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1. Introduction. In 1944 Dieudonné [7] proved an -analogue of the
Weierstrass Approximation Theorem for continuous funetions of a p-adic
variable. In 1958 Mahler [8] sharpened this result by exhibibing a series ex-
pansion for continuous functions defined on the p-adic integers. e showed
that every such function f is the uniform limit of an interpolation series

o

(1.1) fy =D An(:b)

#=10

where the coefficients 4, are uniquely determined by

kel
(1.2) Ay = 4°50) = 3 (=13} .

In the present paper we choose an irreducible element = from the
polynomial ring GF{g, #] over the finite field GF(g) and use it to equip
the function field GF(q, )} with a =-adic absolute value. We denote by
I, the completion of GF(g,«) for this absolute value and by I, the
valuation ring of #,. The aforementioned theorem of Dieudonné may
easily be seen to generalize to the ease of a locally compact non-archi-
medean field. Hence, every continuous fungtion f: K — F,, where K
is a compact subset of F,, is the uniform limit of some seguence of poly-
nomialg over F,. Our aim in this paper is to prove some Mahler type
theorems for such funections.

‘We mention that Amice [1] has already constructed a certain type
of series approximation for continuous functions defined on locally compact
non-archimedean fields. In the process, Amice characterized those sequen-
ces (“suites trés bien réparties”) in the domain of a continuous function
with respect to which a Newton type interpolation procedure will yield

* This research was supporled in part by the National Science Foundation,
under Research Grant GP — 7865,
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a uniformly convergent series approximation for that function. In partic-
ular, the nonnegative rational integers, ordered in the ugual way, constitute
“such a sequence in the p-adic integers, and so Mahler’s result appears
as a special case of Amice’s Interpolation Theorem [1]. _

In what follows, we exhibit a “suite trés bien répartie” in I, dencted
{m;}, consisting of a special sequential crdering of GF[gq, «]. Specializing
Amice, we prove (Theorem 4.4) that for every continuous function
f+ I, - I, there exists a unique sequence {4;} in F, such that

(1.3) F) = > 4,0,
=0

where ,(¢) is the ¢th Newton interpolation polynomial for the interpola-
tion sequence {m;}; and (1.3) converges uniformly on I,. We add that

{4;} is always a null sequence, iLe., lim 4; = 0. Moreover, the above
=00

result may be extended to continuous functions f: K — F,, where K
is any compact subset of F,, by employing a Urysohn type theorem
for totally disconnected spaces due to Dieudonné {7].

We may regard the foregoing approach fo constructing function
field analogues of Mahler’s result as deriving from the observation that

the polynomials (:b) are the Newton interpolation polynomials for the

nonnegative rational integers. From this standpoint, the erucial problem,
completely solved by Amice, is that of identifying those sequences in
I, for which the associated Newton polynomials yield interpolation series
for continuous functions.

If, instead, one regards the sequence {(ﬂi)} Iliel'ely a8 an ordercd

basis of the @,-vector space ¢,[t], then one is led to ask which ordered
bases of the I -vector space F,[#] yield interpolation series for continuous
functions on I,. In this connection, it iz of interest to recall that the

sequence {(;)} hag the further property of being an ordered basis of the

Z-module of polynomials over ¢ which map Z into Z (and also of the
Zy-module of polynomials over ¢, that map Z, into Z,, where Z, is the
valuation ring of €,).

The function field analogue of the latter property is that of bemg
an ordered hasgis of the 7, -module of polynomials over ¥, that map I,
into I,. Let {I;(?)} be such'a basis. We prove (Theorem 4.5) that for
every continuous function f: I, — I, there exists a unigque null sequence
{B;} in I, such that

(1.4) foy = > B,
=0

where (1,4} converges uniformly on I,.
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The above theorem may be applied to a sequence of polynomials
{G;(1)/g;} introduced in 1948 by Carlitz [4]. This leads to the following
characterization (Theorem 5.1} of continuous linear operators on the
GF{g)-vector. space I,: Let f: I_ — I, be continuous. If the (unique)
interpolation series for f constructed from the Carlitz polynomials is
given by

(1.5) ) =

then f is a linear operator on the GF(g)-vector space I, if and only if
A, = 0 for i # ¢*, where &> 0.

The author wishes to thank Professor Carlitz for hig gunidance and
encouragement during the preparation of this paper, and of the doctoral
disgertation on which it is based.

2. Preliminaries. Let GF(g) be a finite field of cardinality ¢. Denote
by GF[gq, #] the ring of polynomials in an indeterminate z over GF(q),
and by GF(q, ) the quotient field of GF [¢, #]. Let m<GF[g, ] be an
irreducible polynomlal of degree d. Then every nonzero aeGF(q, x} may
be written, in essentially unique fashion,

(2.1) a=x"—,

where # is integral, and. m, and m, are polynomials prime to each other
and to .
Define a function v,: GF(g, )— {0} -~ Z by

(2.2) o, (@) =,

where « is wriiten as in (2.1). It follows that

(2.3) - 0,(af) == v, (a)F0,(f)  (af #0)
and '
(2.4) P{a+ B) = min{v, (), v.(8)} (o, 8, q+ﬁ # 0).

Fixing a real number b such that 0 < b < 1, define the =-adic absolute
value | |, on GF(q, z) as follows:

(2.5) 0], =0,
(2.6) lal, = B*=1%  (a # 0).

By familiar methods GF (g, ) may be embedded as a dense subfield
in an essentially unigue complete field, denoted ¥,. With respect to the
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extended absolute value, ¥, is a discrete non-archimedean field. Equipped
with the metric 4., defined by

(2.7) dr(ay B) = la—fl,,

F, is a metric field. In particular, polynomial functions over F,_ are
continuous,
Denote by 7, the valuation ring of ¥, ie.,

I, = {ael,: |a|, < 1}.
Then the valuation ideal '
() = {ael,i fal, <1}

is maximal and the residue class field I, /(%) is isomorphic to GF(g%),
where d = degu.

Let I" be a complete set of representatives of I,/(w) in I,. Then every
nonzere aef, may be uniquely represented as a m-series,

(2.8) o =a" > gt
=0

where a;el’, @y in I, and |a| = 3" [6]. In particular, I' may be taken
to be the set of polynomials in G¥[g, #] having degree less than d.
For aei', and % any integer, let

(2.9)  By(a) = {BeFy: |f—al, <V} = {BeF |fal, < D).

Then. the collection {Bj(a): k> 0} is a fundamental system of open-
closed neighborhoods of «; henee I, is totally diseonnected.

Again, let. I’ be a complete set of vepresentatives of I,/(x) in I,.
Given & > 0, let & be a positive integer such that 6% < e Tet

{2.10) A ={ael,: a =t ant...+a_ 2"}
where ;eI Then 4 has ¢* elements and the collection
(2.11) {Bi(a): aed}

is & pairwise disjoint open cover of I, all of the members of which have
radius less than e. It follows that I, (and, therefore, every cloged and
bounded subset of F,) is compact. (In fact, the Heine-Borel Theorem
holds in all locally compact non-archimedean fields, a result due to
Schobe [9].)

In the special case = ==, the complete field F, may be identified
with the field of formal power series over GF (g), for by (2.8) every nonzero
eeF, may be written

{2.12) o= > ad
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where a;<GF(g), all but a finite number of the @; vanish for i <C 0, and
lal, = ", for » the smallest integer such that a, s 0.

There would, in fact, be no loss of generality in restricting the in-
vestigation we have in mind to the case of g-adic absolute values; for it
is known that every locally compact Hausdorff field having nonzero
characteristic is topologically isomorphic to a field of formal power series
in one indeterminate over some finite field ([10], pp. 12-22). In the case
of the fields ', we may. specialize this result as follows.

THEOREM 2.1. Let I, be the completion of GI(q,x) for the absolutc
value | |,, where = is an irreducible polynomial of degree d. Then F, is
topologically isomorphic to a field of formal power series in one indeterminate
. over the finite field GF(¢").

Proof. In view of representations (2.8) and (2.12), it suffices to show
that I', a complete set of representatives of I,/(=) in I,, may be chosen
in such a way that I" is a subfield of I,

Let a<l,. Since I, /(x) is isomorphic to GF(¢%), it follows that = | o’ g,
and hence that

A D) gnd g1}
) L

e

for all natural numbers n. Therefore, the series

(2.13) ot (08— @)+ (' — o2 ...

converges, i.e., lim o exists for all ael,.
Define a fuzz%oion w: I, -1, by

(2.14) w(a) = lim o,

. =

Then w is an endomorphism of the ring I, with kernel (=), and so w(l,}
is a subfield of I, isomorphic to GI'(¢%). By (2.13) and (2.14), it follows
that w(a) = a(mod=); hence we may take I' = w(l,), as desired.

To conclude this section, we recall that, in addition to the m-adic
abgolute values, GF(¢,«) admits only one other non-trivial absolute
value, | |, defined by '

(2.15)

— bdeg my—dog ,

for m,, m, nonzero elements of GF[g, 2] and 0 < b < 1 ([6], pp. 45-47).
The completion of GF(g, ) for | |,, denoted by F,, may be seen to
congists of the set of all descending formal power series over GF(qg),

(2.186) | L@ == 2 a;m ",

{=-—c0
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whure a,eGF(g), all but a finite number of these coefficients vanish for
<20, and |ol, = b, n the smallest integer such that a, + 0.

In what follows, we shall appeal to the obvious topological isomorphism
between F, and F. to omit an explicit treatment of the problem of
approximating continwous functions in F,. There appears, however,
to be no particular advantage in a similar appeal to Theorem 2.1, and so
we shall state our results for the fields F,.

3. A special ordering of GF[q, #]. Let # <GF[g, #] be an irreducible
polynomial of degree d. We define a sequential ordering of GF[q, #]
which has the property of being, in the terminology of Amice [1], “trés
bien répartie” in I,. Let (a, @), ..., 64 ) be a fixed ordering of the
—pohmenﬁa}s—}ﬂ—GEm—ﬂwf—degfee—-ed—sueh—that—%;ﬂ,—al—w—g—a,nd—
dega; < dega; for 1 < ¢<Cj. The special sequence {m,}, running through
GFgq, 2], is defined as follows. If

(3.1) n o= Tt B g ...+ R g™ (0 Ky < g%,
get
(3.2) m, = a,ko—}-akln-]—...—[—aksns.

THEOREM 3.1. For any inlegers s = 0 and k= 1, the set
(3.3) ' {m, pat 01 < 7"}
is a complete residue system (modz®).

Proof. As there is no “overlap” in the g¢®adic expansions (3.1)
of i and sg*%, it follows that

(3.4) mi-l-sqkd ) = m.i "I" msqkd .

The set {m;: 0 < ¢ < ¢*"} is a complete residue system (mod=*), and this
property is preserved under shifting. by the additive constant LOWPY

Let
(3.5) 8, = {mgy myy ..y my_}  (n21),
and let
(3.6) o(a; I, n) = card(B,(a0)N8,),

with ael,,n, k= 1, and B,(e) as in (2.9). Then the following theorem
is a straightforward consequence of Theorem 3.1.
THEOREM 3.2. For every oael,, ond for all positive integers n and k,

| T n—1
(8.7) [?g]se(a;k,ﬂ)g[ 7 ]+1.
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© Purthermore,
n
(3.8) ety ky n) = [Ea‘]

We now introduce an ordered basgis of the I -vector space F_[t],
consisting of the Newton interpolation polynomials for the interpolation
sequence {m,}, defined by (3.2). Set

(3.9) Po(t) =1, Po{) = (t—me)(t—my) ... (t—my, ) (n3=1),
and - . T )
(310) 7 Qo(t) = 1: Qn(t) = Pn(t)/-Pn (mn) (% = 1) .

Since deg @, (1) =, {@,(4)} is an ordered basis of the F, -vector space
F,[t]. Hence, every polynomial g(t)< I, [7] of degree < » may be written
mquely a8

(3.11) gt = D 4,0,(0)
. i=0

‘To derive a formula for the coefficients 4,, lef g,(?) be the unique poly-
nomial of degree < r for which g.(m;) = g(m,) for 0 <j < Then

n+i(t)g(mf)
(3.12) % 2 4,80 = Z(t—m,)Pm(mf)

Where the second eguality above is the result of Lagrange mterpola,tlon
It follows from (3.12) that

| )
(3.13) gl —gi (B = 4,Q,() = (P “’%)2 Pﬂfgnﬂ) %)
Hencé
, O glm)
R . 3 . -y i -
(3.14) | Ai = Pylm;) jZ Pyr(my)

The following two theorems imply that the sequence {Q,(?)} is, in
faet, an ordered basis of the I,-module of polynomials over F, that map
I, into itself. In the remainder of the paper the subscript # will be omitted
from the symbols », and | [,.

THEOREM 3.3. For oll tel,, 10Q,(t)] < 1.
Proof (Amice [1]). In virtue of (2.6) it suffices to show that

{3.15) ' WP, (D) = 9P, (m,)).

Apta Arithmetica XVII4 . [
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By (3.7),
n—1 o0
(316)  o(Pa) = 3 vit—my) = > K{olt; by m)— o(t; k+1, n)
' iz E=1 :
o0 ) "
= o(t; kym) = [_]
But, by (3.8), ,_
‘ _ : oo L
3.17 oLP, (my)) = w By 1) = [__]?
(3.17) P, (m,) ,§9<m 2; e

from which the desired result follows,
THEOREM 3.4. Let g(t)eF_[t], and write

(3.18) gt = D' A4,9:(0).
. © =0

Then g maps I, into itself if and only if A;el,, for 0 < i< n.
Proof. Sufficiency, By Theorem 3.3, |@;(t)| <1 if |{| <1, so i

|4 <1, |g(t)] <1, since | | is non-archimedean.
Necessity. By (3.14), it suffices to show that, for all j < <,
(3.19) 7 o(Py(my)) = v(Pya(my)).
By (3.17), , .
q

(3.20) WP (my) :_g[iﬁ]'
We show that

o
3.21 B Piyq (M) < [——]
(321 (m())gqm
Since
(3-22) Py {my) = (my— o) ... (= My g} (My—myyy) ... (W —my),

- inequality (3.21) is obvious for j = ¢, so assume that j < ¢. Denote by
8(¢, §) the set 8;,,— {m;}. Then :
(3

(3.23)  w(Pip (my)) = D) o(m;—m,)

r=10
T

= ) Moard(B,(m;)  8(3, ) — card(By,, (m;) 0 8(i, 5))
k=1

= 2 éard(Bk(mi) n 8(i, ) < g [ﬁﬁ]’

as desired.



1
i
=i

(4.7)
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4. Interpolation theorems. We require a preliminary theorem, due
to Amice [1], which specifies conditions under which certain finite subsets
of {);(?)} are locally constant (mod=). As in the case of a previous theorem,
we include, for completeness, a specialized version of the proof given
by Amice. , - _

THEOREM 4.1. Let meGF[gq, x] be an irreducible polynomial of degree
&, and let |w| = b. Then, for all k=1 and for all ¢ such that 0 < i < g1,
if b, toel, and |4, —1,| < b*, then

[Q:(2)— @y (ts)] < b.

Proof. It suffices to show that for all 4,§ with 0 <4, j < ¢**— 1,
if {eBy(my), then [Q;(f)—@;(m,)| < b. The cases (1) j < i and (2) =14
are treated separately. o '

(1) It j <4, then |Q,(t)—Q;(m;)| = |Q,(1)], and so-it suffices to show
that, for teB;(m,), :

(4.1) o{E— M)V (E— ) > o (mi—me) 0 (e —m,_),
or, as in (3.16), that

oo (o]
(4.2) D eltsry ) > Y o(mgr, ).
=1 r=1
By Theorem 3.2,
3 . 1:
(4.3) elt; ry4) = o(my; 7, 4) = [gm]-

When # =k, however, inequality (4.3) is strict, since
et k1) =1 and  o(mg;k,d) = 0.

(2) Lot i< j. By hypothesis, |t— m,] < b*. For all » with 0 < r < 4—1
< §, m, # my(modx”*), and so

(4.4) [t—m,| < bim,—m,|,
or , .
(45) I(t_mr)%(mi_mr)l = b!mi__mr[}
or )
I—
(4.6) Ty / <b,
Woj — My

Hence, for each #, there is an a,eI, such that

t—m,;
" = 14 ma,,
m;—m,
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and so, there is a fel, such that

i-1

, i—m, Q8
(4.8) : Q my—m,  Qylmy) 1_?_%18.
Therefore,
e |
(4.9) Qu(m,) Hl‘ =

ahd, by Theorem 3.3,
(4.10) |€: (1) — @y (my)] < b le('m’y)l <b

The interpolation theorems announced in the Introduction are
included in the followmg sequence of theorems.

TueOREM 4.2. Let m,b, and d be as in Theorem 4.1, Let f: 1,1,
be continuous. Then there is am inleger k=1 and a continuwous fumction
h: I, — I, such that

gkd_y -

(4.11) @ = D om0+ wh(y),
' . i=0

where y; is the characteristic funotion of the set B,(m,).

Proof. Since I, is compact, f is uniformly continuous. Hence, there
is an integer %> 1 such that, for all 4, 0 < 4 < ¢**—1, if t<B,(m,), then
|f(8)—f(m)| < b. Thus, there i§ a continuous function #%: B, (m;) — I,
such that, for ¢eB,(m,),

(4.12) ' T = f(mg)+ mh'(2).

Since the sets B (m;) are a pairwise disjoint open-closed cover of I
(4.11) may be gotten by setbing h(t) — Ki(t) for teB,(m,).
TurorEM 4.3, Let f: I, — I, be continuous. Then there is an integer
k> 1, a continuous funetion fy: I, Ty and o soquence {a;: 0 <4 < gt —1}
tn I, such that .
gk
(4.18) FO) =D af:t) +n'f1(t)
i=0
Proof, Using the uniform continuity of f, determine % as in Theorem
4.2. By Theorem 4.1, this % is also associated with the uniform continuity
of the functions @;(¢), 0 <@< g’“‘ 1. Applying Theorem 4.2 to these
functions, we get ‘ : ' '
Y 2

(4.14) Q) = 37 Qulmy) (1)1 (1)
| 2 tm
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Since @;(m;) = 0 when j < 4, system (4.14) is triangular. Solving for
the functions y,(t) in terrms of the Q,(t) and the error functions h(?), and
substituting in (4.11), we get (4.13), where f,(s) is expressed in terms of
the error functions %,(z). _ -

THEOREM 4.4. Let f: I, — I, be continuous. Then there is a unique
sequence {4.} in F_ such that . ) '

(4.15) FO = D) 4,0,(1),
. . =0
where (4.15) converges uniformly on I,. Moreover, for all %, |4 <1 and
lim 4; = 0.
i—ro0

Proof. By Theorem 4.3 there is an infeger k,> 1, a sequence
{ef: 0 <4< g —1}, and a continnous function f,: I, - I, such that

fegdd
_ g9 -1
(4.16) L I = D g +an(n.
i=0
Similarly, we may write
- TN
(4.17) A = D> alQu)-+nfy(0).
: _ i=o o
Tierating and substibuting in (4.16) at each stage, we got
My_1-1
(4.18)  fit) = D' (odmadb ...+ )Qu0) 4 af, (1),
=10
where _
(4,]_9) Mnﬁl i _malx {qkod’ qkld’ - qkn'—_ld}.

Define the sequence {4,} by
(4.20) S A= Mald,
. F=0 '

The series (4.20) converges to an element of I, for |l < 1. Also
(4.21) lim 4; =0,
1—o0 .

for if ¢ M, ,, then of =a} =... =o' =0, and 8o |4, <"
Let k> M,.,—1. Then _ ' '
‘Mn 1—1 : - ’

] -
(€22) | D4~ 3 (odtmad. ot Q0|
=0 =0,

‘7 -g m&x“ Zk: .‘Ang(t)I,' 2 (A;— (2t ...+ *la?‘l))Qa;(t)‘}é_b“,
=M, =
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and by (4.18)
o
(4.23) | |70 Y 4] < b
=0

Hengce (4.15) converges uniformly to f on I,. The coefficients 4; are
uniquely determined by f, since for each n >> 0, the finite sum

(4.24) D Ait)
=0

is the unique polynomial of degree <{n which takes the same values
as f on the set {m,, ..., m,}. Hence, by (3.14),

: 4
(4.25) A, =Pi(mi)2 ) Fm;) )

In the slightly more general case of a continuous function f: I, — F,,
the boundedness of f implies the existence of an integer & > 0 such that
wf: I, — I,. Hence

l o0 i &

. e - Np wEflm) \ o
(4.26) 0 = ) (imo > 1) gut,
and so
(4.27) f) = > 4,:(),

’ i=0

where A4, is defined by (4.25).

In the case of a continuous function f: B,(0) — F,, where &k < 0,
define ¢: I, — F, by g() = f(#*t). Then by (4.21) and (4 27), we have,
for all tel,,

(£28) f(n"t) = ot = {7 »)Z,{fﬂlfn’,)) 0.
i+

Hence, for all te B, (0),

(429)  JW) = flat(a *D) - Z( i %)Z Sl L) @,

o 241 (1)

e.:
Q

It follows that every continuons function f: K - F,,, where K is a compact

.subset of F,, has a series expansion of the form (4. 29 for K < B,(0)
for some % < 0 and, by a theorem of Dieudonné ([7], p. 82), any such
f has a continuous extension to Bj(0).



RN B oy e LA T 0 R T ETI,

A& g e i g e

Interpolation series for continuwous functions 4901

TuROREM 4.5. Let {H (1)} be an ordered basis of the I-module of
polynomials over F, that map I, into itself. Let f: I, — I, be coniinuous.
Then there exists a unique null sequence {B;} in I, such that

(4.30) | J = ) BH(),

where (4.30) converges uniformly on I,.
Proof. By Theorem 4.4,

(4.31) @) = ZAij(i),

where A;el, and limA4, = 0. By Theolem 3.3, for all j = 0, ©;(f) may

400

be written uniquely as

n
(4.32) ~ ' Q;(t) = Zf‘DiHe:(t)’
where DieI,. Set .
(4.33) B, = S‘Afpz;.
=0 .

Since limA; = 0 -and |D} <1, (4.33) converges to an element of I,.
Moreozr—(;;: “}HnB = 0, for, given any integer k=0, let » be such thatb

o0

|4;] < B if § > ». Let ¢ > max{ny, ..., #_,}. Then Di=01if j<r and
S0 1B1;| '-<.. bk
I k > 0, let 7 be such that |4,] < b* for § =+ and

(4.34) | |Z 4,9,(0—f0|< v

for szr. If nz ma.x{nﬂ,. .y m,}, then

(4.35) |2 B H,(t)— ZAjQ,(t)| = 2 21) H, (t)|

U= 1 V=

Then (4.34) and (4.35) yield (4.30).
Moreover, {B,}, as defined in (4.33), is the only nu_ll sequence in I,

for which (4.30) holds. For suppose that

(4.36) I = Tmma
. i= 0
where limC; = 0. For all 4 = 0, write
{00
i
(4.37) | mm=2ﬁ%w

7=
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where Hiel,. A repetition of the preceding argument yields
(4.38) o =D QY o.u
i=o i=0
By Theorem 4.4, however,
i o«
(4.39) . Z Cilly = 4;  (j=0),
where 4, is defined by (4.25). Since {C;} and {4,} are null sequences,
the equations (4.39) may be written matrically,
(4.40) MO = A,
where ¢ and A are the infinite column vectors [(,, 01, JF and
[Ag, 4, ...]" and M is the column-finite matrix [m,,], Where

(4.41) my =H, (r,s320),

and B is defined by (4.39).
Using (4.82) and (4.37) the matrix M may be seen to possess the two-
sided inverse @ = [q,,], where

(4.42) G = D) (r,8320),

and D is defined by (4.32). Hence the relation (4. 40) determines ¢ uni-
quely, and .

" (4.48) ' =B, =2A,D?

We stress that Theovem 4.5 asserts the uniqueness of the coefficients
B; on the assumpfion that {B;} is null. The ungualified uniqueness of
these coefficients (which we have been able to prove only in special cases)
is equivalent. to the assertion that a series

(4.44) ZGiHl(t)
i=0

converges uniformly on I, only it {G;} is null.
5. Apphcatlons. Define the sequence of polynomlals y,.{f) over
GF[g, #] by

(5.1) on@ = [ t—m), w0 =,

degm<s

where the product in (5.1) extends over all polynomials meGF[g,m]
{including 0) having degree < r. It follows [3] that

(5.2) wf(lt) :i’( 1y [ ]ig‘ . i
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where

¥ r, A |
&5 (- =7 [1-»

‘and

B o= =1 1, By =1,
(5.4) L = (=11 [1], L, =1,
[#] = a¥ —@. .

Let K be any extension field of GF(q, ). By (5.2), the functions
associated to the polynomials v, (?) are linear operators on the GF (g)-vector
space K. Furthermore, w,(a") = p,(m) = F,, for m monic of degree 7,
so that I, is the product of all monic polynomials in GF[q, ] of degree 7,
On the other hand, L, may be seen to be the le.m. of all polynomials
in GF[g, 2] of degree + [2]. ‘

Following Carlitz (4], we define ¢,<GF[q, #], and polynomials G, (1),
G (t) over GF [g, ]. Let & be a positive integer, and write '

(5.5) ko= et+eqt...+od (0<e<g).
Define g, by '
(5.6) g = B FS g =1,
and G, (1) and G;{I) by '
(5.7) @ (l) = p(t) .. p(t), Go(t) =1
and
. 3 .
(5.8) Gy = [ @a0,
i=0
where
e(t for 0e<qg—-1
(5.9) dm =" e
, pi(t)—F; for e =¢q—1."

Let K be any extension field of GF(q, #). Since deg@,(t) = deg G ()
= n, the sequences {@,(f)/¢,} and {Gr(t)]g,} ave ordered bases of the
K-vector space K[t]. Indeed, for any f(f)<K[f] of degree << n, We have
[4] the unique representations ‘

12

: : ¢, ()
5.10 H= a2
(5.10) HO %_1%
and ‘

5 LG
(5.11) f@) =2A¢ ;:),

1=
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where A, is uniquely determined by chooging any 7 such that i < q,
and sebting

' G G*'”—-l—i
paz a— (1 ) I g (mearlg, a)),

L -
degm=<r gq 1-1

and A} is uniquely determined by choosing any # such that » < ¢", and
setting ‘

- » G _..L(_m) .
(5.13)  Af=(-1) Y LR fm) - (meGRIg, o).
degm<r Yot -1~ :
Note the difference between the defining conditions for » in (5.12) and

(6.13). -
An important property of the polynomials G;(t)/g; and G (1)/g; is
the fact that for all m < GF[g, @], G;(m)/g;<GF [g, =] and 6] (m)/g;<GF g, #]
[4]. With (5.12) and (5.13), this implies that {G,(1)]g:} and {GF ()9}
are, in fact, ordered bases of the GF[q, #]-module of polynomials over
GF(q, ») that map GF[g, 2] nto itgelf. _ : ‘

Moreover, since GF[g, @] is dense in I, and the polynomials G (f)/g;
and G} (t)}/g; ave, by an earlier observation, continuous functions, it follows
that ael, implies that @;{a)/g; and G (a}/g;el,. With (5.12) and (5.13)
this implies that {G;(t)/g,} and {Gi(t)]g;} ave ordered bases of the
1,-module of polynomials over F, that map I, into itself.

Hence, by Theorem 4.5, for every continuous function f: I, — I,
there exist null sequences {B;} and {B;} in I, such that :

_ 1., Gilt
(5.14) F( gﬂ P
and

- o1, G ()
5.15 - fl) = E B ,
(5.15) f(t) 2 iy

where (5.14) and (5.15) converge uniformly on I,.
The coefficients B; in (5.14) are uniquely determined by f. For if n
is any positive integer, the finite sum

gt—1
(5.16) s, G;(.t)

" ig the unique polynomial of degree < ¢"—1 which takes the same values
as f on the sef of all polynomials in GF[q, #] of degree < m. Hence,
by (5.12),

(5.17) B; =(—1Y

“degm<r

G pony (i< ).
For'—1-4
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The question of the unconditional uniqueness of the coetficients Bj
remains open. : :
. Interpolation series of the type which appears in (5.14) may be used
o characterize continuous linear operators on the GT(g)-vector space I,..
TagoreM 5.1, Let f: I, — I, be continuous. If the (unique) interpolation
series for f comstructed from the Carlitz polynomials is given by

00 Q.
(5.18) CEPWE
i=0 e

then f is a linear operator on the GT (q)-vector space I, if and only if A, =0
for ¢ # ¢%, where k= 0.

Proof. Sufficiency. 1f 4, =0 for ¢ # ¢, where k>0, (5.18)
becomes

(5.19) f(t) = Z Age ”’}(:) .
E=0

Since, by (5.2), the parfial sums of (8.19) are linear operators, it follows
immediately that f is a linear operator.

Necessity. We require the following identities [4]:

(5.20) . G, () = XG0 (A<GF (@),
(5.21) Gt = (3 6 ()
§=0

Let 2¢GF(g) be a primitive root of unity. Then (5.18), (5.20), and f(At)
= Af(t), yield :

(5.22) Z 24; G;(_t) - Z ;.iAi_G_fl,
i=0 e i=0 K

and so 4; =0, unless 4 == 1{modg—1).
From (5.18), (5.21), and f(i,+t) = f(¢)+ f(ts), we infer that

2 G N, Gl DGl N (i
(5.23) %‘Ai - +;Ai . —;‘ . %E(i)zifef_mz)-

Equating coefficients of G,(t,), we see that A, = 0. Equating
coefficients of G, (f,)/g; for i > 0, and subtracting A4, we.geb

' 9 {4
(5.24 | j;ﬂa(?&) 4,6 _q(t) = 0.

=]
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Hence, for all 4,j with 1 < <,

(5.25)

(o=

It follows that A; = 0 unless j = ?', where p is the characteristic of
GF(g). Since p' = l(modq 1}, we nust have p* = ¢*, where %3 0.
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