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Abstract

We study some polynomials of Carlitz as generating functions for some natural statistics on
lattice paths with diagonals. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For m; n∈N, let L(=Lm;n) be the set of all minimal lattice paths from (0; 0) to
(m; n), allowing only vertical and horizontal moves, and let �(=�m;n) be the set of
such paths, with diagonal moves allowed as well.
It is a basic result of elementary combinatorics that |L| = (m+nn ). Moreover, the

q-binomial coe�cient[
m+ n
n

]
:=
(qm+n − 1)(qm+n − q) : : : (qm+n − qn−1)
(qn − 1)(qn − q) : : : (qn − qn−1) (1)

is a generating function for L, in the sense that[
m+ n
n

]
=

mn∑
s=0

p(m; n; s)qs; (2)

where p(m; n; s) is the number of lattice paths in L subtending area s. Since such
paths may be viewed as Ferrers diagrams of partitions of the integer s, p(m; n; s) is
also the number of partitions of s with n or fewer parts and no part greater than m
[5, p. 29].
The numbers L(m; n):=|�| not only enumerate lattice paths with diagonals, but

specify the volume of a sphere of radius m in n dimensions for the Lee metric [5], and
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also the number of n-element subsets S of the set {a1; : : : ; am+n−1; b1; : : : ; bm+n} with
|i − j|¿2 for all ai; bj ∈ S [3].
The penultimate lattice point on a path in � may be either (m; n− 1), (m− 1; n); or

(m− 1; n− 1). This leads in the obvious way to a partitioning of � into three classes,
which we shall simply call ‘the usual partitioning’ on the numerous occasions below
where it is invoked. A basic consequence of this partitioning is the recurrence [2,4]

L(m; n) = L(m; n− 1) + L(m− 1; n) + L(m− 1; n− 1); m; n¿ 0; (3)

with L(m; 0) = L(0; n) = 1; m; n¿0:
Each �∈� may be represented as a word in the alphabet {x; y; d}, the three let-

ters representing, respectively, horizontal, vertical, and diagonal segments of �. This
observation leads to the formulas [1,4,5]

L(m; n) =
m∑
s=0

(
n+ s

n+ s− m; s; m− s
)
=

m∑
s=0

(
n

m− s
)(

n+ s
n

)
; (4)

and

L(m; n) =
min(m;n)∑
s=0

(
m+ n− s

n− s; m− s; s
)
=
min(m;n)∑
s=0

(
m+ n− 2s
m− s

)(
m+ n− s

s

)
; (5)

where paths in � are enumerated in (4) and (5), respectively, according to their num-
bers, s, of horizontal and diagonal segments. From (3), (4), or (5), it may easily be
proved [1] that

∑
m;n¿0

L(m; n)xmyn =
1

1− x − y − xy : (6)

In [1] Carlitz introduces a polynomial generalization A(m; n;p; q) of the numbers
L(m; n), de�ned by the initial conditions A(m; 0;p; q) = A(0; n;p; q) = 1, m; n¿0, and
the recurrence

A(m; n;p; q) =pmA(m; n− 1;p; q) + qnA(m− 1; n;p; q)
+A(m− 1; n− 1;p; q); m; n¿ 0: (7)

We shall call these polynomials the Carlitz lattice path polynomials, for reasons that
will soon be clear. Note that A(m; n; 1; 1) = L(m; n).
Carlitz makes a detailed study of these polynomials, including a number of special

cases. His analysis is, however, purely algebraic. In the next section we study these
polynomials from a combinatorial perspective, based on the observation that they are
generating functions for some obvious and natural statistics on �. In Section 3 we
extend some of our results to lattice paths with diagonals in R3.

2. Some statistics on lattice paths

Given a lattice path �∈�, let �(�) be the area (of that part of the m× n rectangle
with vertices (0; 0), (m; 0), ((m; n), and (0; n)) lying to the left of the vertical segments
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of �, let �(�) be the area lying below the horizontal segments of �, and let �(�) be
the area lying to the left of and below the diagonal segments of �. Clearly, �(�) +
�(�) + �(�) = mn. Let

Lp;q; r(m; n):=
∑
�∈�

p�(�)q�(�)r�(�): (8)

By the usual partitioning of �, it follows that Lp;q; r(m; n) satis�es the recurrence

Lp;q; r(m; n) =pmLp;q; r(m; n− 1) + qnLp;q; r(m− 1; n)
+rm+n−1Lp;q; r(m− 1; n− 1); m; n¿ 0; (9)

with Lp;q; r(m; 0) = Lp;q; r(0; n) = 1, m; n¿0. Comparing (9) with (7) we see that the
polynomial A(m; n;p; q) is a special case of Lp;q; r(m; n), namely,

A(m; n;p; q) = Lp;q;1(m; n) =
∑
�∈�

p�(�)q�(�); (10)

which endows the coe�cients of A(m; n;p; q) with a salient combinatorial inter-
pretation.
Of course by (2) we have

L1; q;0(m; n) =
∑
�∈�

q�(�)0�(�) =
∑
�∈L

q�(�)

=
[
m+ n
n

]
; (11)

so both the q-binomial coe�cients and the polynomials A(m; n;p; q) are special cases of
Lp;q; r(m; n). It should be noted, however, that Lp;q; r(m; n) is simply the homogenization
of A(m; n;p; q), i.e., Lp;q; r(m; n)=rmnA(m; n;p=r; q=r). We shall �nd it more convenient
to work with Lp;q; r(m; n) than with A(m; n;p; q), but the two polynomials contain
exactly the same information.
We now consider two special cases of the above, namely, generating functions for

the statistics � and �. First, let

A1(m; n):=L1; q;1(m; n) =
∑
�∈�

q�(�) =
mn∑
t=0

a1(m; n; t)qt; (12)

where the coe�cients a1(m; n; t) have the obvious combinatorial interpretation. By the
usual partitioning of �, we get the recurrence

A1(m; n) = A1(m; n− 1) + qnA1(m− 1; n) + A1(m− 1; n− 1); m; n¿ 0: (13)

To determine the coe�cients a1(m; n; t), suppose that the lattice path � contains ex-
actly s horizontal segments, so that � is represented by a word w1w2 : : : wn+s comprising
s x’s, m−s d’s and n+s−my’s. If wi1 =wi2 =· · ·=wis=x, where 16i1¡i2¡ · · ·¡is6
n+ s, then clearly

�(�) =
s∑
j=1

(ij − j): (14)
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Thus to construct those �∈� containing exactly s horizontal segments, and such that
�(�)=t, it su�ces (with i′j:=ij−j) to choose 06i′16i′26 · · ·6i′s6n with i′1+· · ·+i′s=t,
which can be done in p(n; s; t) ways, and then to distribute the m−s d’s and n+s−my’s
among the remaining positions in w1w2 : : : wn+s. Hence

a1(m; n; t) =
m∑
s=0

(
n

m− s
)
p(n; s; t): (15)

It follows from (12), (15), and (2) that

A1(m; n) =
m∑
s=0

(
n

m− s
)[

n+ s
n

]
: (16)

Note that, as one might expect, (16) reduces when q= 1 to formula (4) for L(m; n).
Finally, with (z)s:=(1− z)(1− qz) · · · (1− qs−1z), it follows from (2) that

∑
n¿0

[
n+ s
n

]
zn =

1
(z)s+1

: (17)

From (16) and (17), it is straightforward to show that

∑
m;n¿0

A1(m; n)xmyn =
∑
s¿0

xs

(xy + y)s+1
; (18)

which of course reduces to (6) when q= 1.
Next, let

A∗(m; n) :=L1;1; q(m; n) =
∑
�∈�

q�(�) =
mn∑
t=0

a∗(m; n; t)qt; (19)

where the coe�cients a∗(m; n; t) have the obvious combinatorial interpretation. From
the usual partitioning of � we get the recurrence

A∗(m; n) = A∗(m; n− 1) + A∗(m− 1; n) + qm+n−1A∗(m− 1; n− 1);
m; n¿ 0: (20)

To determine the coe�cients a∗(m; n; t), suppose that the lattice path � contains
exactly s diagonal moves, so that � is represented by a word w1w2 : : : wm+n−s comprising
s d’s, n− sy’s, and m− s x’s. If wi1 =wi2 = · · ·=wis =d, where 16i1¡i2¡ · · ·¡is6
m+ n− s, then it is easy to see that

�(�) =
s∑
j=1

(ij + j − 1): (21)

Thus, to construct those �∈� containing exactly s diagonal segments and such that
�(�)= t, we must �rst choose 16i1¡i2¡ · · ·¡is6m+ n− s with i1 + i2 + · · ·+ is=
t− ( s2 ). With i′j:=ij − j, this is equivalent to choosing 06i′16i′26 · · ·6i′s6m+ n− 2s
such that i′1 + · · · + i′s = t − s2, which can be done in p(m + n − 2s; s; t − s2) ways.



C.G. Wagner /Discrete Mathematics 222 (2000) 291–298 295

Next we must distribute the n− sy’s and m− s x’s among the remaining positions in
w1 : : : wm+n−s. Summing over all possible values of s then yields the formula

a∗(m; n; t) =
min(m;n)∑
s=0

(
m+ n− 2s
m− s

)
p(m+ n− 2s; s; t − s2): (22)

By (19), (22), and (2), it follows that

A∗(m; n) =
min(m;n)∑
s=0

(
m+ n− 2s
m− s

)[
m+ n− s

s

]
qs

2
(23)

and from (23) and (17) that

∑
m;n¿0

A∗(m; n)xmyn =
∑
s¿0

(xy)sqs
2

(x + y)s+1
: (24)

Of course, when q= 1, (23) reduces to (5) and (24) reduces to (6).
Readers may wish to compare Carlitz’s algebraic treatment [1] of the polynomials

A1(m; n) and A∗(m; n), which proceeds from recurrence to generating function to closed
form. His paper also includes a treatment of the polynomial A(m; n):=Lq;q;1(m; n).
Since A(m; n) is the reciprocal polynomial of A∗(m; n), its properties are easily derived
from (22)–(24).

3. Lattice paths in R 3

For m; n; r ∈N, let Lm;n; r be the set of all minimal lattice paths from (0; 0; 0) to
(m; n; r), allowing only moves parallel to the x-, y-, and z-axes. Clearly, |Lm;n; r| =
(m+n+rm;n;r ). Let �m;n; r be the set of such paths, with diagonal moves from a lattice point
(a; b; c) to (a+ 1; b+ 1; c + 1) allowed as well, and let L(m; n; r):=|�m;n; r|.
Partitioning �m;n; r according to the four possible penultimate lattice points on a path

�∈�m;n; r leads to the recurrence
L(m; n; r) = L(m; n; r − 1) + L(m; n− 1; r)

+L(m− 1; n; r) + L(m− 1; n− 1; r − 1); m; n; r ¿ 0 (25)

with L(m; n; 0)=(m+nn ), L(m; 0; r)=(
m+r
r ), and L(0; n; r)=(

n+r
n ), m; n; r¿0. Enumerating

paths by their number, s, of diagonal segments yields the formula

L(m; n; r) =
min(m;n;r)∑
s=0

(
m+ n+ r − 2s

m− s; n− s; r − s; s
)
: (26)

Among a number of interesting statistics on �m;n; r , we shall investigate just one, a
three-dimensional analogue of the statistic � (see Section 2 above), which we will de-
note by the same symbol in what follows. In calculating �(�) for �∈�m;n we summed
the areas of all the L-shaped pieces extending from the squares traversed by the diago-
nal segments of �, as illustrated above in Fig. 1 for the square traversed by a diagonal
segment from (a− 1; b− 1) to (a; b).
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Fig. 1.

Fig. 2.

In calculating �(�) for �∈�m;n; r we sum the volumes of all the ‘tripods’ extend-
ing from the cubes traversed by the diagonal segments of �, as illustrated above in
Fig. 2 for the cube traversed by a diagonal segment from (a − 1; b − 1; c − 1) to
(a; b; c).
Let

A∗(m; n; r) :=
∑

�∈�m; n;r
q�(�) =

∑
t¿0

a∗(m; n; r; t)qt : (27)

The natural partitioning of �m;n; r leads to the recurrence

A∗(m; n; r) = A∗(m; n; r − 1) + A∗(m; n− 1; r) + A∗(m− 1; n; r)
+qm+n+r−2A∗(m− 1; n− 1; r − 1); m; n; r ¿ 0 (28)
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with

A∗(m; n; 0) =
(
m+ n
n

)
; A∗(m; 0; r) =

(
m+ r
r

)

and

A∗(0; n; r) =
(
n+ r
r

)
; m; n; r¿0:

To get an explicit formula for a∗(m; n; r; t), we represent paths �∈�m;n; r as words in
the alphabet {x; y; z; d} in the obvious way. Suppose that � contains exactly s diagonal
segments, so that � is represented by a word w1w2 : : : wm+n+r−2s comprising s d’s,
m−s x’s, n−sy’s, and r−s z’s. If wi1 =wi2 =· · ·=wis=d, where 16i1¡i2¡ · · ·¡is6
m+ n+ r − 2s, then

�(�) =
s∑
j=1

ij + 2(j − 1) = 2
( s
2

)
+

s∑
j=1

ij; (29)

for the volume of the tripod extending from the cube traversed by the jth diago-
nal segment of � is ij + 2(j − 1), by the following argument: Among the symbols
w1; w2; : : : ; wij−1, there are (j−1)d’s. If there are u x’s and vy’s among these symbols,
there are ij − j − u − v z’s. So this jth diagonal segment connects the lattice point
(u+ j−1; v+ j−1; ij−u− v−1) to the lattice point (u+ j; v+ j; ij−u− v), and so the
volume of the tripod in question is (u+ j) + (v+ j) + (ij − u− v)− 2 = ij + 2(j− 1).
Thus, to construct those �∈�m;n; r containing exactly s diagonal segments, and such

that �(�)= t, we must �rst (with i′j:=ij− j) choose 06i′16i′26 · · ·6i′s6m+n+ r−3s
such that i′1 + · · · + i′s = t − 2( s2 ) − ( s+12 ) = t − s(3s − 1)=2, which can be done in
p(m + n + r − 3s; s; t − s(3s − 1)=2) ways. We must then distribute the m − s x’s,
n−sy’s, and r−s z’s among the remaining m+n+r−3s positions in w1 : : : wm+n+r−3s.
Hence,

a∗(m; n; r; t)

=
min(m;n;r)∑
s=0

(
m+ n+ r − 3s
m− s; n− s; r − s

)
p(m+ n+ r − 3s; s; t − s(3s− 1)=2): (30)

It follows from (27), (30), and (2) that

A∗(m; n; r) =
min(m;n;r)∑
s=0

(
m+ n+ r − 3s
m− s; n− s; r − s

)[
m+ n+ r − 2s

s

]
qs(3s−1)=2; (31)

which it is interesting to compare to formula (23). From (31) and (17), we may derive
the generating function formula

∑
m;n;r

A∗(m; n; r)xmynzr =
∞∑
s=0

(xyz)sqs(3s−1)=2

(x + y + z)s+1
; (32)

which it is interesting to compare to formula (24).
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