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Probability Kinematics and 
Commutativity* 

Carl G. Wagnertt 
Department of Mathematics, University of Tennessee 

The so-called "non-commutativity" of probability kinematics has caused much unjus- 
tified concern. When identical learning is properly represented, namely, by identical 
Bayes factors rather than identical posterior probabilities, then sequential probability- 
kinematical revisions behave just as they should. Our analysis is based on a variant of 
Field's reformulation of probability kinematics, divested of its (inessential) physicalist 
gloss. 

1. Introduction. The much remarked "non-commutativity" of probability 
kinematics (Domotor 1982, Skyrms 1986, van Fraassen 1989, Doring 
1999, Lange 2000) has evoked varying degrees of concern. In this paper 
it is shown that when identical learning is properly represented, namely, 
by identical Bayes factors rather than identical posterior probabilities, 
then sequential probability-kinematical revisions behave just as they 
should. 

Our analysis, which unifies and extends results in Field 1978, Diaconis 
and Zabell 1982, and Jeffrey 1988, is based on a variant of Field's refor- 
mulation of probability kinematics, divested of its (inessential) physicalist 
gloss. In Section 2 a brief review of probability kinematics is presented. 
In Section 3 we extend Field's Theorem to countable partitions, showing 
that the uniformity of Bayes factors in the representation of identical 

learning is sufficient for the commutativity of probability kinematics. In 
Section 4 it is shown that under mild restrictions such uniformity is also 
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PROBABILITY KINEMATICS AND COMMUTATIVITY 267 

necessary for commutativity. In Section 5 we discuss the methodological 
and philosophical implications of these theorems. 

The notational conventions of this paper are as follows: If q is a revision 
of the probability measure p and A and B are events, the Bayes factor 
flq,(A:B) is the ratio 

/q? (A: B) = q(A)/P(A) (1.1) ,8 (A : B) (L1) 
q(B)l p(B) 

of new-to-old odds, and the probabilityfactor (or relevance quotient) 7q,p(A) 
is the ratio 

7,(A) := q(A)lp(A) (1.2) 

of new-to-old probabilities. When q comes from p by conditionalization 
on the event E, then (1.1) is simply the likelihood ratio p(EIA)/ p(EIB). 
More generally, 

fq,p(A : B) = 7rqp(A)ln,p(B), (1.3) 

a simple, but useful, identity. 

2. Probability Kinematics. Let (Q,A,p) be a probability space, and suppose 
that E = {EJ} is a countable family of pairwise disjoint events, with p(E,) 
> 0 for all i. A probability measure q is said to come from p by probability 
kinematics on E (Jeffrey 1965, 1983) if there exists a sequence (e) of posi- 
tive real numbers summing to one, such that 

q(A) = Xeip(A I Ei), for allA e A.' (2.1) 

If E = {E}, then q(A) = p(AIE) and so probability kinematics is a gen- 
eralization of ordinary conditionalization. 

1. In the standard exposition of probability kinematics the family E = {E,} is taken to 
be a partition of f, so that, in addition to pairwise disjointness of the events E~, one 
has E,U E2 U... = f. Standardly, (e) is a sequence of nonnegative real numbers slimming 
to one, and it is assumed that "zeros are not raised", i.e., that p(E,) = 0 implies that e, 
(= q (E,)) = 0. Finally, it is stipulated that 0 * p(A I E) = 0 if p(E,) = 0, so that e,p(A 
I E) is well-defined even when p(A I E,) isn't. Given the standard format, our family E 
simply comprises those E, in the partition for which e,>O. Conversely, our format yields 
the standard one by associating to our family E = {E,,E,,...}, if it fails to be a partition, 
the partition {Eo,EI,E2,...}, where Eo:= Q - (E, U E2 U...), and setting e0 = 0. When 
one deals with sequential probability-kinematical revisions in the standard format, con- 
ventions involving the values of expressions involving benign sorts of undefinedness 
multiply, and can easily obscure non-benign cases of undefinedness (see, especially, 
Section 4 below, where certain positivity conditions are crucial). Our format minimi7es 
the possibility of such confusion. Probability kinematics may arise through ordinary 
conditionalization. Suppose, for example, that A is the a-algebra generated by the par- 
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Formula (2.1) is clearly equivalent to the conjunction of the conditions 

q(Ei) = ei, for all i, and (2.2) 

q(A I E,) = p(A I E1), for all A E A and for all i. (2.3) 

So (2.1) defines the appropriate revision of p in the light of new evidence 
when the total evidence, old as well as new,2 prompts us to revise the 
probabilities of the events Ei as specified by (2.2), but we learn nothing 
new about the relevance of any E, to other events. Condition (2.3), which 
captures the latter state of affairs, is called the rigidity (or sufficiency) 
condition. 

Having revised p to q by the probability-kinematical formula (2.1) 
above, let us consider a subsequent revision of q to r by the formula 

r(A) = _fjq(A I Fj), for all A E A, (2.4) 

where F = {Fj} is a countable family of pairwise disjoint events such that 

q(F) > 0 for allj, and (fj) is a sequence of positive real numbers summing 
to one. Now imagine reversing the order of the foregoing, first revising p 
to, say, q' by the formula 

q'(A) = Xfjp(A I Fj), for all A A, (2.5) 

and then revising q' to, say, r' by the formula 

r'(A) = e,q'(A Ei), for all A A. (2.6) 
i 

tition E = {E,} along with hypotheses H,, H,,..., and an event E C U Ei such that 
p(EEi) > 0 for all i. Let A' be the a-subalgebra of A generated by E and the H,. If q 
comes from p by conditioning on E and for all AEA' and for all i, A and E are con- 
ditionally p-independent, given EXp(AIEE,) = p(AIE)), then on A', q comes fromp by 
probability kinematics on E. The whole point of probability kinematics is of course 
that the experience prompting revision of the probabilities of events in the family E 
often fails to be representable as the occurrence of an event E. But it is sometimes 
useful, when attempting to explore certain aspects of probability kinematics, to enter- 
tain such a fictional "phenomenological event" E. At least when A is finite, this is always 
a formal possibility (see Diaconis and Zabell 1982, Theorem 2.1, for the whole story). 
2. This is an exceedingly important point. As will be seen in Section 5 below, the mis- 
taken apprehension that the probabilities q(E1) are based solely on new evidence is 
responsible for much of the confusion surrounding the "non-commutativity" of prob- 
ability kinematics. 
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Symbolically, 

E, ei 

P > q 

F,~ ^r (2.7) 

V 

qt 41 > r' 
E, ei 

Unless E = {E} and F = {F}, in which case r'(A) = r(A) = p(AIEF), 
it may well be the case that r' $ r. The possibility of such "non- 
commutativity" has been the source of much confusion and unjustified 
concern. In the next two sections we lay the foundations for clarifying this 
issue with two theorems, delineating their methodological and philosoph- 
ical implications in Section 5. 

3. Field's Theorem. A proper analysis of the commutativity issue requires 
consideration of the more general probability-kinematical revision schema 

E 

P >q 

F 
v 

(3.1) F 
r 

V 
q' > r' 

E 

where the sequence (r'(E,)) may differ from (q(E,)), and the sequence 
(q'(Fj)) from (r(Fi)). Field (1978) was the first to identify conditions suffi- 
cient to ensure that r' = r in this setting, in the special case where E and 
F are finite. In fact, Field's result holds for all countable families E and 
F, but requires a different proof. 

Theorem 3.1. Given the probability revision schema (3.1), if the Bayes 
factor identities 

fr,,q' (Eil E2) 
= 3q,p (Eil : E), for all i,i2, (3.2) 

and 

(3.3) q,p (Fj :F2) = r,q (F : Fj2 ), for alljl, 2, 
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hold, then r' = r. 

Proof It follows from (2.1) and (2.2) that for all A,A' E A 

q(E ) q(E ) 
q(A)/q ) (E,) (AE) p(E ) p(A'E,). (3.4) 

i p(E1) p(E1) 

Dividing the numerator and denominator of the right-hand side of (3.4) 
by q(E1)lp(E1), and setting A' = Q then yields the formula 

q(A) = , Bip(AE )/. Bp(E,), (3.5) 

where 

Bi:= flq,(Eji E1). (3.6) 

With B' := : r' (Ei: E1), bj:= f,q (Fj: F,), and b; := fl,p (F : F,), it 
follows from (3.5), along with analogous formulas for r,q', and r', that 

r(A) = B,bj p(AE,Fj)/ Bbjp(EF) (3.7) 
ij ij(3.7) 

and 

r'(A) = Bi; p(AE, )/ B pJp(E,Fj). (3.8) 
ij ij 

Since (3.2) implies (indeed, is equivalent to) B = Bi and (3.3) implies 
(indeed, is equivalent to) b, = bj it follows that r' = r. D 

Remark 3.1. Field's proof of Theorem 3.1, with E and F finite and E 
= {E1,. .,E,}, involved reformulating (2.1) as 

q(A) = Gi p(AE) Gp(E,),3 (3.9) 
i=1 i=l 

where G, is the geometric mean 

Gi f/J,(Ei : Ek) (3.10) 
k=l 

3. Actually, Field expresses G, in the form ea", where oa: = log G,, interpreting the a, as 
"input parameters" associated with a given sensory stimulus. Each instance of this 
stimulus prompts a probability revision of the type (3.9) involving these input param- 
eters. See Remark 5.1 in Section 5 for further discussion of this idea. 
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Remark 3.2. By (1.3), the Bayes factor identities (3.2) and (3.3) are 
equivalent, respectively, to the probability factor proportionalities 

E,r',q (E,) oc 7p (E,), for all i, and (3.11) 

rq,p (Fj) OC r,q (F), for all j.4 (3.12) 

Remark 3.3. Jeffrey (1988) showed that if E and F are finite and r and 
r' are defined by (3.1), then the probability factor identities 

7ZCr,q (E) = cq,p (E), for all i, and (3.13) 

7Cq,p (Fj) = lrr,q (Fj), for all j, (3.14) 

imply that r' = r. In light of the above remark, Jeffrey's result is a 
corollary of Theorem 3.1. 

In the special case of schema (3.1) represented by (2.7), Bayes factor 
and probability factor identities are equivalent to each other, as well as to 
an especially salient pair of conditions known as Jeffrey-independence con- 
ditions, namely, 

q'(E = p(E), for all i, and (3.15) 

q(F) = p(F), for all j. (3.16) 

Theorem 3.2. If in (3.1) it is the case that (r'(E,))=(q(E)), then the 
conditions (3.2), (3.13), and (3.15) are equivalent. If it is the case that 
(q'(Fj)) = (r(F)) then the conditions (3.3), (3.14), and (3.16) are equiv- 
alent. 

Proof: Straightforward algebraic verification. [ 

Remark 3.4. Diaconis and Zabell (1982), who coined the term "Jeffrey 
independence," proved in the context of (2.7), with E and F finite, that 

4. As an illustration, let us show the equivalence of(3.11) and (3.2). The proportionality 
(3.11) asserts the existence of a positive constant c such that, for all i, ,,,q'(E) = crq,(E). 
Then (3.2) follows immediately from (1.3). Conversely, it follows from (3.2) with i, = 
i and i2 = 1, along with (1.3), that, for all i, r',q'(E) = c7rq,(E) where c = 7r',q'(Ei) I 
rq,,(Ei). 
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conditions (3.15) and (3.16) imply that r = r'. In view of Theorem 
3.2, this result is also a corollary of Theorem 3.1. Note that the 
p-independence of E and F (i.e., p(EFj) = p(E1)p(Fj), for all i, j) entails 
Jeffrey independence. 

Remark 3.5. Formula (3.7), and consequently Theorem 3.1, can be 
generalized to arbitrary finite sequences of probability-kinematical re- 
visions. We leave the details as an exercise for interested readers. 

4. A Partial Converse of Field's Theorem. The Bayes factor identities (3.2) 
and (3.3) are not in general necessary for r' and r in the revision schema 
(3.1) to coincide. For example, if F = E = {EJ} and r(Ei) = r'(E,) for all 
i, then r' = r, no matter what values are assigned to q(E,) and q'(E,). 
However, Field's Theorem does admit of a partial converse. 

To motivate the statement of conditions under which (3.2) and (3.3) 
are necessary for commutativity, it is useful to reiterate the conditions 
under which the probabilities in schema (3.1) are well-defined. In order to 
implement the formulas for q, q', r, and r', we must have, respectively, 
p(E)>O, p(Fj)>O, q(F)>O, and q'(Ei) >0, for all i andj, or, equivalently, 
that 

i3j : p(EFj) > 0, and (4.1) 

j3i: p(E,F) > 0.5 (4.2) 

The identities (3.2) and (3.3) turn out to be necessary for commutativity 
under a mild strengthening of the well-definedness conditions (4.1) and 
(4.2). 

Theorem 4.1. Let r and r' be defined by the probability revision schema 
(3.1), and suppose that 

ViVi3j : p(E, Fj)P(EFj) > 0, and (4.3) 

j, Vj23i : p(EiFj,)P(E,Fj ) > 0. (4.4) 

If r' = r, then the Bayes factor identities (3.2) and (3.3) hold. 

5. From (4.1) it follows that p(E) > 0 for all i, and from (4.2) that p(F) > 0 for allj. 
Since q(Fj) = lep(Fj I E,), with all e, > 0, it follows from (4.2) that q(Fj) > 0 for allj. 
Since q'(E1) = Lfp(E I Fj) with allf; > 0, it follows from (4.1) that q'(E,) > 0 for all i. 
If, on the other hand, (4.2) fails to hold, then by the above formula for q(Fj), there 
exists a such that q(F,) = 0. And if (4.1) fails to hold, then by the above formula for 
q'(E), there exists an i such that q'(E1) = 0. 
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Proof. Since q comes from p by probability kinematics on E, the rigidity 
condition (2.3) implies that 

q(EF.) = q(E,)p(F I E), for all ij. (4.5) 

Similarly 

q(E,) = q(F)r(Ei FI), for all ij, (4.6) 

q'(E,F) = q'(Fj)p(E Fj), for all ij, and (4.7) 

q'(EF,) q'(E,)r'(Fj E), for all ij, (4.8) 

and so 

q(E)p(Fj | E1) = q(F)r(E, I Fj), for all ij, and (4.9) 

q'(E)r'(Fj I E3) = q'(Fj)p(Ei | Fj), for all ij. (4.10) 

Given arbitrary i, and i2, let j be such that (4.3) holds. It then follows 
inter alia from the relevant rigidity conditions that r(EqF) > 0 and 
r'(E2Fj,) > 0. Setting i = i,, i2 in (4.9) and solving for q(E,) and q(E,) then 
yields the formula 

,q,p (Ej : E) = (E (E (4.11) 
p(E, F, )r(E,F,) 

Similarly, (4.10) yields the formula 

p(E, F,)r'(E, Fj) 
ir ,q(Eii : Ei2)= 2 (4.12) r '2 

)p(Ei, Fj)r'(E (.) 

Hence if r' = r, then the Bayes factor identity (3.2) holds. 
Given arbitrary j and j2, let i be such that (4.4) holds. It then follows 

from (4.9) and (4.10) by an argument similar to the above that 

p(E.F. )r'(E.F, ) 
,, (F. F ) = p( 2)r'(EFj) d (4.13) 

p(E,F , )r(E,F, ) 

P,q (FjI : Fj ) p(Eij2)r(E=l) (4.14) 
p(E,F, )r(E,F,j) 

Hence if r' = r, then the Bayes factor identity (3.3) holds. E 

Remark 4.1. Note that when F = E, conditions (4.3) and (4.4) fail to 

273 



CARL G. WAGNER 

hold, thus allowing the possibility (illustrated in the example cited at 
the beginning of this section) that r' = r even though (3.2) and (3.3) 
fail to hold. On the other hand, (4.3) and (4.4) always hold when E 
and F are qualitatively independent (for all i, j, E,Ej . 0) and p is 
strictly coherent (p(A)>0 for all nonempty events A). 

Remark 4.2. As noted in Remark 3.4, if in the probability revision 
schema (3.1), (r'(Ei)) = (q(Ei)) and (q' (Fj)) = (r(F,)), then the Jeffrey 
independence conditions (3.15) and (3.16) imply that r' = r. Interest- 
ingly, given (4.3) and (4.4), if for some i, r'(Ei) $ q(E1) or for some j, 
q'(Fj) # r(Fj), then Jeffrey independence not only fails to ensure that 
r' = r, but actually ensures that r' $ r. This follows from Theorem 
4.1 and the easily verified fact that (3.15) and (3.16), along with (3.2) 
and (3.3), imply that (r'(Ei)) = (q(E,)) and (q'(F,)) = (r(Fj)). In par- 
ticular, the p-independence of E and F, since it implies both (4.3) and 
(4.4) and (as noted in Remark 3.4 above) Jeffrey independence, also 
ensures that r' $ r unless (r'(Ei)) = (q(E,)) and (q'(Fj)) = (r(Fj)). 

Remark 4.3. Diaconis and Zabell (1982) proved for E and F finite that 
in the special case of (3.1) represented by (2.7) Jeffrey independence 
is necessary for r' = r. In view of Theorem 3.2, this result is a corollary 
of Theorem 4.1. 

5. Sequential Probability Kinematics: All is Cool. That r' may fail to co- 
incide with r in the probability-kinematical revision schema (2.7) has been 
cause for concern among several commentators (see Lange 2000 for some 

sample quotations). Their concern appears to be based on implicit accep- 
tance of two principles relating to the general revision schema (3.1), re- 
produced below: 

E 

P >q 

F 
v 

F 

v 
q' > r' 

E 

I. If what is learned from the experience prompting the revisions of 
p to q, and of q' to r' is the same, and if what is learned from the 
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experience prompting the revisions of q to r, and ofp to q', is the 
same, then it ought to be the case that r' = r. 

I. Identical learning underlying the revisions ofp to q and of q' to 
r' ought to be reflected in the posterior probability identities 

r'(E,) = q(E,), for all i, (5.1) 

and identical learning underlying the revisions of q to r and of p 
to q' in the identities 

q'(Fj) = r(Fj), for all j. (5.2) 

The first of these principles is unexceptionable. To paraphrase van 
Fraassen (1989), two persons who undergo identical learning experiences 
on the same day, but in a different order, ought to agree in the evening if 
they had exactly the same opinions in the morning. But the second prin- 
ciple is mistaken, losing sight of the fact that posterior probabilities as- 
signed to events in the families E and F are based on the total evidence, 
old as well as new, and thus incorporate elements of the relevant priors.6 

What we need is a numerical representation of what is learned from 
new evidence alone, with prior probabilities factored out. It is a staple of 
Bayesianism that ratios of new-to-old odds furnish the correct represen- 
tation of the desired type (Good 1950, 1983).7 Accordingly, Principle II 
needs to be modified by replacing (5.1) and (5.2), respectively, by the Bayes 
factor identities (3.2) and (3.3). So modified, Principle II is both sufficient 
(Theorem 3.1), and in a substantial number of cases, necessary (Theorem 
4.1) for the satisfaction of Principle I. 

Remark 5.1. Field (1978) came close to our modification of Principle 
II, but made sensory stimulus, eo ipso, the source of Bayes factors, 

6. Suppose, for example, that a ball is chosen at random from an ur containing 9999 
green balls and one blue ball, and you get to examine it fleetingly in a dim light. It 
would be folly to assess the probability that the ball is blue based only on your sensory 
impression, ignoring the composition of the ur. Indeed, unless you have solid grounds 
for regarding the sensory impression that your glance produces as being much more 
likely if the ball is blue than if it is green, your prior probability should undergo little, 
if any, revision. 

7. Notice that several familiar measures of probability change lack the requisite feature 
of effacing all traces of the prior. For example, knowing nothing about p and q except, 
say, that q(E) - p(E) = 1/4, one can conclude that p(E) < 3/4, and knowing nothing 
except, say, that q(E) I p(E) = 2, one can conclude that p(E) < 1/2. Suppose, on the 
other hand, that E = {E1,..., Em} and nothing is known about p and q except that flpq 
(E : E,) = pi, where (fl) is a given sequence of positive real numbers with f, = 1. 
From this information nothing whatsoever can be inferred aboutp. For given any such 
(fi) and any prior p with p(E) > 0 for all i, there exists a probability q such that l,pq(E, 
: E,) = fi namely, q(Ei) = ,Bip(E)/EfBp(E,). 
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with identical stimuli prompting probability revisions by identical 
Bayes factors. A counterexample of Garber's (1980) shows this phys- 
icalist view to be untenable: Imagine that you glance briefly in dim 
light at an object known to be blue or green, resulting in your becom- 
ing slightly more confident than you were before that the object is 
blue. Repeated glances producing the identical sensory stimulus will 
then result in your approaching certainty that the object is blue. Our 
formulation, in which identical learning gives rise to identical Bayes 
factors, is immune to Garber's counterexample. We learn nothing new 
from repeated glances and so all Bayes factors beyond the first are 
equal to one.8 

Remark 5.2. If F = E in the probability revision schema (2.7), then 
r' = q and r = q', and so it is always the case that r' $ r, except in 
the uninteresting case in which q' = q. Lange (2000) has furnished a 
lucid example suggesting that this never involves a violation of Prin- 
ciple I since the relevant revisions are not based on identical learning.9 
Note that this claim follows from the principle that identical learning 
ought to be reflected in identical Bayes factors: Since q' # q, either 
q' $ p or q $ p. In the former case, the identity fr,, (E. : Ei) = 

qp(E : E.) cannot hold for all i,, i, since r' = q. In tie latter, 
the identity ]fr,q(Ei : E$) = Bq,p(Ei : E) cannot hold for all i,, i, since 
r = q'. 

Remark 5.3. Note that in Theorem 3.1 the probabilities p, q, q', r, and 
r' are assumed to be well-defined and in place at the outset. Then r' 
= r if the Bayes factor identities (3.2) and (3.3) hold. Suppose that 
only p, q, and q' were in place at the outset. Does (3.2) then furnish 
a recipe for constructing a probability r' that would be the appropriate 
revision of q' if in the probabilistic state q' one were to learn precisely 
what prompted the revision of p to q? And does (3.3) function anal- 
ogously in the construction of a probability r? Only if, in the first 
instance, 

Cq(E,)q'(Ei)/p(E) < oo (5.3) 

8. A way to see this is to entertain an imaginary phenomenological event E capturing 
the visual content of the glance (see note 1, supra). Then if q(.) = p(lIE), and r(.) = 

q('lE), lqp(B(lue):G(reen)) = p(EIB)/p(EIG) > 1, by assumption. But Br,q(B:G) = 

q(ELB)/q(EIG) = p(EIEB)/p(EEG) = 1/1= 1. 

9. Lange speaks of experience rather than learning, but we mean the same thing by 
these terms, namely, considered experience (in light of ambient memory and prior prob- 
abilistic commitment), rather than the isolated sensory experience that Field saw as the 
source of Bayes factors. 
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and in the second, 

Yq(F)q'(Fj)/p(Fj) < oo,10 (5.4) 

since a probability r' satisfies (3.2) if and only if 

r'(E) q(E,)q'(E,)/ q(E,)q'(E) (55) 
p(E1) p(E,) 

and a probability r satisfies (3.3) if and only if 

r (Fj) '(Fq( F )/ q(F)q(F) (5.6) r(Fj)= (5.6) 
p(Fj) p(Fj) 

But this raises an intriguing question, with which we conclude this 
paper. If (5.3), and hence (5.4), fails to hold, as may be the case,1 
does this mean that the learning prompting the revision of p to q 
(respectively, p to q') cannot identically occur in the probabilistic state 
q' (respectively, q)? 
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