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         THE PEER DISAGREEMENT PROBLEM: 
 
   You and I recognize each other as epistemic       

peers, but disagree in our probability 
assessments. How, if at all, should we revise 
our original assessments upon discovering 
this disagreement ?   Should we 

 
    1. Agree to disagree, sticking with our original    

assessments  (T.Kelly, et al ) ;  or 
 
    2. Revise our original assessments in a way   

that accords those assessments “equal 
weight” (A. Elga, D. Christensen, et al ). This 
has typically been interpreted to mean that we 
should revise our priors p1 and p2 to their 
arithmetic mean p := ½ (p1 + p2).  

 
●  But p, so defined, may fail to preserve 
instances of independence common to p1 

    and p2. 
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     ●   And theorems of Wagner and Genest  
establish that, for a broad class of probability 
pooling methods, only dictatorial pooling is 
compatible with universal preservation of 
independence.  

 
● Shogenji (2007) has cited the above as a   
possible “conundrum” for the equal weight 
view. 

 
     I don’t agree that these theorems have such 

dire consequences, and I aim in this talk to 
show how to preserve epistemically 
significant cases of independence in several 
ways that are true to the spirit of the equal 
weight view. 

 
      Probability Pooling Theory – A Quick        
        Survey 
 
     S = a countable set of possible states of the 
            world. 
 
     Δ = the set of all probability distributions on S. 
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      Δn = { (p1,…, pn) : each pi ε Δ }.  
 

Each (p1,…, pn) ε Δn  is a profile of the           
distributions assessed by n individuals. 
 
A pooling operator is any function T: Δn→ Δ. 

     Each pooling operator furnishes a method of 
reconciling the distributions p1,…, pn, 
replacing them by the “consensual” 
distribution  T(p1,…, pn). 

 
  Probability pooling theory has been modeled   

on axiomatic social choice theory, as 
conceived by Arrow and Black.  Typical 
pooling axioms have included: 

 
                                                                   
Irrelevance of Alternatives (IA): For each s ε S 

 
   there exists a function fs : [0,1]n → [0,1] such 
 
   that for all (p1,…, pn) ε Δn, 
 
      T(p1,…, pn)(s) = fs(p1(s),…, pn(s)). 
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     Remark.  It is implicit in IA that for all          
     (p1,…, pn) ε Δn,   ∑s  fs(p1(s),…, pn(s)) = 1, 
 
     with no normalization. 
 
 
     Zero Preservation (ZP): For each s ε S and all 
 
     (p1,…, pn) ε Δn,  if p1(s) = … = pn(s) = 0, then 
 
     T(p1,…, pn)(s) = 0. 
 

 Universal Independence Preservation (UIP): 
 
     For all (p1,…, pn) ε Δn, and for all subsets E          

and  F of S, if pi(E∩F) = pi(E) pi(F) for i=1,…,n 
then 

 
     T(p1,…, pn)( E∩F) = 
                                 
               T(p1,…, pn)( E) T(p1,…, pn)(F). 
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Theorem 1 (L&W 1983).   If  |S| ≥ 3, 
      a pooling operator satisfies  IA, ZP, and UIP 
      if and only if it is dictatorial ,i.e., there exists   
      a  d ε {1,…,n}  such that, for all  
      (p1,…, pn) ε   Δn, T(p1,…, pn) = pd.  
 
      Theorem 2 (Wagner 1984).  If  |S| ≥ 3, 
      a pooling operator satisfies  IA and UIP 
      if and only if it is dictatorial or imposed   

(specifically, there exists an s* in S, such 
that, for all (p1,…, pn) ε Δn,   

      T(p1,…, pn)(s) = δs,s*. 
 

Suppose that ZP is deleted and IA is   
weakened  to  

   
Normalized Pooling (NP): For each s ε S 
there exists a function fs : [0,1]n → [0,1] such 
that for all (p1,…, pn) ε Δn,   

 
      T(p1,…, pn)(s) = 
                       
         fs(p1(s),…, pn(s)) /  ∑s  fs(p1(s),…, pn(s)). 
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     In what follows, we restrict consideration to   
probability distributions P that assign a strictly 
positive probability to each  s ε S. 

 
Case 1. If |S| = 3, independence is trivially 
preserved, since events E and F cannot be 
independent with respect to a strictly positive 

     distribution P unless one of E or F is equal to   
     S or to the empty set. 
 
     Case 2.  |S| = 4 
 
     Theorem 3 (Abou-Zaid 1984; Sundberg and   

Wagner 1987). Suppose that |S| = 4, the 
pooling operator T is restricted to strictly 
positive distributions on S, and T satisfies 
NP, with at least one of the functions  fs being 
Lebesgue measurable. Then T satisfies UIP if 
and only if there exist real constants  a1,…, an  
and  b1,…, bn  such that  T(p1,…, pn)(s) is 
proportional to 

 
              Π     [Pi(s)]bi exp {aiPi(s)[1 - Pi(s)]}. 
         1 ≤ i ≤ n 
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Theorem 4 (Genest and Wagner 1987). 
      If |S| ≥ 5, a pooling operator satisfies NP and 

UIP if and only if it is dictatorial. 
 

Why the G-W  theorem is no problem for 
the equal weight view: 

 
     1. Requiring that pooling preserve every 

single  instance of independence is 
unwarranted, since there are clearly cases of 
independence having no epistemic 
significance  (e.g., the independence of the 
events “fair die comes up even” and  “fair die 
comes up a multiple of 3.”) 

 
     2. In the epistemic peer problem we are 

simply trying to reconcile two particular 
probability distributions, not provide a method 
of reconciling every conceivable profile of 
distributions. Our task is more properly 
conceived of as an analogue of the (single 
profile) social choice theory of Bergson and 
Samuelson than as an analogue of the     
(multi-profile) theory of Black and Arrow. 
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     3. Arithmetic (and, more generally, quasi-
arithmetic) means hardly exhaust the ways of 
according  distributions  p1 and p2  equal 
weight.  For example,…….. 

                                                                       
     ●   Jehle (2007) has suggested that a 

distribution p that is equidistant from p1 and 
p2 in the Euclidean (or some other) metric can     
reasonably be thought of as giving equal 
weight to p1 and p2.  

 
     Question: Suppose that events E and F are  

independent with respect to p1 and p2. Does 
there always exist a probability distribution p 
equidistant from p1 and p2 that preserves this 
independence? 

 
     Answer (Shattuck and Wagner 2008):  Yes, 

as long as E∩F, E∩Fc, and Ec∩F are all 
nonempty. This holds for the Euclidean 
metric 
       d(p1, p2) = (∑s (p1(s) – p2(s))2)1/2, 
 
 as well as any metric inducing a coarser       
topology than the Euclidean metric.  But, … 
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● The proof is non-constructive if  |S| ≥ 4. 
 
     ● The common distance from  p  to p1 and p2 
     may exceed the distance between p1 and p2. 
 

● It is doubtful that the result is true for the   
independence of more than two events, or for 
more than two epistemic peers. 

 
     Constructive Approaches to the        

Preservation of Independence: 
 
     Example 1.  Independent Random Variables. 
 
     You and I agree that the outcomes of two 

tosses of a coin are independent, but you 
think that the probability of heads is ¼ and I 
think it is ½. So your distribution over S = {hh, 
ht, th, tt} is (1/16, 3/16, 3/16, 9/16) and mine 
is (1/4,1/4,1/4,1/4). The fact that the 
arithmetic mean of these distributions fails to 
preserve the independence of “h on the 1st 
toss” and “h on the 2nd toss” is simply a red 
herring….. 
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     To reconcile our different assessments under 

equal weighting, we should clearly first 
reconcile our different estimates of the 
probability of heads by taking the arithmetic  
(or some other) mean of ¼ and ½, and then 
exploit our agreed-upon independence to 
construct a distribution over S.  Agreed-upon 
independence of random variables X1, X2,… 
can always be preserved in this way if our 
disagreement is about the values of the 
defining parameters of these random 
variables. 

 
     Example 2.  Independent Partitions of  S. 
 
     A partition of S is a set of nonempty, pairwise  

disjoint subsets of S, with union equal to S. 
 

Partitions  E and  F are independent with 
respect to the probability distribution p if, for 
all E ε E and all F ε F,  p(E∩F) = p(E) p(F).  
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This definition extends in the obvious way to 
any finite family  E, F, G, etc. of partitions, 
and probabilistic independence is best 
conceptualized in terms of partitions… 

                                                                      
 For example, 

 
● The so-called total independence of a   
family {E1,…, En} of events is equivalent to 
the  independence of the partitions  
                                               

           E1 = { E1, E1
c},…, En = { En, En

c}. 
 

●  The events E and F are independent if and  
          only if the partitions  E = {E,Ec}  and  
          F = {F,Fc}  are independent. 
 

Suppose that E = {E,Ec} and F = {F,Fc} are  
independent with respect to your distribution 
p1 as well as my distribution p2. 

 
     Here is a way to construct a distribution q 
that preserves this independence, and is true 
to the spirit of the equal weight view: 
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1. Let p := ½(p1 + p2). 

 
     2.  Let     μE∩F : = p(E) p(F) 
  
                    μE∩Fc : = p(E) p(Fc) 
 

               μE
c
∩F : = p(Ec) p(F) 

 
               μE

c
∩F

c: = p(Ec) p(Fc) 
 
     3. Revise p to q by Jeffrey conditionalization  
         on the partition { E∩F, E∩Fc, Ec∩F, Ec∩Fc }, 
         with  
                   (i) q(E∩F) = μE∩F 
 
                  (ii) q(E∩Fc) = μE∩Fc, 
  
                 (iii) q(Ec∩F) = μE

c
∩F, and 

  
                 (iv) q(Ec∩Fc) = μE

c
∩F

c.  
 
         It is easy to check that the partitions 
         E = {E,Ec} and F = {F,Fc} are independent  
         with respect to q. 
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     4. The probability distribution q is the closest  
          distribution to the arithmetic mean p of our  
          priors p1 and p2 that satisfies (i) – (iv)   
          above (and thus preserves independence  
          of the partitions E = {E,Ec} and F = {F,Fc}) 
          with respect to the Kullback-Leibler  
          information number (see, e.g., Diaconis  
          Zabell, Updating subjective probability,  
         Journal of the American Statistical  
         Association 77(1982), 822-830).  
 
 
 

Concluding Remarks: 
 
     1.  I am not advocating the equal weight 

solution to the epistemic peer problem, 
simply defending it against the charge that 
equal weighting is incompatible with 
independence preservation. 
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2.  I am not endorsing arithmetic means as 
the only way to average. My aim is only to 
show that there are principled ways to 
implement the equal weight view that 
preserve epistemically significant cases of 
independence, not (at least at this stage) to 
advocate a uniquely rational way to do this. 
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