Interpolation series for continuous functions on π -adic completions of $\mathrm{GF}(q,x)^*$

by

CARL G. WAGNER (Knoxville, Tenn.)

1. Introduction. In 1944 Dieudonné [7] proved an analogue of the Weierstrass Approximation Theorem for continuous functions of a p-adic variable. In 1958 Mahler [8] sharpened this result by exhibiting a series expansion for continuous functions defined on the p-adic integers. He showed that every such function f is the uniform limit of an interpolation series

$$f(t) = \sum_{n=0}^{\infty} A_n \binom{t}{n}$$

where the coefficients A_n are uniquely determined by

(1.2)
$$A_n = \Delta^n f(0) = \sum_{k=0}^n (-1)^k \binom{n}{k} f(n-k).$$

In the present paper we choose an irreducible element π from the polynomial ring GF[q,x] over the finite field GF(q) and use it to equip the function field GF(q,x) with a π -adic absolute value. We denote by F_n the completion of GF(q,x) for this absolute value and by I_n the valuation ring of F_n . The aforementioned theorem of Dieudonné may easily be seen to generalize to the case of a locally compact non-archimedean field. Hence, every continuous function $f\colon K\to F_n$, where K is a compact subset of F_n , is the uniform limit of some sequence of polynomials over F_n . Our aim in this paper is to prove some Mahler type theorems for such functions.

We mention that Amice [1] has already constructed a certain type of series approximation for continuous functions defined on locally compact non-archimedean fields. In the process, Amice characterized those sequences ("suites très bien réparties") in the domain of a continuous function with respect to which a Newton type interpolation procedure will yield

^{*} This research was supported in part by the National Science Foundation, under Research Grant ${
m GP}-7855.$

a uniformly convergent series approximation for that function. In particular, the nonnegative rational integers, ordered in the usual way, constitute such a sequence in the p-adic integers, and so Mahler's result appears as a special case of Amice's Interpolation Theorem [1].

In what follows, we exhibit a "suite très bien répartie" in I_n , denoted $\{m_i\}$, consisting of a special sequential ordering of GF[q, x]. Specializing Amice, we prove (Theorem 4.4) that for every continuous function $f\colon I_n\to F_n$ there exists a unique sequence $\{A_i\}$ in F_n such that

$$f(t) = \sum_{i=0}^{\infty} A_i Q_i(t),$$

where $Q_i(t)$ is the *i*th Newton interpolation polynomial for the interpolation sequence $\{m_i\}$, and (1.3) converges uniformly on I_n . We add that $\{A_i\}$ is always a null sequence, i.e., $\lim_{t\to\infty} A_i = 0$. Moreover, the above result may be extended to continuous functions $f\colon K\to F_n$, where K is any compact subset of F_n , by employing a Urysohn type theorem for totally disconnected spaces due to Dieudonné [7].

We may regard the foregoing approach to constructing function field analogues of Mahler's result as deriving from the observation that the polynomials $\binom{t}{n}$ are the Newton interpolation polynomials for the nonnegative rational integers. From this standpoint, the crucial problem, completely solved by Amice, is that of identifying those sequences in I_n for which the associated Newton polynomials yield interpolation series for continuous functions.

If, instead, one regards the sequence $\left\{ \begin{pmatrix} t \\ n \end{pmatrix} \right\}$ merely as an ordered basis of the Q_p -vector space $Q_p[t]$, then one is led to ask which ordered bases of the F_n -vector space $F_n[t]$ yield interpolation series for continuous functions on I_n . In this connection, it is of interest to recall that the sequence $\left\{ \begin{pmatrix} t \\ n \end{pmatrix} \right\}$ has the further property of being an ordered basis of the Z-module of polynomials over Q which map Z into Z (and also of the Z_p -module of polynomials over Q_p that map Z_p into Z_p , where Z_p is the valuation ring of Q_p).

The function field analogue of the latter property is that of being an ordered basis of the I_n -module of polynomials over F_n that map I_n into I_n . Let $\{H_i(t)\}$ be such a basis. We prove (Theorem 4.5) that for every continuous function $f\colon I_n\to I_n$ there exists a unique null sequence $\{B_i\}$ in I_n such that

$$f(t) = \sum_{i=0}^{\infty} B_i H_i(t),$$

where (1.4) converges uniformly on I_{π} .

The above theorem may be applied to a sequence of polynomials $\{G_i(t)/g_i\}$ introduced in 1948 by Carlitz [4]. This leads to the following characterization (Theorem 5.1) of continuous linear operators on the GF(q)-vector space I_n : Let $f\colon I_n\to I_n$ be continuous. If the (unique) interpolation series for f constructed from the Carlitz polynomials is given by

$$f(t) = \sum_{i=0}^{\infty} A_i \frac{G_i(t)}{g_i},$$

then f is a linear operator on the GF(q)-vector space I_n if and only if $A_i = 0$ for $i \neq q^k$, where $k \geqslant 0$.

The author wishes to thank Professor Carlitz for his guidance and encouragement during the preparation of this paper, and of the doctoral dissertation on which it is based.

2. Preliminaries. Let GF(q) be a finite field of cardinality q. Denote by GF[q, x] the ring of polynomials in an indeterminate x over GF(q), and by GF(q, x) the quotient field of GF[q, x]. Let $\pi \in GF[q, x]$ be an irreducible polynomial of degree d. Then every nonzero $\alpha \in GF(q, x)$ may be written, in essentially unique fashion,

(2.1)
$$\alpha = \pi^n \frac{m_1}{m_2},$$

where n is integral, and m_1 and m_2 are polynomials prime to each other and to π .

Define a function $v_n: GF(q, x) - \{0\} \to Z$ by

$$(2.2) v_{\pi}(\alpha) = n,$$

where α is written as in (2.1). It follows that

$$(2.3) v_n(\alpha\beta) = v_n(\alpha) + v_n(\beta) (\alpha\beta \neq 0)$$

and

$$(2.4) v_n(\alpha+\beta) \geqslant \min\{v_n(\alpha), v_n(\beta)\} (\alpha, \beta, \alpha+\beta \neq 0).$$

Fixing a real number b such that 0 < b < 1, define the π -adic absolute value $| \ |_{\pi}$ on GF(q, x) as follows:

$$(2.5) |0|_{\pi} = 0,$$

(2.6)
$$|a|_{\pi} = b^{v_{\pi}(a)} \quad (a \neq 0).$$

By familiar methods GF(q, x) may be embedded as a dense subfield in an essentially unique complete field, denoted F_n . With respect to the

extended absolute value, F_n is a discrete non-archimedean field. Equipped with the metric d_n , defined by

$$(2.7) d_{\pi}(\alpha, \beta) = |\alpha - \beta|_{\pi},$$

 F_{π} is a metric field. In particular, polynomial functions over F_{π} are continuous.

Denote by I_{π} the valuation ring of F_{π} , i.e.,

$$I_{\pi} = \{ \alpha \in F_{\pi} \colon |\alpha|_{\pi} \leqslant 1 \}.$$

Then the valuation ideal

$$(\pi) = \{a \in I_{\pi} : |a|_{\pi} < 1\}$$

is maximal and the residue class field $I_{\pi}/(\pi)$ is isomorphic to $GF(q^d)$, where $d = \deg \pi$.

Let Γ be a complete set of representatives of $I_n/(\pi)$ in I_n . Then every nonzero $\alpha \in F_n$ may be uniquely represented as a π -series,

(2.8)
$$\alpha = \pi^n \sum_{i=0}^{\infty} a_i \pi^i,$$

where $a_i \in \Gamma$, $\pi \nmid a_0$ in I_{π} , and $|a| = b^n$ [6]. In particular, Γ may be taken to be the set of polynomials in GF[q, x] having degree less than d.

For $\alpha \in \mathbb{F}_n$ and k any integer, let

(2.9)
$$B_k(\alpha) = \{\beta \in F_n : |\beta - \alpha|_n \leq b^k\} = \{\beta \in F_n : |\beta - \alpha|_n < b^{k-1}\}.$$

Then the collection $\{B_k(a)\colon k\geqslant 0\}$ is a fundamental system of open-closed neighborhoods of a; hence F_π is totally disconnected.

Again, let Γ be a complete set of representatives of $I_n/(\pi)$ in I_n . Given $\epsilon > 0$, let k be a positive integer such that $b^k < \epsilon$. Let

where $a_i \in \Gamma$. Then Δ has q^{kd} elements and the collection

$$(2.11) {B_k(\alpha): \alpha \in A}$$

is a pairwise disjoint open cover of I_n , all of the members of which have radius less than ε . It follows that I_n (and, therefore, every closed and bounded subset of F_n) is compact. (In fact, the Heine-Borel Theorem holds in all locally compact non-archimedean fields, a result due to Schöbe [9].)

In the special case $\pi = x$, the complete field F_x may be identified with the field of formal power series over GF(q), for by (2.8) every nonzero $a \in F_x$ may be written

(2.12)
$$a = \sum_{i=-\infty}^{\infty} a_i x^i,$$

where $a_i \in GF(q)$, all but a finite number of the a_i vanish for i < 0, and $|a|_x = b^n$, for n the smallest integer such that $a_n \neq 0$.

There would, in fact, be no loss of generality in restricting the investigation we have in mind to the case of x-adic absolute values; for it is known that every locally compact Hausdorff field having nonzero characteristic is topologically isomorphic to a field of formal power series in one indeterminate over some finite field ([10], pp. 12-22). In the case of the fields F_n we may specialize this result as follows.

THEOREM 2.1. Let F_n be the completion of GF(q, x) for the absolute value $| \ |_n$, where π is an irreducible polynomial of degree d. Then F_n is topologically isomorphic to a field of formal power series in one indeterminate over the finite field $GF(q^d)$.

Proof. In view of representations (2.8) and (2.12), it suffices to show that Γ , a complete set of representatives of $I_n/(n)$ in I_n , may be chosen in such a way that Γ is a *subfield* of I_n .

Let $\alpha \in I_{\pi}$. Since $I_{\pi}/(\pi)$ is isomorphic to $GF(q^d)$, it follows that $\pi \mid \alpha^{q^d} - \alpha$, and hence that

$$\pi^{q^{(n-1)d}} \mid \alpha^{q^{nd}} - \alpha^{q^{(n-1)d}},$$

for all natural numbers n. Therefore, the series

(2.13)
$$a + (a^{q^d} - a) + (a^{q^{2d}} - a^{q^d}) + \dots$$

converges, i.e., $\lim_{n\to\infty} \alpha^{q^{nd}}$ exists for all $\alpha \in I_n$.

Define a function $w: I_n \to I_n$ by

$$(2.14) w(\alpha) = \lim_{n \to \infty} \alpha^{qnd}.$$

Then w is an endomorphism of the ring I_n with kernel (π) , and so $w(I_n)$ is a subfield of I_n isomorphic to $GF(q^d)$. By (2.13) and (2.14), it follows that $w(\alpha) \equiv \alpha \pmod{\pi}$; hence we may take $\Gamma = w(I_n)$, as desired.

To conclude this section, we recall that, in addition to the π -adic absolute values, GF(q, x) admits only one other non-trivial absolute value, $|\ |_{\infty}$, defined by

$$\left|\frac{m_1}{m_2}\right|_{\infty} = b^{\deg m_2 - \deg m_1},$$

for m_1 , m_2 nonzero elements of GF[q, x] and 0 < b < 1 ([6], pp. 45-47). The completion of GF(q, x) for $| \cdot |_{\infty}$, denoted by F_{∞} , may be seen to consists of the set of all descending formal power series over GF(q),

(2.16)
$$a = \sum_{i=-\infty}^{\infty} a_i x^{-i},$$

where $a_i \in GF(q)$, all but a finite number of these coefficients vanish for i < 0, and $|a|_{\infty} = b^n$, n the smallest integer such that $a_n \neq 0$.

In what follows, we shall appeal to the obvious topological isomorphism between F_x and F_{∞} to omit an explicit treatment of the problem of approximating continuous functions in F_{∞} . There appears, however, to be no particular advantage in a similar appeal to Theorem 2.1, and so we shall state our results for the fields F_{π} .

3. A special ordering of GF[q, x]. Let $\pi \in GF[q, x]$ be an irreducible polynomial of degree d. We define a sequential ordering of GF[q, x] which has the property of being, in the terminology of Amice [1], "très bien répartie" in I_n . Let $(a_0, a_1, \ldots, a_{q^d-1})$ be a fixed ordering of the polynomials in GF[q, x] of degree < d such that $a_0 = 0, a_1 = 1$, and $\deg a_i \leqslant \deg a_j$ for $1 \leqslant i \leqslant j$. The special sequence $\{m_n\}$, running through GF[q, x], is defined as follows. If

$$(3.1) n = k_0 + k_1 q^d + \ldots + k_s q^{sd} (0 \le k_1 < q^d),$$

set

$$(3.2) m_n = a_{k_0} + a_{k_1}\pi + \ldots + a_{k_s}\pi^s.$$

THEOREM 3.1. For any integers $s \geqslant 0$ and $k \geqslant 1$, the set

$$(3.3) \{m_{i+sq^{kd}} : 0 \leqslant i < q^{kd}\}$$

is a complete residue system $(\text{mod } \pi^k)$.

Proof. As there is no "overlap" in the q^d -adic expansions (3.1) of i and sq^{kd} , it follows that

$$m_{i+sq^{kd}} = m_i + m_{sq^{kd}}.$$

The set $\{m_i\colon 0\leqslant i< q^{kd}\}$ is a complete residue system $(\operatorname{mod}\pi^k)$, and this property is preserved under shifting by the additive constant m_{sqkd} . Let

$$(3.5) S_n = \{m_0, m_1, \ldots, m_{n-1}\} (n \geqslant 1),$$

and let

(3.6)
$$\varrho(\alpha; k, n) = \operatorname{card}(B_k(\alpha) \cap S_n),$$

with $a \in I_{\pi}$, $n, k \ge 1$, and $B_k(a)$ as in (2.9). Then the following theorem is a straightforward consequence of Theorem 3.1.

THEOREM 3.2. For every $a \in I_n$, and for all positive integers n and k,

(3.7)
$$\left[\frac{n}{q^{kd}}\right] \leqslant \varrho(a; k, n) \leqslant \left[\frac{n-1}{q^{kd}}\right] + 1.$$

Furthermore,

(3.8)
$$\varrho(m_n; k, n) = \left\lceil \frac{n}{q^{kd}} \right\rceil.$$

We now introduce an ordered basis of the F_n -vector space $F_n[t]$, consisting of the Newton interpolation polynomials for the interpolation sequence $\{m_n\}$, defined by (3.2). Set

(3.9)
$$P_0(t) = 1, \quad P_n(t) = (t - m_0)(t - m_1) \dots (t - m_{n-1}) \quad (n \ge 1),$$
 and

(3.10)
$$Q_0(t) = 1, \quad Q_n(t) = P_n(t)/P_n(m_n) \quad (n \ge 1).$$

Since deg $Q_n(t) = n$, $\{Q_n(t)\}$ is an ordered basis of the F_n -vector space $F_n[t]$. Hence, every polynomial $g(t) \in F_n[t]$ of degree $\leq n$ may be written uniquely as

(3.11)
$$g(t) = \sum_{i=0}^{n} A_i Q_i(t).$$

To derive a formula for the coefficients A_i , let $g_r(t)$ be the unique polynomial of degree $\leq r$ for which $g_r(m_j) = g(m_j)$ for $0 \leq j \leq r$. Then

(3.12)
$$g_r(t) = \sum_{j=0}^r A_j Q_j(t) = \sum_{j=0}^r \frac{P_{r+1}(t) g(m_j)}{(t-m_j) P'_{r+1}(m_j)},$$

where the second equality above is the result of Lagrange interpolation. It follows from (3.12) that

(3.13)
$$g_i(t) - g_{i-1}(t) = A_i Q_i(t) = \left(P_i(m_i) \sum_{j=0}^i \frac{g(m_j)}{P'_{i+1}(m_j)} \right) Q_i(t).$$

Hence

(3.14)
$$A_i = P_i(m_i) \sum_{j=0}^i \frac{g(m_j)}{P'_{i+1}(m_j)}.$$

The following two theorems imply that the sequence $\{Q_n(t)\}$ is, in fact, an ordered basis of the I_n -module of polynomials over F_n that map I_n into itself. In the remainder of the paper the subscript π will be omitted from the symbols v_n and $|\cdot|_n$.

Theorem 3.3. For all $t \in I_n$, $|Q_n(t)| \leqslant 1$.

Proof (Amice [1]). In virtue of (2.6) it suffices to show that

$$(3.15) v(P_n(t)) \geqslant v(P_n(m_n)).$$

Acta Arithmetica XVII.4

By
$$(3.7)$$
,

$$(3.16) v(P_n(t)) = \sum_{i=0}^{n-1} v(t-m_i) = \sum_{k=1}^{\infty} k(\varrho(t; k, n) - \varrho(t; k+1, n))$$
$$= \sum_{k=1}^{\infty} \varrho(t; k, n) \geqslant \sum_{k=1}^{\infty} \left[\frac{n}{q^{kd}} \right].$$

But, by (3.8),

$$(3.17) v(P_n(m_n)) = \sum_{k=1}^{\infty} \varrho(m_n; k, n) = \sum_{k=1}^{\infty} \left[\frac{n}{q^{kd}} \right],$$

from which the desired result follows.

THEOREM 3.4. Let $g(t) \in F_{\pi}[t]$, and write

(3.18)
$$g(t) = \sum_{i=0}^{n} A_i Q_i(t).$$

Then g maps I_n into itself if and only if $A_i \in I_n$, for $0 \le i \le n$.

Proof. Sufficiency. By Theorem 3.3, $|Q_i(t)| \le 1$ if $|t| \le 1$, so if $|A_i| \le 1$, $|g(t)| \le 1$, since $|\cdot|$ is non-archimedean.

Necessity. By (3.14), it suffices to show that, for all $j \leq i$,

$$(3.19) v(P_i(m_i)) \geqslant v(P'_{i+1}(m_i)).$$

By (3.17),

$$(3.20) v(P_i(m_i)) = \sum_{k=1}^{\infty} \left[\frac{i}{q^{kd}}\right].$$

We show that

$$(3.21) v(P'_{i+1}(m_i)) \leqslant \sum_{i=1}^{\infty} \left[\frac{i}{q^{kd}}\right].$$

Since

$$(3.22) P'_{i+1}(m_j) = (m_j - m_0) \dots (m_j - m_{j-1})(m_j - m_{j+1}) \dots (m_j - m_i),$$

inequality (3.21) is obvious for j = i, so assume that j < i. Denote by S(i, j) the set $S_{i+1} - \{m_i\}$. Then

$$(3.23) \quad v(P'_{i+1}(m_j)) = \sum_{\substack{r=0 \\ r \neq j}}^{i} v(m_j - m_r)$$

$$= \sum_{k=1}^{\infty} k \left(\operatorname{card}(B_k(m_j) \cap S(i,j)) - \operatorname{card}(B_{k+1}(m_j) \cap S(i,j)) \right)$$

$$= \sum_{k=1}^{\infty} \operatorname{card}(B_k(m_j) \cap S(i,j)) \leqslant \sum_{k=1}^{\infty} \left[\frac{i}{q^{kd}} \right],$$

as desired.

4. Interpolation theorems. We require a preliminary theorem, due to Amice [1], which specifies conditions under which certain finite subsets of $\{Q_i(t)\}$ are locally constant $(\text{mod }\pi)$. As in the case of a previous theorem, we include, for completeness, a specialized version of the proof given by Amice.

THEOREM 4.1. Let $\pi \in GF[q, x]$ be an irreducible polynomial of degree d, and let $|\pi| = b$. Then, for all $k \ge 1$ and for all i such that $0 \le i \le q^{kd} - 1$, if $t_1, t_2 \in I_n$ and $|t_1 - t_2| \le b^k$, then

$$|Q_i(t_1)-Q_i(t_2)|\leqslant b$$
.

Proof. It suffices to show that for all i, j with $0 \le i, j \le q^{kd} - 1$, if $t \in B_k(m_j)$, then $|Q_i(t) - Q_i(m_j)| \le b$. The cases (1) j < i and (2) $j \ge i$ are treated separately.

(1) If j < i, then $|Q_i(t) - Q_i(m_j)| = |Q_i(t)|$, and so it suffices to show that, for $t \in B_k(m_i)$,

$$(4.1) v(t-m_0)+\ldots+v(t-m_{i-1})>v(m_i-m_0)+\ldots+v(m_i-m_{i-1}),$$
 or, as in (3.16), that

(4.2)
$$\sum_{r=1}^{\infty} \varrho(t; r, i) > \sum_{r=1}^{\infty} \varrho(m_i; r, i).$$

By Theorem 3.2,

(4.3)
$$\varrho(t; r, i) \geqslant \varrho(m_i; r, i) = \left\lceil \frac{i}{q^{rd}} \right\rceil.$$

When r = k, however, inequality (4.3) is strict, since

$$\varrho(t; k, i) = 1$$
 and $\varrho(m_i; k, i) = 0$.

(2) Let $i \le j$. By hypothesis, $|t-m_j| \le b^k$. For all r with $0 \le r \le i-1 < j$, $m_r \ne m_j \pmod{\pi^k}$, and so

$$(4.4) |t-m_i| \leqslant b |m_i-m_r|,$$

 \mathbf{or}

$$|(t-m_r)-(m_j-m_r)| \leqslant b |m_j-m_r|,$$

 \mathbf{or}

$$\left|\frac{t-m_r}{m_j-m_r}-1\right|\leqslant b.$$

Hence, for each r, there is an $a_r \in I_n$ such that

$$\frac{t-m_r}{m_j-m_r}=1+\pi\alpha_r,$$

and so, there is a $\beta \in I_n$ such that

Therefore,

$$\left|\frac{Q_i(t)}{Q_i(m_j)}-1\right|\leqslant b,$$

and, by Theorem 3.3,

$$(4.10) |Q_i(t) - Q_i(m_j)| \leq b |Q_i(m_j)| \leq b.$$

The interpolation theorems announced in the Introduction are included in the following sequence of theorems.

THEOREM 4.2. Let π , b, and d be as in Theorem 4.1. Let $f\colon I_n\to I_n$ be continuous. Then there is an integer $k\geqslant 1$ and a continuous function $h\colon I_n\to I_n$ such that

(4.11)
$$f(t) = \sum_{i=0}^{q^{kd-1}} f(m_i) \chi_i(t) + \pi h(t),$$

where χ_i is the characteristic function of the set $B_k(m_i)$.

Proof. Since I_n is compact, f is uniformly continuous. Hence, there is an integer $k \ge 1$ such that, for all i, $0 \le i \le q^{kd} - 1$, if $t \in B_k(m_i)$, then $|f(t) - f(m_i)| \le b$. Thus, there is a continuous function $h^i \colon B_k(m_i) \to I_n$ such that, for $t \in B_k(m_i)$,

(4.12)
$$f(t) = f(m_i) + \pi h^i(t).$$

Since the sets $B_k(m_i)$ are a pairwise disjoint open-closed cover of I_n , (4.11) may be gotten by setting $h(t) = h^i(t)$ for $t \in B_k(m_i)$.

THEOREM 4.3. Let $f\colon I_n\to I_n$ be continuous. Then there is an integer $k\geqslant 1$, a continuous function $f_1\colon I_n\to I_n$, and a sequence $\{a_i\colon 0\leqslant i\leqslant q^{kd}-1\}$ in I_n such that

(4.13)
$$f(t) = \sum_{i=0}^{q^{kd-1}} a_i Q_i(t) + \pi f_1(t).$$

Proof. Using the uniform continuity of f, determine k as in Theorem 4.2. By Theorem 4.1, this k is also associated with the uniform continuity of the functions $Q_i(t)$, $0 \le i \le q^{kd} - 1$. Applying Theorem 4.2 to these functions, we get

(4.14)
$$Q_i(t) = \sum_{j=0}^{q^{kd}-1} Q_i(m_j) \chi_j(t) + \pi h_i(t).$$

Since $Q_i(m_j) = 0$ when j < i, system (4.14) is triangular. Solving for the functions $\chi_i(t)$ in terms of the $Q_i(t)$ and the error functions $h_i(t)$, and substituting in (4.11), we get (4.13), where $f_1(t)$ is expressed in terms of the error functions $h_i(t)$.

THEOREM 4.4. Let $f\colon I_n\to I_n$ be continuous. Then there is a unique sequence $\{A_i\}$ in F_n such that

(4.15)
$$f(t) = \sum_{i=0}^{\infty} A_i Q_i(t),$$

where (4.15) converges uniformly on I_n . Moreover, for all i, $|A_i| \leq 1$ and $\lim_{i \to \infty} A_i = 0$.

Proof. By Theorem 4.3 there is an integer $k_0 \geqslant 1$, a sequence $\{a_i^0\colon 0\leqslant i\leqslant q^{k_0d}-1\}$, and a continuous function $f_1\colon I_n\to I_n$ such that

(4.16)
$$f(t) = \sum_{i=0}^{q^{k_0 d} - 1} a_i^0 Q_i(t) + \pi f_1(t).$$

Similarly, we may write

(4.17)
$$f_1(t) = \sum_{i=0}^{q^{k_1 d} - 1} a_i^1 Q_i(t) + \pi f_2(t).$$

Iterating and substituting in (4.16) at each stage, we get

(4.18)
$$f(t) = \sum_{i=0}^{M_{n-1}-1} (\alpha_i^0 + \pi \alpha_i^1 + \ldots + \pi^{n-1} \alpha_i^{n-1}) Q_i(t) + \pi f_n(t),$$

where

$$M_{n-1} = \max\{q^{k_0d}, q^{k_1d}, \dots, q^{k_{n-1}d}\}.$$

Define the sequence $\{A_i\}$ by

$$A_i = \sum_{j=0}^{\infty} \pi^j \alpha_i^j.$$

The series (4.20) converges to an element of I_{π} , for $|a_i^j| \leqslant 1$. Also

$$\lim_{i\to\infty}A_i=0,$$

for if $i\geqslant M_{n-1}$, then $a_i^0=a_i^1=\ldots=a_i^{n-1}=0$, and so $|A_i|\leqslant b^n$. Let $k\geqslant M_{n-1}-1$. Then

$$\begin{aligned} & (4.22) \qquad \Big| \sum_{i=0}^k A_i Q_i(t) - \sum_{i=0}^{M_{n-1}-1} \left(\alpha_i^0 + \pi \alpha_i^1 + \ldots + \pi^{n-1} \alpha_i^{n-1} \right) Q_i(t) \Big| \\ & \leq \max \Big\{ \Big| \sum_{i=M_{n-1}}^k A_i Q_i(t) \Big|, \; \Big| \sum_{i=0}^{M_{n-1}-1} \left(A_i - (\alpha_i^0 + \ldots + \pi^{n-1} \alpha_i^{n-1}) \right) Q_i(t) \Big| \Big\} \leqslant b^n, \end{aligned}$$

and by (4.18)

$$\left| f(t) - \sum_{i=0}^k A_i Q_i(t) \right| \leqslant b^n.$$

Hence (4.15) converges uniformly to f on I_n . The coefficients A_i are uniquely determined by f, since for each $n \ge 0$, the finite sum

$$(4.24) \qquad \qquad \sum_{i=0}^{n} A_i Q_i(t)$$

is the unique polynomial of degree $\leq n$ which takes the same values as f on the set $\{m_0, \ldots, m_n\}$. Hence, by (3.14),

(4.25)
$$A_i = P_i(m_i) \sum_{j=0}^i \frac{f(m_j)}{P'_{i+1}(m_j)}.$$

In the slightly more general case of a continuous function $f\colon I_n\to F_n$, the boundedness of f implies the existence of an integer $k\geqslant 0$ such that $\pi^k f\colon I_n\to I_n$. Hence

(4.26)
$$\pi^k f(t) = \sum_{i=0}^{\infty} \left(P_i(m_i) \sum_{i=0}^{i} \frac{\pi^k f(m_i)}{P'_{i+1}(m_i)} \right) Q_i(t),$$

and so

(4.27)
$$f(t) = \sum_{i=0}^{\infty} A_i Q_i(t),$$

where A_i is defined by (4.25).

In the case of a continuous function $f: B_k(0) \to F_n$, where k < 0, define $g: I_n \to F_n$ by $g(t) = f(\pi^k t)$. Then by (4.21) and (4.27), we have, for all $t \in I_n$,

(4.28)
$$f(\pi^k t) = g(t) = \sum_{i=0}^{\infty} \left(P_i(m_i) \sum_{j=0}^{i} \frac{f(\pi^k m_j)}{P'_{i+1}(m_j)} \right) Q_i(t).$$

Hence, for all $t \in B_k(0)$,

$$(4.29) f(t) = f(\pi^k(\pi^{-k}t)) = \sum_{i=0}^{\infty} \left(P_i(m_i) \sum_{j=0}^{i} \frac{f(\pi^k m_j)}{P'_{i+1}(m_j)} \right) Q_i(\pi^{-k}t).$$

It follows that every continuous function $f: K \to F_n$, where K is a compact subset of F_n , has a series expansion of the form (4.29), for $K \subseteq B_k(0)$ for some $k \leq 0$ and, by a theorem of Dieudonné ([7], p. 82), any such f has a continuous extension to $B_k(0)$.

THEOREM 4.5. Let $\{H_i(t)\}$ be an ordered basis of the I_n -module of polynomials over F_n that map I_n into itself. Let $f\colon I_n\to I_n$ be continuous. Then there exists a unique null sequence $\{B_i\}$ in I_n such that

(4.30)
$$f(t) = \sum_{i=0}^{\infty} B_i H_i(t),$$

where (4.30) converges uniformly on I_n .

Proof. By Theorem 4.4,

(4.31)
$$f(t) = \sum_{j=0}^{\infty} A_j Q_j(t),$$

where $A_j \in I_n$ and $\lim_{j \to \infty} A_j = 0$. By Theorem 3.3, for all $j \ge 0$, $Q_j(t)$ may be written uniquely as

(4.32)
$$Q_{j}(t) = \sum_{i=0}^{n_{j}} D_{i}^{j} H_{i}(t),$$

where $D_i^j \in I_{\pi}$. Set

$$(4.33) B_i = \sum_{j=0}^{\infty} A_j D_i^j.$$

Since $\lim_{j\to\infty} A_j = 0$ and $|D_i^j| \leqslant 1$, (4.33) converges to an element of I_n . Moreover, $\lim_{i\to\infty} B_i = 0$, for, given any integer $k \geqslant 0$, let r be such that $|A_j| \leqslant b^k$ if $j \geqslant r$. Let $i > \max\{n_0, \ldots, n_{r-1}\}$. Then $D_i^j = 0$ if j < r, and so $|B_i| \leqslant b^k$.

If $k \geqslant 0$, let r be such that $|A_j| \leqslant b^k$ for $j \geqslant r$ and

$$\left|\sum_{j=0}^{s} A_{j} Q_{j}(t) - f(t)\right| \leqslant b^{k}$$

for $s \geqslant r$. If $n \geqslant \max\{n_0, \ldots, n_r\}$, then

$$(4.35) \qquad \Big| \sum_{i=0}^{n} B_{i} H_{i}(t) - \sum_{j=0}^{r} A_{j} Q_{j}(t) \Big| = \Big| \sum_{u=r+1}^{\infty} A_{u} \sum_{v=0}^{n} D_{v}^{u} H_{v}(t) \Big| \leqslant b^{k}.$$

Then (4.34) and (4.35) yield (4.30).

Moreover, $\{B_i\}$, as defined in (4.33), is the only null sequence in I_n for which (4.30) holds. For suppose that

$$(4.36) f(t) = \sum_{i=0}^{\infty} C_i H_i(t),$$

where $\lim_{i\to\infty} C_i = 0$. For all $i \geqslant 0$, write

(4.37)
$$H_i(t) = \sum_{j=0}^{n_i} E_j^i Q_j(t),$$

where $E_j^i \in I_n$. A repetition of the preceding argument yields

(4.38)
$$f(t) = \sum_{i=0}^{\infty} Q_i(t) \sum_{i=0}^{\infty} C_i E_i^i.$$

By Theorem 4.4, however,

$$(4.39) \sum_{i=0}^{\infty} C_i E_j^i = A_j (j \geqslant 0),$$

where A_j is defined by (4.25). Since $\{C_i\}$ and $\{A_j\}$ are null sequences, the equations (4.39) may be written matrically,

$$(4.40) MC = A,$$

where C and A are the infinite column vectors $[C_0, C_1, \ldots]^T$ and $[A_0, A_1, \ldots]^T$ and M is the column-finite matrix $[m_{rs}]$, where

$$(4.41) m_{rs} = E_r^s (r, s \geqslant 0),$$

and E_r^s is defined by (4.39).

Using (4.32) and (4.37) the matrix M may be seen to possess the two-sided inverse $Q = [q_{rs}]$, where

$$(4.42) q_{rs} = D_r^s (r, s \geqslant 0),$$

and \boldsymbol{D}_r^s is defined by (4.32). Hence the relation (4.40) determines \boldsymbol{C} uniquely, and

(4.43)
$$C_i = B_i = \sum_{j=0}^{\infty} A_j D_i^j.$$

We stress that Theorem 4.5 asserts the uniqueness of the coefficients B_i on the assumption that $\{B_i\}$ is null. The unqualified uniqueness of these coefficients (which we have been able to prove only in special cases) is equivalent to the assertion that a series

$$(4.44) \sum_{i=0}^{\infty} C_i H_i(t)$$

converges uniformly on I_n only if $\{C_i\}$ is null.

5. Applications. Define the sequence of polynomials $\psi_r(t)$ over $\mathrm{GF}[q,x]$ by

(5.1)
$$\psi_r(t) = \prod_{\deg m < r} (t-m), \quad \psi_0(t) = t,$$

where the product in (5.1) extends over all polynomials $m \in GF[q, x]$ (including 0) having degree < r. It follows [3] that

(5.2)
$$\psi_r(t) = \sum_{i=0}^r (-1)^{r-i} {r \brack i} t^{q^i},$$

where

(5.3)
$$\begin{bmatrix} r \\ i \end{bmatrix} = \frac{F_r}{F_i L_{r-i}^{q^i}}, \quad \begin{bmatrix} r \\ 0 \end{bmatrix} = \frac{F_r}{L_r}, \quad \begin{bmatrix} r \\ r \end{bmatrix} = 1,$$

and

(5.4)
$$F_{r} = [r][r-1]^{q} \dots [1]^{q^{r-1}}, \quad F_{0} = 1,$$

$$L_{r} = [r][r-1] \dots [1], \quad L_{0} = 1,$$

$$[r] = x^{q^{r}} - x.$$

Let K be any extension field of GF(q, x). By (5.2), the functions associated to the polynomials $\psi_r(t)$ are linear operators on the GF(q)-vector space K. Furthermore, $\psi_r(x^r) = \psi_r(m) = F_r$, for m monic of degree r, so that F_r is the product of all monic polynomials in GF[q, x] of degree r. On the other hand, L_r may be seen to be the l.c.m. of all polynomials in GF[q, x] of degree r [2].

Following Carlitz [4], we define $g_k \in GF[q, x]$, and polynomials $G_k(t)$, $G_k^*(t)$ over GF[q, x]. Let k be a positive integer, and write

(5.5)
$$k = e_0 + e_1 q + \ldots + e_s q^s \quad (0 \le e_i < q).$$

Define g_k by

(5.6)
$$g_k = F_1^{e_1} \dots F_s^{e_s}, \quad g_0 = 1,$$

and $G_k(t)$ and $G_k^*(t)$ by

(5.7)
$$G_k(t) = \psi_0^{e_0}(t) \dots \psi_s^{e_s}(t), \quad G_0(t) = 1$$

and

(5.8)
$$G_k^*(t) = \prod_{i=0}^s G_{e_iq^i}^*(t),$$

where

(5.9)
$$G_{eq}^*(t) = \begin{cases} \psi_i^e(t) & \text{for } 0 \leqslant e < q-1, \\ \psi_i^e(t) - F_i^e & \text{for } e = q-1. \end{cases}$$

Let K be any extension field of GF(q, x). Since $\deg G_n(t) = \deg G_n^*(t)$ = n, the sequences $\{G_n(t)/g_n\}$ and $\{G_n^*(t)/g_n\}$ are ordered bases of the K-vector space K[t]. Indeed, for any $f(t) \in K[t]$ of degree $\leq n$, we have [4] the unique representations

$$(5.10) f(t) = \sum_{i=0}^{n} A_i \frac{G_i(t)}{g_i}$$

and

(5.11)
$$f(t) = \sum_{i=0}^{n} A_{i}^{*} \frac{G_{i}^{*}(t)}{g_{i}},$$

where A_i is uniquely determined by choosing any r such that $i < q^r$, and setting

(5.12)
$$A_{i} = (-1)^{r} \sum_{\deg m < r} \frac{G_{q^{r}-1-i}^{*}(m)}{g_{q^{r}-1-i}} f(m) \quad (m \in GF[q, x]),$$

and A_i^* is uniquely determined by choosing any r such that $n < q^r$, and setting

(5.13)
$$A_i^* = (-1)^r \sum_{\deg m < r} \frac{G_{q^r - 1 - i}(m)}{g_{q^r - 1 - i}} f(m) \quad (m \in GF[q, x]).$$

Note the difference between the defining conditions for r in (5.12) and (5.13).

An important property of the polynomials $G_i(t)/g_i$ and $G_i^*(t)/g_i$ is the fact that for all $m \in GF[q, x]$, $G_i(m)/g_i \in GF[q, x]$ and $G_i^*(m)/g_i \in GF[q, x]$ [4]. With (5.12) and (5.13), this implies that $\{G_i(t)/g_i\}$ and $\{G_i^*(t)/g_i\}$ are, in fact, ordered bases of the GF[q, x]-module of polynomials over GF(q, x) that map GF[q, x] into itself.

Moreover, since GF[q, x] is dense in I_n and the polynomials $G_i(t)/g_i$ and $G_i^*(t)/g_i$ are, by an earlier observation, continuous functions, it follows that $a \in I_n$ implies that $G_i(a)/g_i$ and $G_i^*(a)/g_i \in I_n$. With (5.12) and (5.13) this implies that $\{G_i(t)/g_i\}$ and $\{G_i^*(t)/g_i\}$ are ordered bases of the I_n -module of polynomials over F_n that map I_n into itself.

Hence, by Theorem 4.5, for every continuous function $f: I_n \to I_n$, there exist null sequences $\{B_i\}$ and $\{B_i^*\}$ in I_n such that

$$(5.14) f(t) = \sum_{i=1}^{\infty} B_i \frac{G_i(t)}{g_i}$$

and

(5.15)
$$f(t) = \sum_{i=0}^{\infty} B_i^* \frac{G_i^*(t)}{g_i},$$

where (5.14) and (5.15) converge uniformly on I_n .

The coefficients B_i in (5.14) are uniquely determined by f. For if n is any positive integer, the finite sum

(5.16)
$$\sum_{i=0}^{q^{n}-1} B_i \frac{G_i(t)}{g_i}$$

is the unique polynomial of degree $\leq q^n-1$ which takes the same values as f on the set of all polynomials in GF[q, x] of degree < n. Hence, by (5.12),

(5.17)
$$B_i = (-1)^r \sum_{\deg m < r} \frac{G_{q^r - 1 - i}^*(m)}{g_{q^r - 1 - i}} f(m) \quad (i < q^r).$$

The question of the unconditional uniqueness of the coefficients B_i^* remains open.

Interpolation series of the type which appears in (5.14) may be used to characterize continuous linear operators on the GF(q)-vector space I_{π} .

THEOREM 5.1. Let $f\colon I_\pi\to I_\pi$ be continuous. If the (unique) interpolation series for f constructed from the Carlitz polynomials is given by

$$(5.18) f(t) = \sum_{i=0}^{\infty} A_i \frac{G_i(t)}{g_i},$$

then f is a linear operator on the GF(q)-vector space I_n if and only if $A_i = 0$ for $i \neq q^k$, where $k \geq 0$.

Proof. Sufficiency. If $A_i=0$ for $i\neq q^k$, where $k\geqslant 0$, (5.18) becomes

(5.19)
$$f(t) = \sum_{k=0}^{\infty} A_{qk} \frac{\psi_k(t)}{F_k}.$$

Since, by (5.2), the partial sums of (5.19) are linear operators, it follows immediately that f is a linear operator.

Necessity. We require the following identities [4]:

(5.20)
$$G_i(\lambda t) = \lambda^i G_i(t) \quad (\lambda \in GF(q)),$$

(5.21)
$$G_i(t_1+t_2) = \sum_{j=0}^i \binom{i}{j} G_j(t_1) G_{i-j}(t_2).$$

Let $\lambda \in GF(q)$ be a primitive root of unity. Then (5.18), (5.20), and $f(\lambda t) = \lambda f(t)$, yield

(5.22)
$$\sum_{i=0}^{\infty} \lambda A_i \frac{G_i(t)}{g_i} = \sum_{i=0}^{\infty} \lambda^i A_i \frac{G_i(t)}{g_i},$$

and so $A_i = 0$, unless $i \equiv 1 \pmod{q-1}$.

From (5.18), (5.21), and $f(t_1+t_2)=f(t_1)+f(t_2)$, we infer that

$$(5.23) \sum_{i=0}^{\infty} A_i \frac{G_i(t_1)}{g_i} + \sum_{i=0}^{\infty} A_i \frac{G_i(t_2)}{g_i} = \sum_{i=0}^{\infty} \frac{G_i(t_1)}{g_i} \sum_{j=i}^{\infty} \frac{g_i}{g_j} \binom{j}{i} A_j G_{j-i}(t_2).$$

Equating coefficients of $G_0(t_1)$, we see that $A_0 = 0$. Equating coefficients of $G_i(t_1)/g_i$ for i > 0, and subtracting A_i , we get

(5.24)
$$\sum_{j=i+1}^{\infty} \frac{g_i}{g_j} \binom{j}{i} A_j G_{j-i}(t_2) = 0.$$

Hence, for all i, j with $1 \le i < j$,

It follows that $A_j = 0$ unless $j = p^t$, where p is the characteristic of GF(q). Since $p^t \equiv 1 \pmod{q-1}$, we must have $p^t = q^k$, where $k \ge 0$.

References

- [1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964), pp. 117-180.
- [2] L. Carlitz, On polynomials in a Galois Field, Bull. Amer. Math. Soc. 38 (1932), pp. 736-744.
- [3] On certain functions connected with polynomials in a Galois Field, Duke Math. J. 1 (1935), pp. 137-168.
- [4] A set of polynomials, Duke Math. J. 6 (1940), pp. 486-504.
- [5] Finite sums and interpolation formulas over GF[pⁿ, x], Duke Math. J. 15 (1948), pp. 1001-1012.
- [6] J. Cassels and A. Fröhlich, Algebraic Number Theory, Washington, D.C., 1957.
- [7] J. Dieudonné, Sur les fonctions continues p-adiques, Bull. Sci. Math. 68 (1944), pp. 79-95.
- [8] K. Mahler, An interpolation series for a continuous function of a p-adic variable,
 J. Reine Angew. Math. 199 (1958), pp. 23-34.
- [9] W. Schöbe, Beiträge Zur Funktion theorie in nichtarchimedisch bewerteten Körpern, Munster 1930.
- [10] A. Weil, Basic Number Theory, New York 1967.

DUKE UNIVERSITY
THE UNIVERSITY OF TENNESSEE

Received on 27. 2. 1970