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Abstract

We study some polynomials of Carlitz as generating functions for some natural statistics on
lattice paths with diagonals. (©) 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For m,neN, let X(=%,..») be the set of all minimal lattice paths from (0,0) to
(m,n), allowing only vertical and horizontal moves, and let A(=A,,,) be the set of
such paths, with diagonal moves allowed as well.

It is a basic result of elementary combinatorics that || = (
g-binomial coefficient

m+n

.). Moreover, the

_m—f—n_ .:(qurn_1)(qm+n_q).“(qm+n_qnfl) (1)
L 7] (¢"=1)q"—q)..-(¢" —¢q""")
is a generating function for %, in the sense that
-m + n- mn Rk
=20 pimns)g', )
- - s=0

where p(m,n,s) is the number of lattice paths in ¥ subtending area s. Since such
paths may be viewed as Ferrers diagrams of partitions of the integer s, p(m,n,s) is
also the number of partitions of s with n or fewer parts and no part greater than m
[5, p. 29].

The numbers L(m,n):=|A| not only enumerate lattice paths with diagonals, but
specify the volume of a sphere of radius m in n dimensions for the Lee metric [5], and
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also the number of n-element subsets S of the set {ai,...,dmin—1,b15..., Dyin} With
li —j| =2 for all a;,b; €S [3].

The penultimate lattice point on a path in 4 may be either (m,n — 1), (m —1,n), or
(m—1,n—1). This leads in the obvious way to a partitioning of A into three classes,
which we shall simply call ‘the usual partitioning’ on the numerous occasions below
where it is invoked. A basic consequence of this partitioning is the recurrence [2,4]

L(m,n)y=Lmn—1)+L(m—1L,n)+L(m—1,n—1), mn>0, 3)

with L(m,0) = L(0,n) =1,m,n>=0.

Each 1€ A may be represented as a word in the alphabet {x,y,d}, the three let-
ters representing, respectively, horizontal, vertical, and diagonal segments of A. This
observation leads to the formulas [1,4,5]

“ n+s - n n—+s
L(m’n)_z<n+s—m,s,m—s>:Z<m—s>( n )’ “)

s=0 s=0
and
L ) mignfn) m+n—s mig’fn) m+n—2s m-+n—s (5)
m’n = = .
p_—ry n—s,m-—s,s gt m—s N

where paths in A are enumerated in (4) and (5), respectively, according to their num-
bers, s, of horizontal and diagonal segments. From (3), (4), or (5), it may easily be
proved [1] that

Z L(m,n)x"y" =

m,n=0

1

T (6)
—X—y—xy

In [1] Carlitz introduces a polynomial generalization A(m,n; p,q) of the numbers
L(m,n), defined by the initial conditions A(m,0; p,q) = A(0,n; p,q) =1, m,n>=0, and
the recurrence

A(m,n; p,q) = p"A(m,n — 1; p,q) + ¢"A(m — 1,n; p,q)
+A(m—1,n—1;p,q), mmn>0. (7

We shall call these polynomials the Carlitz lattice path polynomials, for reasons that
will soon be clear. Note that A(m,n;1,1) = L(m,n).

Carlitz makes a detailed study of these polynomials, including a number of special
cases. His analysis is, however, purely algebraic. In the next section we study these
polynomials from a combinatorial perspective, based on the observation that they are
generating functions for some obvious and natural statistics on 4. In Section 3 we
extend some of our results to lattice paths with diagonals in R>.

2. Some statistics on lattice paths

Given a lattice path 1€ A, let a(4) be the area (of that part of the m x n rectangle
with vertices (0,0), (m,0), ((m,n), and (0,n)) lying to the left of the vertical segments
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of 4, let f(4) be the area lying below the horizontal segments of 2, and let d(1) be
the area lying to the left of and below the diagonal segments of A. Clearly, a(4) +
B(2) + 0(A) = mn. Let
Ly gr(mn)= Z pa(i)qﬁ(i)ré(i). (8)
reA
By the usual partitioning of A, it follows that L, , .(m,n) satisfies the recurrence

Lp,q,r(myn) = mep,q,r(ma n— 1) + anp,q,r(m - 1,}'1)
"L (m—1,n—1), m,n>0, 9)

with L, (m,0) =L, ,(0,n)=1, m,n=0. Comparing (9) with (7) we see that the
polynomial A(m,n; p,q) is a special case of L, .(m,n), namely,

A(m,n; p,q) = Lp,q,l(M,ﬂ) _ Z pz(i.)qﬁ(i.)’ (10)
lea
which endows the coefficients of A(m,n; p,q) with a salient combinatorial inter-
pretation.
Of course by (2) we have

Ligomm =Y ¢ 0% = 37 g
LE€EA LEZL

_{m+n}’ (11

n

so both the g-binomial coefficients and the polynomials A(m, n; p,q) are special cases of
L, q-(m,n). It should be noted, however, that L, , .(m,n) is simply the homogenization
of A(m,n; p,q), i.e., Ly, 4 (m,n)=r""A(m,n; p/r,q/r). We shall find it more convenient
to work with L, ,.(m,n) than with A(m,n; p,q), but the two polynomials contain
exactly the same information.
We now consider two special cases of the above, namely, generating functions for
the statistics § and J. First, let
mn
Ay(mny=Liga(m.n) = ¢"V =3 " ai(mn.ny, (12)
reA t=0
where the coefficients a;(m,n,t) have the obvious combinatorial interpretation. By the
usual partitioning of A, we get the recurrence

Ay(m,n) =Ay(m,n — 1)+ q"4;(m — 1,n)+Ay(m—1,n—1), mn>0. (13)

To determine the coefficients ai(m,n,t), suppose that the lattice path / contains ex-
actly s horizontal segments, so that 4 is represented by a word wywy, ... w, ., comprising
sx’s, m—sd’s and n+s—my’s. If w, =w;,=---=w; =x, where 1 <ij <ip <--+ <i;<
n + s, then clearly

s
BGY =G — ). (14)

J=1
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Thus to construct those 4 € A containing exactly s horizontal segments, and such that
B(2)=t, it suffices (with i}:=i;—j) to choose 0 <7} <i) < - <ig<n with i +- - -+i;=¢,
which can be done in p(n,s,t) ways, and then to distribute the m—sd’s and n+s—my’s
among the remaining positions in wyw;...w, ;. Hence

m

al(m,n,t):Z (mn—s> p(n,s,t). (15)

s=0
It follows from (12), (15), and (2) that

Ammy =3 (m”_s> [”:S] (16)

s=0

Note that, as one might expect, (16) reduces when ¢ =1 to formula (4) for L(m,n).
Finally, with (z);:=(1 —z)(1 —gz)--- (1 — ¢*~'2), it follows from (2) that

n+s| , 1
Z{ n ]Z _(Z)s+1. {17

n=0

From (16) and (17), it is straightforward to show that

m.n __ x*
2 ATy =) (1

m,n=0 =0
which of course reduces to (6) when g = 1.
Next, let

mn

A*(mn) =Ly g(mn) =Y ¢"D=>"a"(m,nt)q, (19)
ieA t=0
where the coefficients a*(m,n,t) have the obvious combinatorial interpretation. From
the usual partitioning of A we get the recurrence

A*(mn)=A*(m,n — 1)+ A" (m — 1,n) +¢" " 14*(m — 1,n — 1),
m,n > 0. (20)

To determine the coefficients a*(m,n,t), suppose that the lattice path A contains
exactly s diagonal moves, so that 4 is represented by a word wyw; ... w,,.,_s comprising
sd’s,n—sy’s, and m—sx’s. If w;, =w;, =---=w; =d, where 1<i| <ip <--- <i;<
m+n —s, then it is easy to see that

s
02y =>_ (+j=1) (21)

j=1
Thus, to construct those 1€ A containing exactly s diagonal segments and such that
0(2)=t, we must first choose 1<ij <ip < - - <ig<m+n—swithij+i+ - +i;=
t—(3). With ij:=i; — j, this is equivalent to choosing 0<i} <i)< -+ <ig<m+n—2s
such that ij + --- + i, =t — s*, which can be done in p(m + n — 2s,s,t — s*) ways.
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Next we must distribute the n — s)’s and m — sx’s among the remaining positions in
Wi ... Wiin—s. Summing over all possible values of s then yields the formula

min(m,n)
-2
a*(myn,t)= Z (m—l—n S> p(m +n —2s,5,t —s°). (22)
s=0 m—=
By (19), (22), and (2), it follows that
i) m+n—2s\ |m+n—s
— — 2
A* = g 23
(m.n) zg(m_sﬂ s }q (23)
and from (23) and (17) that

Z A*(m,n)x™y" Z G 24)

m,n=0 s=0 (x+y)3+1

Of course, when g =1, (23) reduces to (5) and (24) reduces to (6).

Readers may wish to compare Carlitz’s algebraic treatment [1] of the polynomials
Ay(m,n) and A*(m,n), which proceeds from recurrence to generating function to closed
form. His paper also includes a treatment of the polynomial A(m,n):=L,,1(m,n).
Since A(m,n) is the reciprocal polynomial of 4*(m,n), its properties are easily derived
from (22)—(24).

3. Lattice paths in R3

For m,n,r €N, let &, ,, be the set of all minimal lattice paths from (0,0,0) to
(m,n,r), allowing only moves parallel to the x-, y-, and z-axes. Clearly, | %, ,.,| =
(mn’:::t’) Let Ay, be the set of such paths, with diagonal moves from a lattice point
(a,b,¢) to (a+ 1,b+ 1,c+ 1) allowed as well, and let L(m,n,r):=|Ap, u.r|-

Partitioning A,, , » according to the four possible penultimate lattice points on a path

A€ A, leads to the recurrence
L(m,n,r)=L(m,n,r — 1)+ L(m,n — 1,r)
+L(m — 1,n,r)+ L(m—1,n — —1), munr>0 (25)

with L(m,n,0)=( mn“’ ), L(m, 0,r)=( mr” ), and L(0,n,r)=( ":r ), m,n,r>=0. Enumerating
paths by their number, s, of diagonal segments yields the formula

min(m,n,r) Mt —2s
L(m,n,r)= Z . (26)
m

— SN — S, — 8,8
s=0

Among a number of interesting statistics on 4, ,,, we shall investigate just one, a
three-dimensional analogue of the statistic J (see Section 2 above), which we will de-
note by the same symbol in what follows. In calculating d(4) for A € A, , we summed
the areas of all the L-shaped pieces extending from the squares traversed by the diago-
nal segments of A, as illustrated above in Fig. 1 for the square traversed by a diagonal
segment from (¢ — 1,b — 1) to (a,b).
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(a,b)
(0,b-1)
(a-1,0)
Fig. 1.
(a,b,c)
(0, b-1,¢c-1)
+
+
(a-1,0,c-1) zZ|y
L | "
(a-1,b-1, 0) X

Fig. 2.

In calculating 6(4) for A€ A, ,, we sum the volumes of all the ‘tripods’ extend-
ing from the cubes traversed by the diagonal segments of /, as illustrated above in
Fig. 2 for the cube traversed by a diagonal segment from (¢ — 1,b — 1,¢ — 1) to
(a,b,c).

Let

A*(m,n,r):= Z ¢° = Z a*(m,n,r,t)q'. (27)
A€ Ay =0
The natural partitioning of 4,, ,, leads to the recurrence
A*(m,n,r)y=A"(m,n,r — 1)+ A*(m,n— 1,r)+ A*(m — 1,n,r)
+g" T2 m — Ln— 1,r — 1), m,n,r >0 (28)
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with
A*(m,n,0) = (’"*”) . A(m,0,r) = (’”)
n r

and
A*(0,n,r) = (n—i—r) , myn,r=0.
r

To get an explicit formula for a*(m,n,r,t), we represent paths A € A,, . as words in
the alphabet {x, y,z,d} in the obvious way. Suppose that 1 contains exactly s diagonal
segments, so that A is represented by a word wyw;...Wy.,1,—2s comprising sd’s,

m—sx’s, n—sy’s, and r—sz’s. If w;, =w;,=---=w; =d, where 1<i; <ip <--- <i;<
m+n+r —2s, then
o . s .
5(1)21,_,+2(11)2(2)+lej, (29)
j= j=

for the volume of the tripod extending from the cube traversed by the jth diago-
nal segment of A is i; +2(j — 1), by the following argument: Among the symbols
Wi, W, ..., Wi,—1, there are (j—1)d’s. If there are ux’s and vy’s among these symbols,
there are i; — j — u — vz’s. So this jth diagonal segment connects the lattice point
(u+j—1v+j—1,i;—u—wv—1) to the lattice point (u+ j,v+j,i; —u—v), and so the
volume of the tripod in question is (u+j)+ (W +j)+ (G —u—v)—2=i;+2(j—1).

Thus, to construct those 4 € A, ,, containing exactly s diagonal segments, and such
that (4)=¢, we must first (with i}:=i; — j) choose 0<#| <i)< -+ <ig<m+n+r—3s
such that i} + - + il =1t —2(3) — (*}') = ¢ — s(3s — 1)/2, which can be done in
p(m +n+r —3s,s5,t —s(3s — 1)/2) ways. We must then distribute the m — sx’s,
n—sy’s, and r —sz’s among the remaining m+n+r — 3s positions in wy ... Wyt p—3s-
Hence,

a*(m,n,r,t)

minr ) m-+n—+r—3s
= > pm+n+r—3s,s:—s3s—1)2). (30)

pr m—s,n—s,r—s
It follows from (27), (30), and (2) that
minm, ) m+n—+r—3s +n+r—2
A*(m,n,r) = Z ( > {m ! S] g2 (31
— m—s,n—s,r—s s

which it is interesting to compare to formula (23). From (31) and (17), we may derive
the generating function formula

* m_ n_r __ (xyz)s 5(33 1)/2
> AT (mon " y'z _Z Era— (32)

m,n,r

which it is interesting to compare to formula (24).
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