation should result in the same outcome, regardless of the
order in which they are applied. Having revised p, to p, based on the
(implicational) explanation of E by H, we would, upon observing E,
revise p, to p,(*|E), the result of conditioning p, on E. The commuta-
tivity principle would therefore dictate p,(-|E) as the proper revision of
p based on the discovery that H implies E. Happily, p,(-|E) = p*, as
an immediate consequence of (11) and (15). We shall see in the next
section the same concordance of uniformity and commutativity prin-
ciples in the solution of the problem of old probable evidence and new
probabilistic explanation.

3. Probable Evidence and Probabilistic Explanation.

3.1 Preliminaries. If g, and g, are probability distributions, with g,
being a revision of ¢,, and A4,, 4,, and B are propositions, the Bayes
Jactor B, (A,:A,) is simply the ratio

— @(4) [ q(4)
g4y | q:(4y)

of new-to-old odds, and the conditional Bayes factor ,, ,
ratio

ﬁqz,ql (Al:AZ) : (17)

(A,: A,]B) the
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682 CARL G. WAGNER

g4B) | ¢:(4.B)
:A,|B) :=
'quyql (41:4:15) qA\B) | q,(4,|B) (1%

of new-to-old conditional odds.

When ¢, = ¢, g, = q(:|E), A, = H, and 4, = H, the Bayes factor
By (Ai:A4,) 1s denoted by 4(H E) and called the /ikelihood ratio of
hypothesis H on evidence E. By the odds form of Bayes’ rule,

qHIE) _ q(H) g(E1H) (19)
g(HE)  q(H) g(EIHY
we have the simple formula
L (HE) = q(EH)lq(E\H). (20)

Bayes factors and likelihood ratios play a central role in the formula-
tion and solution of the problem of old probable evidence and new
probabilistic explanation.

3.2 Reparation generalized. Suppose that p is a probability distri-
bution on the algebra generated by E and H:
HE HE HE HE
p. a f v J. 2n
Certain observations have led to our assigning p(E) a high value, ina
sense that will later be made more precise. We subsequently discover,
quite apart from the observations underlying p, theoretical considera-
tions that, taken alone, indicate that the truth of H would confer prob-
ability v on E, and its falsity would confer probability u on E. Taken
alone, these theoretical considerations would not have tended to alter
whatever probability was ascribed to H prior to the assessment of p.
How should p be revised in the light of this theoretical discovery? We
describe below a generalization of Jeffrey’s method that raises the prob-
ability of H when p(F) and the ratio v/u are sufficiently large.
As in Jeffrey’s approach, we resurrect a notional ur-distribution p,
predating both observation and explanation:

Poo a b ¢ d (22)

The conceit is that p has come from p, by probability kinematics on
the partition {£, E}. Thus

afy = alc and f/6 = bld. (23)

In logical effect (though not in historical reality) it is the conceptual
state captured by p, in which we make the aforementioned theoretical
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OLD EVIDENCE AND NEW EXPLANATION 633

discovery. This discovery would of course lead us to revise p, to a
distribution p, satisfying

p(EH) = (24)
pl(EIH) = u, and (25)
p(H) = p(H). (26)

There is just one such distribution:

pr. va+b) A -=wWa+b ulc+d (1 —u(+d. @Q7)

We now revise p to a distribution p* in such a way that p* bears the
same relation to p as p, does to p,. The following theorem delineates
three equivalent formulations of this relation.

Theorem 2. If #/:= {HE, HE, HE, HE}, the conditions

B fA1:4) = B, ,{Ai:4,), VA, A, €4, (28)
PHA) p(A)p(AD)p(A), YA €A, and (29

() B (H HE) = B, ,(H:HE)

(ii) B (H:H|E) = B,,,(H:HIE), (30)

(le) ﬁp*,p(EEIE) = ﬁpl,po(E'Ei_Iz)a and

(ZV) ﬁp*,p(E:ElH) = ﬁpl,po(E:EIH)
are equivalent, where tie symbol < in (29) denotes proportionality.
Proof.s [

We shall call the common principle underlying the equivalent con-

5. From (29) one gets, for all 4 € ;_4_, the exact formula p*(4) = p(A)p,(A)/sp(4), where
s = p(HE)\(HE)Ip(HE)+ p(HE )p(HE )Ip,(HE )+ p(H E)Ip\(H E)Ip(HE) + p(HE)
p,(HE)p,(HE). So it is clear that (29) implies (28). Conversely, given (28), choose and
fix some 4 € 4. Then (28) yields, for all 4 € 4, that

* - pi(4) @P_*@l
P = P D BB
which yields (29), the constant of proportlonahty being po(B)p*(B)/p(B)p,(B).

It is straightforward to verify that (30)(i) is equivalent to the case 4, = HE and 4,
= HE of (28). Similarly, (30)(ii), , (30)(iii), and (30)(iv) are equlvalent respectively, to
the cases 4, = HEand 4, = HE, A, = HEand 4, = HE, and 4, = HE and 4, =
HE of (28). It is simply a matter of tedious algebra to check that these four cases of
(28) imply that (28) holds for all 4,, 4, € <. Indeed, any three of these four cases of
(28), ;hdence any three of the conditions (30)(i)—(30)(iv), imply that (28) holds for all 4,,
A, €

Condition (28) is a uniformity condition on certain Bayes factors associated with
explanation-based probability revisions, and condition (30) a uniformity condition on
certain conditional Bayes factors. Clearly, (30) generalizes Jeffrey’s conditions (12)-
(14), and was, indeed, suggested by these conditions. Condition (29), which posits the
proportionality of the “relevance quotients™ p*(4)/p(4) and p(A)/p(A), which origi-
nated in Jeffrey (1995).
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684 CARL G. WAGNER

ditions (28), (29), and (30) the uniformity principle for explanation-
based probability revisions. There is a unique revision p* of p satisfying
the uniformity principle:

. va+ ba (1 = via+ b wlc+ dy (1 —ulc+ d)d
P as bs cs ds ’

where s = v(a + b) ala + (1 — via + b6 + u(c + dyylc +
(1 — w)(c + d)old Note that (31) reduces to Jeffrey’s (15) whenv = 1,
u=clc+da=ala+cy=ca+candf =76 =0,1ie.,in the
case of certain evidence and implicational explanation.

The following theorem states a condition sufficient to ensure that
the desired inequality p*(H) > p(H ) obtains for sufficiently large values
of p(E).

3D

Theorem 3. If 2, (H, E) > 4, (H, E), thenp*(H) > p( H) for sujficiently
large values of p(E). . .

Proof. Since p*(H) > p(H) if and only if p*(H)/p*(H) > p(H)/p(H),
it suffices to show that

pNH)  p(H)
—_— - —==>0. 32
o ) o G2
But
_p*H)  A(HE) _ p(HE)
— = 2 — 6 33
K@ " G (HE)  poHE) 33)
and

6. Since p,(H) = p,(H) by (26), we have

o (H.EMY, (HLE) = p((EHp( EB)Ipo( EH)p,(ETD. )
By (29),
_ KEWHEWEH) | pEH)p, (EH)
P _pfEH) ¢ pMEH) _ plEH) T plEH)
P~ pHER) + pER)  pEWHERER _pERp, EB

Po(Ef-I) PO(EE
Since p comes from p, by probability kinematics on {E, E}, p(HIE) = p(H|E) and so
P(HIE) = p,(H|E). Along with (ii), this implies that
P*H) _ p(EH)p(ER)p(HIE)

Ii — = sk el
o 0*(H)  p EH)p(ER)py(HIE) (i)
_ A(HE)  p(HE)

A (HE) " p(HEY
by ().
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OLD EVIDENCE AND NEW EXPLANATION 685

. p(H) _ p(H|E)
lim —F = ———=7 34
wer1 PU)  po(HIE) GY
Since /11,1 (H, E)> Apo (H, E), (33) and (34) imply (32). [
Thus we see that generalized reparation increases the probability of
H when FE has been established with sufficiently high probability and
it is then discovered, quite apart from this, that H confers sufficiently

higher probability on E then does its logical negation H, specifically,
when /11,1 (H, E) = viu> lpo (H, E). When p(E) = 1 (the case of certain

evidence and probabilistic explanation), the condition Ao (H, E) >

/Ipo(H, E) is in fact necessary and sufficient to ensure that p*(H) >

p(H).2 In the case of certain evidence and implicational explanation,
this condition always holds® and so, as Jeffrey noted, H is always con-
firmed.

7. Since p comes from p, by probability kinematics on {E, E},

im 29D _ iy PEWPJLHIE) + pEp(HIE)
o DD wors PEWGHIE) + p(E)p,(HIE)
PO(H]E )
 p(HIE),
as desired. We have simply shown here the intuitively obvious fact that the limiting
case of probability kinematics, as p(E) — 1, is ordinary conditioning on E.

8. By note 6, formula (i),
A, (HE) > 1, (H,E) < p(EH)p(EH) > p EH)p,(EH)
PI(H]E) PO(HIE)

© p(@E)” p(HE) ®
©p(HE) > py(H|E) = p(H).
By (27) the distribution p, is given by
HE HE HE HE ..
pr va+b (A-—wa+b) uc+d (- uwc+d (i)
In this case, where p(E) = 1, formula (31) for p* simplifies to
o~ va + b) u(c + d) (i)

wa + b) + u(c + d) via + b) + ulc + d)

From (ii) and (iii) it is obvious that p*(H) = p,(H|E). With (i) this establishes the
asserted equivalence. Note that what we have just proved is that p* may be derived
from a commutativity principle as well as from the uniformity principle when p(E) =
1. We shall establish this result in the general case in §3.3.

9. For in this case,

P(BH) _ 1 _ p(EH)
P ET) B po @ e
since p(E|H) = ala + b < 1.

4, (HE) =
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3.3. Generalized Reparation and Commutativity. The explanation-
based revision p* of p, given by (31), was derived from the uniformity
principle. To show that p* may also be derived from the commutativity
principle, we need to show that p* comes from p, by probability kin-
ematics on the partition {E, E}, just as p comes from p, by probability
kinematics on that partition. This is established in the following the-
orem.

Theorem 4. The distribution p* comes from p, by probability kinematics
on {E, E}, with

By, (E:E) = B,, (EE). 35)

Proof. Since p comes from p, by probability kinematics on {E, E}, we
have

pHE) _ p(HE)
—— = "———= and 36
P(FE) ~ p(HE) G0
PHE) _ plHE) 37)
PHE) p(HE)
To show that p* comes from p, by probability kinematics on {E, E},
it suffices to show that

P*HE) _ p(HE)
—— = ———— and 38
P@HE) ~ p(TIE) )
prHE) _ p(HE) (39)
p*(HE) p(HE)
Formula (38) follows from (28) with 4, = HE and 4, = HE, along
with (36). Formula (39) follows from (28) with 4, = HE and 4, =

HE, along with (37).
To prove (35), note first that by (29), (36), and (37),

PME) _ p*HE) + p*(HE)
p*® ~ pHE) + prHE)
P(HEW\(HE) , p(HE)p,(HE)  p(HE)

_ __PHE) _pﬂ(ﬁE_)_ _ PHE)  p/(E) 40)
P(HE)p,(HE) N PHEp(HE)  p(HE) P(E)
PoHE) P(HE) Do(HE)

Copyright © 1997. All rights reserved.



OLD EVIDENCE AND NEW EXPLANATION 687

Also,
PHE)P(HE) PHE)P(HE)  p(HE)
PE) _ _pdHE) " plHE) __ pHE)  plE)
p(E) pHEP(HE) pHEPp(HE) pHE) PAE)

P(HE) P(HE) Po(HE)

Formula (35) follows from (17), (40), and (41). [

Note that by (35) the revision of p, to p* is effected by the “same”
kinematical transformation that effects the revision of p, to p, not in
the sense of assigning the same new probability to £, but rather in the
sense of revising the old odds on E by the same factor.

3.4 Example. The following numerical example may clarify the ideas
in §3.1-3.3. Suppose that our current distribution p on the algebra
generated by H and F is given by

HE HE HE HE
4 1 41 (42)

P To 10 10 10
We subsequently discover, quite apart from the observations under-
lying p, theoretical considerations that, taken alone, indicate that H
would confer probability v = .80 on E and H would confer probability
u = .40 on E. Taken alone, these theoretical considerations would not
have tended to alter whatever probability was ascribed to H prior to
the assessment of p. Imagine that p has come from an ur-distribution
P, by probability kinematics on {E, E}, with the p-odds on E quad-

rupling the p,-odds on E, whence

1111
i 43)
In logical effect, it is the conceptual state captured by p, in which we
make the aforementioned theoretical discovery. This discovery would

prompt a revision of p, to p,, where

.4 12 3
Pr 70 10 10 10

The revision p* of p prompted by that theoretical discovery can be
derived either from the uniformity principle or from the commutativity
principle. The wuniformity principle dictates that p*(HE) «
(.40)(.40)/(.25), p*(HE) < (.10)(.10)/(.25), p*(H E) == (.40)(.20)/(.25), and
P¥(HE) « (.10)(.30)/(.25). Thus,

(44
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. 16 1 8 3

P28 28 28 2% 43)
In this case, p*(H) = Y/ > Y2 = p(H). To derive p* by the com-
mutativity principle, we revise p, by probability kinematics on {E, E},
choosing p*(E) so that the p*-odds on E quadruple the p,-odds on £,
i.e., so that p*(E)p*(E) = (4)(.60)/(.40) = 6. This yields p*(E) = ¢~
and p*(E£) = /7. Revising p, to p* by probability kinematics on {E,
E} using these new probabilities of E and E again yields (45).1°

3.5 Finer Evidentiary Partitions. In this section we generalize Theo-
rem 3 to an old evidence/new explanation counterpart of Theorem 1.
Here, however, we assume a finite partition {E,, . . ., E,} of the set of
possible states of the world. Our current probability p is defined on the
algebra of events generated by the hypothesis H and all of the eviden-
tiary events E,. There is a nonempty proper subset Jof {1, . . ., n} with

10. At first glance, this example may look strange. Isn’t generalized reparation supposed
to be based on the discovery of a new, “stronger” relationship between H and E? Here,
however, we have v = .80 = p(E{H). Moreover, at the end of the revision exercise, we
have p*(E|H) = 16/17 > .80, which appears to contradict the discovery that H confers
probability v = .80 on E.

Both these objections are based on a misunderstanding of new probabilistic expla-
nation, which here amounts to the discovery, based solely on theoretical grounds and
quite apart from the observations underlying p, that H confers probability v = .80 on £
and H confers probability # = .40 on E. Since p,, not p, captures the conceptual state
in which this discovery is made, the judgement that a new, stronger relationship between
H and E has been discovered is not based on a comparison of p(E|JH) with v. Nor is it
based simply on a comparison of p,(E|H) with v. As shown in Theorem 3, it is the
condition /‘,,,I(H E) = vlu > /‘VPO(H, E) that captures the notion of a new, stronger

relationship between H and E and sets the stage for the inequality p*(H) > p(H) to
obtain for sufficiently large values of p(E). It is instructive to redo this example with v
= 75 and u = .40, and also with v = .40 and u = .10. In the former case, v < p(E|H)
and yet p*(H) = 65/109 > p(H). In the latter, it is even the case that v < p(ElH), and
yet p*(H) = 22/35 > p(H). In both cases the key inequality ).,,,(H, E)> /'.pG(H, E)

holds. Note 8 supra shows, correspondingly, that neither v > p(E|H) nor v > p(E|H)
suffices to guarantee that p*(H) > p(H) for p(E) sufficiently large.

As for the second possible objection, there is nothing incoherent about the fact that
p*(E\H) differs from v. The judgment that H confers probability v on E'is, as we have
indicated, based only on theoretical considerations. It is not a final judgment about the
conditional probability of E, given H, all things considered. The latter judgment is
expressed by p*(E]H) and is based on both theory and observation. In the special case
of implicational new explanation treated by Jeffrey, it follows from the fact that
p(HE) = 0 and from the fact that zeros are not raised by reparation (or, for that matter,
by generalized reparation) that p*(E{H) = 1= v. But p*(E|H) can differ from v in the
general case, where it is possible that p(HE) > 0.
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E := U,,E,. Certain observations have led to our assigning p(E) a
high value.

We subsequently discover, quite apart from the observations un-
derlying p, theoretical grounds for believing that, for each i, the truth
of H would confer probability v, on E, and, its falsity would confer
probability », on E,. Taken alone, these theoretical considerations
would not have tended to alter whatever probability was ascribed to
H prior to the assessment of p.

Proceeding as in §3.2, we resurrect an ur-distribution p,, with p con-
ceived as having come from p, by probability kinematics on {E,, . . .,
E}. It is assumed that py(HE) > 0 and p,(HE) > 0 for every i. The
aforementioned theoretical discovery would have led us to revise p, to
the unique p, for which p,(EJH) = v, and p, (E| H) = u, for all i, and
p(H) = p(H).

We now revise p to p* in such a way that p* bears the same relation
to p as p, does to p,, as dictated by the uniformity principle,

p*(A) = p(Ap(A)/py(A)," (46)

for A = HE, HE, where i = 1, ..., n. This determines p* uniquely
and this explanation-based revision of p raises the probability of H
under conditions delineated in the following theorem.

Theorem 5. Let J be a distinguished nonempty proper subset of
{1,...,n}, withE:= UgE. If

min {4, (H,E)} > max {4, (H,E)}, @7
eJ eJ

then p*(H) > p(H) for sufficiently large values of p(E).
Proof. Tt suffices to show that p*(H)/p*(H) > p(H)/p(H) for p(E)
sufficiently large. By the uniformity principle (46),

11. From (46) one gets the exact formula p*(4) = s~'p(4)p,(4)p(4) for each 4 € 4
:={HE,,...,HE_, HE, ..., HE}, where

s = Ep(A)pl(A)/po(A)-

In a straightforward generalization of Theorem 2, one may prove that (46) is equivalent
to either of the conditions

D Be(diidy) = B, ,(A:4,), forall 4,, 4, € A, or

) @) B (HHIE) = B, , (H:HIE), forall i= 1,....n,
(6) B (E:EJH) = B, , (E;EJH). for ij=1,...,n, and
(© B-AE;:E|H) = ﬁp],pu(Ei:Ejl_ﬁ)9 forij=1,...,n

As in the case of Theorem 2, there is some redundance in (i) and in (ii).
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PXEIp*H) = (t + l(w + 0), (48)
where
t= EP(HE)pI(HEi)/po(HE.-) = gjp(E,-)p,(HE,-)/po(E,), (49)
o= S pHEDHEpHE), (50)
w =3 pEEWHEVPHE) = 3 pEY(FENR(E), ()
and
6= % p(HE)p,(HE)/p,(HE). (52)
Also,
PH)Ip(H) = (' + &)(w' + &), (53)
where
1= gp(E,-)po(ME,») = gjp(E,)po(HEf)/po(E,«), (54)
o = 3 pEWSHIE). (55)
W= gp(E,-)po(EE,.) = Ep(E,-)po(HE,)/po(Ei), (56)
and
& = gp(ff,»)po(mi). (57)

By (48) and (53), it suffices to show that
w — wt' >0t + we' + 08 — 10 — ew' — &' (58)

for p(E) sufficiently large. Now J, &', ¢, and ¢’ all converge to zero as
PE)=Zp(E)—1,and ¢, ¢, w, and w' are uniformly bounded above
for all distributions p. Hence the right hand side of (58) converges to
zero as p(E) — 1. So to show that (58) obtains for p(E) sufficiently
large, it suffices to show the existence of a § > 0 such that rw’ — wt'
= f for p(E) sufficiently large.

Since p(H) = p,(H), condition (47) is equivalent to

P(HE)p(HE) > p,(HE)p,(HE) for all i, j € J. (59)
Now by (49), (51), (54), and (56),

= S PEE) -
= Yy P HEWPSHE) — p(HE(HE)L. (60)
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Let m be the minimum of the bracketed differences occurring in the
above sum. By (59), m > 0. Then, for example, whenever p(E) = /2,
it follows from (60) that tw’ — wt’' = 8 = m/4. [

Theorem 5 reduces to Theorem 3 when #n = 2 and |J] = 1. Using
essentially the same proof as that of Theorem 4, one may show that
p* comes from p, by probability kinematics on {E,, ..., E,}, with

By (E:E) = B, (E:E) 61)

foralli, j€ {1, ..., n}. So the explanation-based revision p* of p may
be derived from the commutativity principle as well as from the uni-
formity principle.
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