Probability Revision, The Uniformity
Rule, and the Chan- Darwiche Metric

Carl G. Wagner!

Abstract The author has proposed a rule of probability revision dictating
that identical learning be reflected in identical ratios of new to old odds.
Following this rule ensures that the final result of a sequence of probability
revisions is undisturbed by an alteration in the temporal order of the learning
prompting these revisions. There is also a close connection between this rule
and an intriguing metric on probability measures introduced by Chan and
Darwiche.
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1 The Commutativity Principle

Consider the following belief revision schema, representing two possible se-
quential revisions of the probability measure p:

p—q—T and p— s — 1t (1)

Suppose that the revisions of p to ¢, and of s to ¢, are prompted by identical
learning, and that the revisions of ¢ to r, and of p to s, are prompted by
identical learning. It is then widely held that it ought to be the case that
r = t. As van Fraassen (1989) puts it, two persons who undergo identical
learning experiences on the same day, but in a different order, ought to agree
in the evening if they had exactly the same opinions in the morning. Call this
the Commutativity Principle.

A simple rule of probability revision ensures that the Commutativity
Principle is satisfied. This Uniformity Rule, occurring in particular cases in
Wagner (1997, 1999, 2001, 2002), and given general formulation in Wagner
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(2003), dictates that identical learning be reflected in identical ratios of new
to old odds, also known as Bayes factors. This note explores the connection
between the Uniformity Rule and an intriguing metric on probability mea-
sures introduced by Chan and Darwiche (2002). The upshot is that revisions
of two different probability measures based on identical learning, when ef-
fected by the Uniformity Rule, move us the same Chan-Darwiche distance
from the priors in question.

2 Terminology and Notation

A sigma algebra A of subsets of (2 is purely atomic if the family A* of atomic
events in A is countable, and constitutes a partition of (2. Every finite algebra
is purely atomic, whatever the cardinality of §2, and if {2 is countable, then
every sigma algebra on {2 is purely atomic (Renyi 1970, Theorems 1.6.1,
1.6.2). If ¢ is a revision of probability measure p, and A and B are events,
then the probability factor (or relevance quotient) I, ,(A) is the ratio

17, ,(4) = % 1)

of new to old probabilities, and the Bayes factor B, ,(A : B) is to ratio

Bep(A: B) = 42 (2)

of new to old odds. When ¢(.) = p(.|E), then (2) is simply the likelihood
ratio p(E]A)
p(E|B)

. More generally,
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a simple, but useful, identity.

In what follows we assume for simplicity that all probability measures
are strictly coherent, i.e., that all nonempty events have positive probability.
With the addition of certain technical conditions, however, Theorem 1 below
holds for arbitrary probabilities.
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3 Bayes Factors and Commutativity

The following theorem demonstrates that the Commutativity Principle is sat-
isfied for purely atomic sigma algebras when identical learning is represented
by identical Bayes factors at the level of atomic events.

Theorem 1. Suppose that the probabilities in the revision schema

are defined on a purely atomic sigma algebra A, with A* denoting the set of
atomic events in A. If the Bayes factor identities

Byp(A:B)=0s(A:B), for all A,Be A", and (1)
Brq(A:B)=0Bs,(A:B), for all A BeA" (2)
hold, then r = t. Indeed, for all A € A*, we have the explicit formula

12552

B (B)s(B)
Y pea Loim
Proof. The identity (1) is equivalent to

HAB)s(B) _ gAs(AB) "

p(B) p(4)

Fixing A in (4), and summing over all B € A* then yields (3) for ¢(4), since

> uB)=1. (5)

BeA~

r(A) = t(A)

The proof of (3) for r(A) follows from (2) in exactly analogous fashion. [ |

Remark 3.1. If p, q, r, s and ¢ are well-defined and in place and (1) and
(2) hold, then, necessarily, the sum in the denominator of the right-hand
side of (3) converges. If only p, ¢, and s are in place at the outset and the
aforementioned sum converges, then (3) defines probabilities r and ¢ satisfying
(1) and (2). So (3) furnishes a recipe for constructing a probability measure r
that would be the appropriate revision of ¢ if, in the probabilistic state ¢, one
were to undergo learning identical to that which prompted the revision of p
to s. Similarly, (3) furnishes a recipe for constructing a probability measure
t that would be the appropriate revision of s if, in the probabilistic state s,
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one were to undergo learning identical to that which prompted the revision
of p to q. However, it is easy to construct examples where the sum in the
denominator of (3) fails to converge. Then there exists no probability measure
t satisfying (1) and no probability r satisfying (2). Thus from the perspective
of the Uniformity Rule, it is impossible in the conceptual state reflected in s
(respectively, q) to experience learning identical to that which prompted the
revision of p to ¢ (respectively, of p to s).

4 The Chan-Darwiche Metric

When {2 is finite the Uniformity Rule has intriguing connections with a metric
on probability measures introduced by Chan and Darwiche (2002). Assume
for simplicity that all probabilities are strictly coherent !, and defined on all
subsets of (2. Define the Chan-Darwiche distance CD(p,q) by

CD(p, q) = log(R) — log(r), (1)
where () ()
= maxq v an o= minq—w.

Ri= we2 p(w) d we2 p(w) @

It is straightforward to show that C'D is a metric on the set of all strictly
coherent probability measure on the power set of 2, i.e., that

CD(p,q) 20, with CD(p,q)=0 iff p=gq. (3)
CD(p,q) = CD(g,p), and (4)
CD(p,q) < CD(p,p') + CD(p', q). (5)

CD(p,q) yields uniform bounds on the Bayes factors §,,(A : B) :
Theorem 2. For all nonempty events A, B € 22,

exp(=CD(p,q)) < Bqp(A, B) < exp(CD(p,q))- (6)

Proof. Suppose that max % and min % are attained, respectively, at w =

wg and w = wi. Then

L On the set all probability measures on the power set of £2, CD is, strictly speaking, no
longer a metric, since it can take the extended real number co as a value. Indeed, with the
stipulation that % =1, CD(p,q) < oo iff p and ¢ have exactly the same support, i.e., iff
{we 2:pw) >0} = {we 2: qw) > 0}
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q(w1)p(w) q(w2)p(w)
ol <q(w)<7p(w2) : (7)

Summing (7) over all w € A, and over all w € B yields

g(wr) _ a(4) 9(B) _ q(ws) ()
plwi) ~p(A4)"  p(B)  plw2)
whence,
a(w1) a(w2)
[pm)} a.p(4) [P(wz)}
@] ST,,(B) S Taen ©)
q(w2 qlwi
[feg] o el
which is equivalent to (6) by (3) of section 2 above, (1), and (2). |

Remark 4.1 Note that the bounds in (6) are sharp, the upper bound being
attained when A = {w>} and B = {w; }, and the lower bound when A = {w;}
and B = {ws}.

In view of (9) and the preceding remark, it is clear that C'D(p, ¢) may be
equivalently defined by the formulas

CD(p,q) = ¢¢I£%xcglog Byp(A:B) = max, log By p({w} : {w'}).2  (10)

The number log 3, ,(A : B) has been termed the weight of evidence by 1.J.
Good (1950). According to Good, Alan Turing was an enthusiastic advocate
of using weights of evidence to measure the gain or loss of plausibility of one
hypothesis vis-a-vis another as a result of the receipt of new evidence. Such
weights were routinely used in the code-breaking work at Bletchley Park,
where Good and Turing were colleagues during World War II (Jeffrey 2004).
Indeed, Turing coined the term ban (after the town of Banbury, where the
sheets were printed on which weights of evidence were recorded) for the unit
weight of evidence, with logarithms taken to the base 10. One-tenth of a
ban was termed a deciban (abbreviated db, in obvious analogy with acoustic
notation). See Jeffrey (2004, pp. 32-32) and Good (1979) for further details.

Formula (10) thus provides a particularly salient formulation of the Chan-
Darwiche distance, as well as an attractive and evocative unit of measure-
ment. Moreover, there is a hand-in-glove fit between the Uniformity Rule and
the Chan-Darwiche distance: If p is revised to ¢, and p’ is revised to ¢’, based
on identical learning, and we construct ¢’ in accord with the Uniformity Rule,
then CD(p,q) = CD(p',q). So revisions based on identical learning, carried
out acording to the dictates of the Uniformity Rule, move us the same CD-
distance (i.e., the same number of decibans) from the priors in question. As
can be seen from the elementary example,

2 Upon reading Chan-Darwiche (2002), I communicated this result to the authors, who
incorporated it in Chan-Darwiche (2004).
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w1 W2 w1 w2
11 /. 2 3
b3 3 D5 5
4 1 /. 8 3
4+ 5 3 411 110>

where CD(p,q) = CD(p',q') = 2log?2, this fails to be the case for other
measure of distance, including the Fuclidean distance

the variation distance

V(p,q):

max{[p(4) —~ g(A)] : A € 2) (12)
53 Inle) — gt (13)

the Hellinger distance
2
H(p,a) =Y [Volw) - Va@)| (14)
and the Kullback-Leibler information number

KL(p.a)i= 3 atw)tog (1), (15)

w
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