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CARL G. WAGNER 

COMMUTING PROBABILITY REVISIONS: THE UNIFORMITY 
RULE 

In Memoriam 

Richard Jeffrey, 1926-2002 

ABSTRACT. A simple rule of probability revision ensures that the final result of a se? 

quence of probability revisions is undisturbed by an alteration in the temporal order of the 

learning prompting those revisions. This Uniformity Rule dictates that identical learning 

be reflected in identical ratios of certain new-to-old odds, and is grounded in the old 

Bayesian idea that such ratios represent what is learned from new experience alone, with 

prior probabilities factored out. The main theorem of this paper includes as special cases (i) 

Field's theorem on commuting probability-kinematical revisions and (ii) the equivalence 

of two strategies for generalizing Jeffrey's solution to the old evidence problem to the case 

of uncertain old evidence and probabilistic new explanation. 

l. Introduction 

This paper explores a simple rule of probability revision that ensures that 

the final result of a sequence of probability revisions is undisturbed by 
an alteration in the temporal order of the learning prompting those revi? 

sions. This Uniformity Rule dictates that identical learning be reflected 

in identical ratios of certain new-to-old odds, and is grounded in the old 

Bayesian idea (Good 1985; Jeffrey 1992) that such ratios represent what is 

learned from new experience alone, with prior probabilities factored out. 

The connection between uniform ratios of new-to-old odds and com? 

muting probability revisions, detailed below in Theorem 2.1, can already 
be glimpsed in the well-known theorem of Field (1978) on commuting 

probability-kinematical revisions. Both Field's theorem, and its extension 

to countable partitions, are corollaries of Theorem 2.1. In Wagner (1997, 

1999, 2001), Jeffrey's (1991, 1995) solution to the old evidence prob? 
lem is generalized to the case of uncertain old evidence and probabilistic 
new explanation. The equivalence of two strategies for carrying out this 

generalization is also a corollary of Theorem 2.1. 

Terminology and notation here are as follows: A a -algebra A of subsets 

of Q is purely atomic if the family A* of atomic events1 in A is countable, 
and constitutes a partition of Q. Every finite a-algebra is purely atomic, 
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whatever the cardinality of Q, and if Q is countable, then every a-algebra 
on Q is purely atomic (Renyi 1970, Theorems 1.6.1, 1.6.2). If q is a re? 

vision of the probability measure p, and A, B, and C are events, then the 

probability factor (or relevance quotient) 7tp(A) is the ratio 

(1.1) n?p(A):=q(A)/p(A) 

of new-to-old probabilities, the Bayes factor ?p(A : B) is the ratio 

(1.2) F,A:B):=m/m PpK q(B)/ p(B) 
of new-to-old odds, and the conditional Bayes factor ?qp{A 

: B\C) is the 

ratio 

(1.3> 
^?^.?gjg/fgjg p 

q(B\C)/ p(B\C) 
of new-to-old conditional odds. When q(-) 

= 
p(-\E), then (1.2) is simply 

the likelihood ratio p(E\A)/p(E\B). More generally 

(1.4) ?l(A:B)=7t*(A)/n*(B)9 

a simple, but useful, identity. 
It is assumed throughout this paper that all probabilities are strictly 

coherent, i.e. that all nonempty events have positive probability. With the 

addition of certain technical conditions, however, the theorems presented 
here hold for arbitrary probabilities. The next section delineates the con? 

nection between uniform Bayes factors and commutativity. In Sections 3 

and 4 the Uniformity Rule is applied to observation-and explanation-based 

probability revisions. Section 5 examines three commonly encountered in? 

dices of probability change that might appear to offer alternatives to Bayes 

factors, and demonstrates how each fails to furnish an appropriate measure 

of what is learned from new experience. 

2. Bayes Factors and Commutativity 

Consider the probability revision schema 

P -> Q 

(2.1) 
r 

-* R 
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representing two possible sequential revisions of p. In the first, p is revised 

to q, which is then revised to R. In the second, p is revised to Q, which 

is then revised to r. Suppose that the revisions of p to q, and of Q to r, 
axe prompted by identical learning, and that the revisions of p to Q, and of 

q to R, are prompted by identical learning. Then it surely ought to be the 

case that r = R. Call this the Commutativity Principle. 
The following theorem demonstrates that the Commutativity Prin? 

ciple is satisfied for purely atomic a-algebras when identical learning is 

represented by identical Bayes factors at the level of atomic events. 

THEOREM 2.1. Suppose that the probabilities in the revision schema (2.1) 
are defined on a purely atomic a-algebra A, with A* denoting the set of 

atomic events in A. If the Bayes factor identities 

(2.2) ?rQ(A 
: B) = 

?qp(A 
: B), VA, B e A*, 

and 

(2.3) #f (A : B) = 
?f(A 

: B), VA, ?eA* 

hold, then r = R. 

Proof Trivially, (2.3) is equivalent to 

(2.4) ??(A : B) = 
?qp(A 

: B), VA, B e A*, 

which, with (2.2), implies that 

(2.5) ?rQ(A : B) = ?*(A : B), VA, B e A*. 

Hence, r = R, since the r-odds and the 7?-odds on A against B are both 

gotten by multiplying the corresponding g-odds by the same factor. D 

REMARK 2.1. From (1.4) it follows that (2.2) is equivalent to the 

probability factor proportionality 

(2.6) nrQ(A) oc 
nqp(A), VA g A*, 

the proportionality constant being nrQ(B)/np(B), 
for arbitrary B e A*. 

Similar remarks apply to (2.3). 

REMARK 2.2. From (2.6) and Theorem 2.1, we get the explicit formula 

p., rW = w = 
?HM/E?!?M, 

Vjl6A.. 
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Thus, if p, q, Q, r, and R are well-defined and in place, and (2.2) and 

(2.3) hold, then, necessarily, the sum in the denominator of the right-hand 
side of (2.7) converges. If only p, q, and Q are in place at the outset and 

the aforementioned sum converges, then (2.7) defines probabilities r and 

R satisfying (2.2) and (2.3). So (2.2) furnishes a recipe for constructing a 

probability r that would be the appropriate revision of Q if, in the probabil? 
istic state Q, one were to undergo learning identical to that which prompted 
the revision of p to q. And (2.3) functions analogously in the construction 

of R. However, it is easy to construct examples where the sum in (2.7) 
fails to converge. Then there exists no probability r satisfying (2.2) and 

hence no probability R satisfying (2.3). In short, in the conceptual state 

reflected in q (respectively, Q), it is impossible to experience learning 
identical to that prompting the revision of p to Q (respectively, of p to 

q). This phenomenon is discussed further in Section 5. 

REMARK 2.3. The commutativity issue arises not only for probability 

revisions, but also in belief revision theory. For a discussion of the latter in 

terms of ranking functions, see Spohn (1988). 

Call the rule dictating that identical learning in purely atomic spaces be 

represented by identical Bayes factors at the level of atomic events the 

Uniformity Rule. By Theorem 2.1, adherence to this rule ensures satisfac? 

tion of the Commutativity Principle. In the next two sections we describe 

applications of this theorem to observation- and explanation-based proba? 

bility revisions. In each of these cases the Uniformity Rule admits of 

natural, coarser-grained avatars. 

3. OBSERVATION-BASED REVISION 

Let (?2, A, p) be a probability space and let E = 
{E?} be a countable 

partition of Q, with each E? e A. A probability measure q on A is said to 

come from p by probability kinematics on E (Jeffrey 1965, 1983) if 

(3.1) q{A) = 
YJ<liEi)p{A\Ei), 

VA A. 
I 

Formula (3.1) is easily seen to be equivalent to the rigidity condition 

(3.2) q(A\Ei) = p(A\Et), Vi, VA G A, 

which is itself equivalent to the condition 

(3.3) q(A)/p(A) = qiE^/piEt), V?, VA e A : A C Et. 
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Formula (3.1) embodies a two-stage revision of p in the light of new (typic? 

ally, observational) evidence: (i) based on the total evidence, old as well as 

new, assign new probabilities q(Et) to members of the partition E, and (ii) 
extend q to A by (3.1) after ascertaining that (3.2) holds, i.e., that nothing 
new has been learned about the relevance of any Et to other events. 

Consider the probability revision schema 

p Q 

(3.4) e identical learning 

q 

defined over a purely atomic a -algebra A, where q comes from p by prob? 

ability kinematics on E, and r is a revision of Q prompted by learning 
identical to that which prompted the revision of p to q. As shown by the 

following theorem, the fine-grained atomic representation of this identical 

learning dictated by the Uniformity Rule is equivalent here to a natural, 

coarser-grained representation. 

THEOREM 3.1. Suppose that the probabilities in the revision schema (3.4) 
are defined on a purely atomic o -algebra A. Then the probability r satisfies 

the atomic-level Bayes factor identities 

(3.5) ?rQ(A 
: B) = 

?qp(A 
: B), VA, BgA* 

if and only if r comes from Q by probability kinematics on E, and 

(3.6) ?rQ(Ei:Ek) 
= 

?qp(Ei:Ek), Vi, le. 

Proof Sufficiency. Let A, B g A* and suppose that A c Et and B C 

Ek. Then by (1.4), (3.3), and (3.6), 

(3.7) ?rQ{A : B) = 
?rQ(Et 

: Ek) = 
?qp{Et 

: Ek) = 
?qp(A 

: B). 

Necessity. By Remark 2.1, (3.5) implies that r(A) oc q(A)Q(A)/p(A), 
for all A g A*. Soif E G A, 

,^x v^* q(A)Q(A) /^*q(A)Q(A) 

(with YT indicating summation over A g A*) since q(A)/p(A) = 

q(Ei)/p(Ei) for A C Et. So r comes from Q by probability kinematics 



354 CARL G. WAGNER 

on E. To show (3.6), choose any A, B g A* such that A C E? and B c Ek. 
Then by (1.4), (3.3), and (3.5), 

(3.9) ?rQ(Ei 
: ?*) = 

^(A 
: B) = 

?qp(A 
: B) = ??(?,. : ?,). D 

Consider now the revision schema 

F 
P 
- 

Q 

(3.10) 

q -> R 
F 

illustrating two possible sequential revisions of p. In the first, p is revised 

to q by probability kinematics on E = 
{?/}, and then q is revised to R by 

probability kinematics on a partition F = 
{Fj}. In the second, probability 

kinematics is carried out first on F, yielding Q, and then on E, yielding 
r. The partitions E and F may or may not coincide, and the sequences 

(r(Ei)) and (R(Fj)) may or may not differ, respectively, from the se? 

quences (q(E?)) and (Q(Fj)). Nothing is assumed about the a-algebra 
on which the probabilities in question are defined. In particular, it may fail 

to be purely atomic. The following theorem gives conditions sufficient to 

ensure that r = R. 

THEOREM 3.2. Let the probabilities in (3.10) be defined on an arbitrary 

a-algebra A. If 

(3.11) ?rQ(Eh 
: Ei2) 

= 
?j(Ei{ 

: Eh), Vilf h, 

and 

(3.12) ?qR(Fh 
: Fh) 

= 
?f(Fh 

: Fh), Wju j2, 

then r = R. 

Proof It suffices to show that r(G) = R(G) for every G G A. Let B 
be the a-algebra generated by E U F U {G}. Clearly, B is purely atomic, 

the family B* of atomic events of B comprising all nonempty events of 

the form ??F;G or EiFjG. From (3.11), (3.12) and the sufficiency part of 

Theorem 3.1, it follows that the hypotheses of Theorem 2.1 are satisfied 

for B. Hence r = R on B, and so r(G) = R(G). D 

IE 

r 
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REMARK 3.1. Theorem 3.2 was proved for finite partitions E and F in 

Field (1978) and for countable partitions in Wagner (2002). Field's proof 

involved, inter alia, reformulating (3.1), where E = 
[E\,..., Em}, as 

m Im 

(3.13) q(A) = 
YsGiP(AEi) / 2^/KS?), ?=i / /=i 

where G; is the geometric mean 

(3.14) Gi^lfl?liEiiEk) 
V=i 

and Wagner's proof reformulating (3.1) as 

(3.15) q(A) = 
J2 BiP(AEi)/ ? BiP{Et), 

i i 

where 

(3.16) Bi := ?*(Ei : Ei). 

REMARK 3.2. It is perhaps worth noting that, conversely, Theorem 2.1 

can be derived from Theorem 3.2. For if p and q arc any strictly coherent 

probability measures on a purely atomic a-algebra A, then q comes from p 

by probability kinematics on the partition A* comprising all atomic events 

of A (the conditional probabilities in the rigidity condition (3.2) take only 
the values 0 and 1 in this case). It would be a mistake to conclude from 

this, however, that these theorems are equally fundamental. First, the proof 
of Theorem 2.1 is simple and transparent. Second, construing arbitrary 

probability revisions as probability-kinematical, while technically correct, 
is intuitively artificial (the explanation-based revisions of Section 4 below 

are a perfect example). Most decisive, however, is the fact that in their 

fullest generality, these theorems are no longer mutually derivable. The 

extension of Theorem 3.2 beyond the realm of strictly coherent probabili? 
ties can still be derived from the corresponding extension of Theorem 2.1, 
but not conversely. Hence Theorem 2.1 is the fundamental result. 

i/ra 
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4. EXPLANATION-BASED REVISION 

Probability kinematics involves revisions arising from the assignment of 

certain new unconditional probabilities, while maintaining certain condi? 

tional probabilities. We consider here the orthogonal situation in which re? 

visions arise from the assignment of certain new conditional probabilities, 
while maintaining certain unconditional probabilities. 

Specifically, let p be a probability on the algebra A generated by hypo? 
thesis H and evidence E, whence A* = 

[HE, HE, HE, HE). Suppose 
that theoretical analysis reveals a new explanatory connection between 

H and E, and H and E, prompting a revision of p to the probability Q 

uniquely determined by the conditions 

(4.1) Q(E\H) = u, 

(4.2) Q(E\H) = v, 

and 

(4.3) Q(H) = p(H). 

Now consider the probability revision schema 

(4.4) q -> & 

identical 

learning 

where p and Q are as above, and R is a revision of q prompted by the same 

explanatory learning that prompted the revision of p to Q. As shown by the 

following theorem, the atomic representation of this identical learning dic? 

tated by the Uniformity Rule is equivalent here to three natural conditional 

Bayes factor identities. 

THEOREM 4.1. In the revision schema (4.4) the probability R satisfies the 

atomic-level Bayes factor identities 

(4.5) ?}(A 
: B) = 

?f{A 
: B), VA, B e A* 
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if and only if it satisfies the conditional Bayes factor identities 

(4.6) ??(E:E\H) = ?Q(E:E\H), 

(4.7) ??(E:E\H) = ?V(E:E\H), 

and 

(4.8) ??(H:H\E) 
= ?2(H:H\E). 

Proof It is straightforward to verify that (4.6) is equivalent to the case 

A = HE and B = 
HE, (4.7) to the case A = HE and B = 

HE, and 

(4.8) to the case A = HE and B = HE of (4.5). It is simply a matter 

of tedious algebra to check that these three cases of (4.5) imply that (4.5) 
holds for all A, B G A*. D 

A basic principle of scientific inference asserts that if hypothesis H is 

known to imply the less-than-certain proposition E, the subsequent dis? 

covery that E is true confirms (i.e. raises the probability of) H. There 

is a simple Bayesian account of such confirmation, for from p(E\H) 
= 

1 > p(E) it follows that p(H\E) > p(H). Suppose, however, that we 

first become certain of E and subsequently discover, quite apart from this 

certainty, that H implies E. There are numerous examples of this in the 

history of science, one of the best known being Einstein's explanation of 

the previously observed "anomalous" advance in the perihelion of Mercury 

by means of the general theory of relativity (Weinberg 1992). Just as it does 

when explanation precedes observation, the explanation of a previously 
known fact E by H ought to confirm H, but how? 

This problem, posed by Glymour (1980), has been variously termed 

the historical old evidence problem (Garber 1983), the problem of new 

old evidence (Eells 1990), the problem of the confirmation event (Zynda 

1995), the problem of new explanation (Jeffrey 1995), and the problem of 

logical learning (Joyce 1999).2 In this case the prior q has the property that 

q(E) = 1, so it is ineffectual to condition q on E (since q(H\E) = q(H)) 
and, in any case, not to the point, since what is required is a revision of q 
based on the discovery that H implies E, not the discovery that E is true. 

Accordingly, one proposed solution to this problem, due to Garber 

(1983), extends the algebra on which probabilities are defined to include 

the proposition H h E that H implies E. Under certain conditions, 

q(H\H \- E) > q(H). On the other hand, Jeffrey (1991, 1995) has pro? 
posed a solution that retains the original algebra, but revises probabilities 

by an entirely new method called reparation. Central to Jeffrey's approach 
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is the imaginative reconstruction of a probability distribution that pre? 
dates both our certainty about E and our discovery that H implies E. The 

explanation-based revision of this ur-distribution then serves as a paradigm 
for all explanation-based revisions. 

In Wagner (1997, 1999, 2001), Jeffrey's solution was shown to gener? 
alize in a natural way to cases in which observation raises our confidence 

in E without rendering it certain, and the subsequent explanation of E by 
H is probabilistic rather than implicational. As we demonstrate below, this 

generalization can be given a simple and unified formulation in terms of 

the Uniformity Rule. 

Specifically, suppose that q is our current probability distribution on A, 

the algebra generated by E and H. Empirical investigation {observation) 
has given us a certain measure of confidence in E, as reflected in the value 

q(E). We subsequently discover, quite apart from this observation, theor? 

etical considerations that, taken alone, indicate that the truth of H would 

confer probability u on E, and the truth of H would confer probability 
v on E (explanation). Taken alone, these considerations do not alter the 

probability of H. How should q be revised in light of this new probabilistic 

explanation? 

Following Jeffrey, we resurrect a notional ur-distribution p, predating 
both observation and explanation. It is assumed that p(A) > 0 for all 

A G A*.3 Generalizing Jeffrey's assumption that q(-) 
? 

p(-\E), we as? 

sume here that q comes from p by probability kinematics on E = {E, ?}. 
In effect, it is in the conceptual state captured by p that we make the 

aforementioned theoretical discovery, a discovery that would warrant the 

revision of p to Q, as defined by (4.1)-(4.3). Two candidates for the 

desired revision of q now present themselves: 

explanation 

u,v 

p- Q 

observation 

I r 

q -> R 
explanation 

This revision is to be based on explanatory learning identical to that 

which we imagined prompting the revision of the ur-distribution p to 

Q. Accordingly, the Uniformity Rule would dictate revising q to R, as 

defined by (4.5), or, equivalently (by Theorem 4.1), by (4.6)-(4.8). On the 

other hand, we might continue the imaginative exercise of exchanging the 

(4.9) observation E 
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temporal order of observation and explanation, taking as the explanation 
based revision of the observation-based revision q of p the appropriate 
observation-based revision of the explanation-based revision Q of p. This 

revision of Q, call it r, is to be based on the same observational learning 
that we imagined prompting the revision of p to q. Accordingly, the Uni? 

formity Rule would dictate that r be defined by (3.5), or, equivalently (by 
Theorem 3.1), that r come from Q by probability kinematics on E, with 

(4.10) ?rQ(E:E) 
= 

?qp(E:E). 

Fortunately, one need not choose between r and R since, by Theorem 2.1, 
these probabilities are identical. 

If we denote the common value of the Bayes factors in (4.10) by ?, then 

(Wagner, 2001) 

(4 H) 
R(H) ^p(H)[(?-l)Q(E\H) 

+ l] 
R(H) p(H)[(?-l)Q(E\H) + lY 

and 

q(H) p(H)[(?-l)p(E\H) + l] 
(4.12) 

q(H) p(H)[(?-l)p(E\H) + l] 
In short, the new odds on H are simply gotten from the old odds on H, 
as given by (4.12), by replacing the ur-likelihoods p(E\H) and p(E\H) 
by Q(E\H) = u and Q(E\H) = v. From (4.11) and (4.12) one can 
derive several simple and intuitively reasonable conditions that ensure that 

H is confirmed (R(H) > q(H)). See Wagner (1999, 2001) for details. 
In particular, in the special case treated by Jeffrey, where Q(E\H) = 1, 

Q(E\H) = 
p(E\H) and q(-) 

= 
p(-\E), H is always confirmed, since 

(4.13) ??(H : H) =- > 1. } HqK } 
p(E\H) 

Formula (4.13) neatly accounts for the strong confirmation that the gen? 
eral theory of relativity (H) received from Einstein's discovery that H 

implied the known advance in the perihelion of Mercury (E). For it would 

surely have been the case that, prior to observing E or learning that H 

implied E, one would have assigned the peculiar phenomenon E very 
small conditional probability, given H. 
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5. DISCUSSION 

We conclude by examining three familiar indices of probability change 
that might appear to offer alternatives to Bayes factors, namely, the dif? 

ference 8p(A) := q(A) 
- 

p(A), the normalized difference Dp (A) = 

(q(A) 
? 

p(A))/p(A), and the probability factor (or relevance quotient) 

7tp(A) := q(A)/p(A). In what follows we evaluate these indices with re? 

spect to three criteria that clearly should be satisfied by any representation 
of new learning: 

I. The representation should ensure satisfaction of the Commutativity 

Principle. 
II. The representation should ensure that learning identical to that prompt? 

ing a probability-kinematical revision should prompt a probability 
kinematical revision on the same partition. 

III. The representation of new learning should not unduly restrict the set 

of priors amenable to revision in response to such learning. 

Since Dqp(A) 
= 

7tq(A) 
? 

1, the indices D and n clearly stand or fall 

together, and so it will suffice in what follows to restrict attention to d and 

n. 

As some readers may already have observed, both d and n satisfy I, 

i.e., both for v = d and for v = n, Theorem 2.1 continues to hold when 

the Bayes factor identities (2.2) and (2.3) are replaced, respectively, by 

(5.1) vrQ(A) 
= 

vqp(A), 
VA g A*, 

and 

(5.2) v?(A) = 
vf(A), 

VA G A*. 

These results are, however, less impressive than they seem, as will be clear 

from our discussion of criterion III below. 

As for criterion II, this crucial part of Theorem 3.1 holds when the 

Bayes factor identities (3.5) are replaced by (5.1) with v = n, but not with 

v = d.4 But here again the fact that n satisfies II is less impressive than it 

seems. 

Criterion III is motivated by observations made in Remark 2.2, which 

emphasized that our real interest in an identity such as, say, (5.1) lies in its 

potential, given p, q, and Q, to provide a recipe for constructing a proba? 

bility r that is the appropriate revision of Q based on learning identical to 

that prompting the revision of p to q. As noted in Remark 2.2, this po? 

tential may fail to be realized. Again taking (5.1) as an illustration, it may 
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be that for certain probabilities Q there exists no probability r satisfying 

(5.1). To the extent that this is true for a substantial number of priors Q, 

v-analogues of Theorems 2.1 and 3.1 will in a substantial number of cases 

involve implications that are vacuously true. 

This is exactly the case for v = d and v = n. Since 
drQ(A) 

= c implies 
that ? c ^ Q(A) ^ 1 ? 

c, it follows that the existence of single A g A* 

such that Q(A) > 1 ? 
dqp(A) precludes the existence of any probability r 

satisfying (5.1) for v = d. Since itrQ(A) 
= c implies that Q(A) ^ 1/c, it 

follows that the existence of a single A g A* such that Q(A) > 1 /np(A) 
precludes the existence of any probability r satisfying (5.1) for v = jr. 

In the latter case this phenomenon reaches the point of absurdity when 

A* has just two members. Then, unless Q 
= p, there is no r satisfying 

(5.1) for v = ix.5 Adopting n as a measure of what is learned from new 

experience would lead here to the astonishing conclusion that if Q differs 

from p in the slightest degree, then it is impossible to undergo identical 

new learning in the conceptual states reflected, respectively, in Q and p. 
To summarize, the index d fails to satisfy II, and its satisfying I is viti? 

ated by its failure to satisfy III. The index n satisfies both I and II, but this is 

vitiated by its failure to satisfy III.6 As we indicated in Remark 2.2, certain 

priors may be incompatible with certain kinds of new learning, even when 

such learning is measured by Bayes factors. But this phenomenon never 

materializes when there are only finitely many atomic events, and when 

A* = 
{A\, A2,...} is infinite, the phenomenon is rather benign. 

Suppose, for example, that we are given a prior p and a sequence ($) 
of positive real numbers such that ?\ 

= 1. It is straightforward to show 

that there exists a probability q satisfying 

(5.3) ?qp(Ai:Al) 
= 

?i, ; = 1,2,...7 

if and only if 

(5.4) J]Ap(Af)<oo, i 

in which case 

(5.5) q(Ai) = ?ip(Ai) /j^?ipiAt), 
i = 1, 2. 

Given the sequence (?i) there may exist probabilities p for which the con? 

vergence condition (5.4) fails to hold. But this is mitigated by the following 
result: 
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THEOREM 5.1. Let (ft, ?2,...) be any sequence of positive real numbers 

such that ?\ 
= 1 and let r be any real number such that 0 < r < 1. Then 

there exists a probability p such that p(A\) 
= r and the convergence 

condition (5.4) holds, and so there exists a probability q satisfying (5.3). 

Proof Set p(Ai) = r. For i ̂  3, set p(A?) = (1 
- 

r)2~l if ft ^ 1 and 
set p(Ai) = (1 

- 
r)2"7ft if ft > 1. Then 

(5.6) J2 p^A^ ̂  d -r) E2_/ =(1 - r>/4' 
z^3 /^3 

and so the left hand sum in (5.6) converges to some s ^ (I 
? 

r)/4. Since 

r<l,r+s^r + (l 
? 

r)/4 < 1, and we may set p(A2) 
= 1 ? r ? s. 

The probability p clearly satisfies (5.4) and so (5.5) defines a revision q of 

p satisfying (5.3). D 

It is clear from the above proof that in the statement of Theorem 5.1 the 

condition p(A\) 
= r could be replaced by the condition p(Aj) 

= r, 

for a fixed, but arbitrary, j. So the import of this theorem is that while 

certain Bayes factors may be incompatible with taking certain probability 
distributions as priors, they do not constrain the prior probability of any 

particular atomic event. With this observation we rest our case for Bayes 
factors and the Uniformity Rule. 
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NOTES 

1 
An event A G A is atomic if it is nonempty, and no proper, nonempty subset of A 

belongs to A. 
2 

This problem should not be confused with the ahistorical problem of old evidence (also 

called the problem of old new evidence, the problem of the confirmation relation, and the 

problem of evidential relevance), which asks for a measure of incremental confirmation 

which, unlike p(H\E) 
? 

p(H) and similar measures, remains undisturbed when p is 

revised tog(-) 
= 

p(-\E). We have nothing to say here about this problem, which has 

been discussed by Skyrms (1983), Joyce (1999), and Eells and Fitelson (2000). 
3 

In the ur-conceptual state represented by p we know nothing about H, or about H, that 

would preclude the truth of E, or of ?. Hence the assumption that p is positive on A* is 

eminently reasonable. 
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4 
Consider probabilities p,q,p', and q' defined on the algebra A of events generated by 

H and E as follows 

HE HE HE HE 
A .1 .1 .4 
.64 .16 .04 .16 

.2 .2 .3 .3 
.44 .26 .24 .06 

While q comes from p by probability kinematics on the partition {E, E] and q'(A) 
? 

p\A) = q(A) 
- 

p(A) for all A e A* = {HE, HE, HE, HE], q' does not come from pf 
by probability kinematics on {E, E] since, for example, ql(H\E) ^ pr(H\E). 
5 

Suppose, given probabilities p, q, and Q, that there exists an r satisfying (5.1) for v = n, 

where A* = [A, ?}. Let p(A) = a, q(A) = ?, Q(A) = a', and r(A) = ?''. Then (5.1) 
implies that (i) ?'/a' = ?/a and (ii) (-1 

- 
?')/(\ 

- 
a') = (1 

- 
?)/(\ 

- 
a). From (i) and 

(ii) we have ?' + 1 - ?' = 1 = a'0/a + (1 
- 

a')(l 
- 

?)/(l 
- 

a), and solving this equation 
for a' yields a' = a, whence Q 

? 
p. 

6 
Furthermore, to the extent that it -analogues of Theorems 2.1 and 3.1 are not vacuously 

true, they are simply corollaries of these theorems, as is clear from Remark 2.1. 
7 

Note that once the values ?[ are specified, the values of all atomic level Bayes factors 

are determined, since 

?q(Ai : A? 
= ?q(Ai : 

A^/?^Aj 
: Ax) = 

fr/?j. 
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