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We describe a generalization of ordinary conditionalization with particular relevance to
diagnostic problems. Current diagnostic evidence is represented by a type of lower probability,
called a belief function. This belief function is then upgraded to a probability measure by means
of an empirical probability recording past relative frequencies of the relevant diagnostic
categories.
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1. Updating versus upgrading

Conditionalization is commonly thought of as the updating of a prior probability
in the light of new evidence. In the simplest example, the prior p on X is (given
evidence which renders certain some E C X) updated to g(-)=p(- | E). Generaliza-
tions of this technique have been developed for use with less decisive sorts of
evidence (see Jeffrey, 1965). Whatever their degree of generality, however, underly-
ing all these procedures is the view that one discards the prior p in favor of a new
and improved g. While this view comports well with the idea of the truth-seeker-as-
juror (forming initial impressions, refining them in the face of new evidence), it is
deficient as a model of the truth-seeker-as-diagnostician. In what follows, we shall
argue that the latter sort of truth-seeker is best understood as combining diagnostic
evidence to construct a type of lower probability known as a belief function (see
Shafer, 1976, and Section 2 below) and then, if necessary, upgrading that belief
function to a probability measure by drawing on an empirically based probability
p that records past relative frequencies of the relevant diagnostic categories. Far
from being discarded after this procedure, p remains a valuable part of the
knowiedge base, to be drawn on as required in future diagnostic exercises.
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2. Belief functions

A belief function (see Shafer, 1976) on the finite set X'is a mapping b : 2X - [0, 1]
such that 5(@)=0, b(X)=1, and for all positive integers r and every sequence
Ag ..., A, of subsets of X

b4, U--UA4)= Y (wl)”"lb(ﬂAi). 2.1
FE {1, ot} iel
I+

In particular, b(4\)+b(A)<b(A,UA,) if A\NA,=g, and so b(A)+b(A) =<
b(X}=1. That belief functions need only be superadditive makes them attractive
measures of uncertainty, for one can honestly represent the case where one has little
evidence for or against 4 by assigning both A and 4 small (even zero) H-measures.
Every probability measure is, of course, a belief function, since (2.1) is implied by
the principle of inclusion and exclusion for probabilities. Indeed, a belief function
b is a probability measure if and only if b(A4) + b(A)=1forall AcX (see Shafer,
1976, Theorem 2.8).

Among belief functions that are not probability measures the simplest is the #rivial
belief function by, which assigns every proper subset of X belief zero (representing
the case where all one knows is that the truth lies somewhere in X ). Only slightly
more complex are the simple support functions bg. s, defined for each EC X and
s€[0,1] by bg.(A)=s if ECA+X, bg,s(X)=1, and bp.s(A)=0 otherwise.
Evidence which renders E certain (the context of classical conditionalization) is
represented by the simple support function bg. 1.

It is not entirely trivial to verify that b, and bg. s satisfy (2.1). Indeed, the direct
construction of a mapping & : 2¥ — [0, 1], and the verification that it satisfies 2.1
is in general a difficult task. This task is facilitated by the existence of a class of
auxiliary mappings m : 2X - [0, 1], called basic probability assignments (BPAs),
defined by the properties m(2)=0 and

AZXm(A) =1 2.2)

Every BPA m on X induces a belief function " by the formula:

b(A) = ¥ m(E), 2.3)
EcA

and every belief function b on X induces a BPA m® by the formula:

m®(4) = Y (-n-ElpE), (2.4)
EcA

with m® ™ =m and 5" =p (see Shafer, 1976, pp. 38—40). One can thus use
BPAS either to construct! belief functions [by (2.3)] or te verify that an uncertainty
measure b: 25 —[0,1] is a belief function [by checking that the quantities m(b)(A)

! See Shafer (1976, 1981) for a description of the sorts of introspection involved in the assessment of
BFPAs and belief functions.
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defined by (2.4) are non-negative].? In addition, BPAs provide a criterion for b to
be a probability measure, for given a belief function b, and defining the focal
elements of b to be those EC X such that m®)(E)>0, it follows that b is a pro-
bability measure if and only if each of its focal elements is a singleton (see Shafer,
1976, Theorem 2.8). ‘

In addition to arising by direct assessment (mediated or unmediated by some
BPA) belief functions also arise indirectly in the form of certain lower probabilities,
first studied by Dempster (1967). Specifically, suppose that evidence enables us to
assess on a related possibility set Y a probability mass function u, and that we
understand the relation between outcomes in Y and those in X sufficiently to define
a mapping C: Y — 2%~ {}, with C(») construed as the set of outcomes in X not
precluded by the outcome ye Y.? It follows that the mapping by, c: 2X-1[0,1],
defined by

bycE)= ) u(y), (2.5)
yeY:
C(y)cE

is a belief function on X, since the mapping my,. c: 2X [0, 1], defined by

my,. c(E)=Y u(y), (2.6)
yet:
CH)=E

is clearly a BPA, and b, o=b"=9), as defined by (2.3). As one would expect, b,. ¢
is a probability measure precisely when C(y) is a singleton for every y e Y (so that,
in essence, C is an X-valued random variable). Since any way of assigning a pro-
bability measure to a set £C X should render E at least as probable as the set of
outcomes in Y that preclude all outcomes outside E, it follows from (2.5) that any
probability measure g subsequently materializing on X ought to be bounded below
by b,. . For this reason, the mapping b,. c may be thought of as a type of lower
probability.

3. Upgrading belief functions to probability measures
The lower probabilities furnished by the values of a belief function b may well

2 One need not check that these quantities sum to one. They always do, since

L mPa)=Y ¥ (-)4-ElpE)

AcXx AcX EcA

=Y b(E) L (-pAEl
EcX X2A2E

El /| x—E
= Y b(E) Y, (I |)(—1)k: Y B(E)-0+b(X)=1.
EcX k=0 k ECX

3 We assume that no ye Y precludes every x € X, in the interests of simplicity. Dempster (1967) actual-
ly deals with the more general case of C: ¥ — 2%, As anyone who has been told by a physician, ‘I can
tell you what it isn’t’, knows, the specification of C functions is a common diagnostic exercise.
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suffice for decision-making purposes. Suppose, however, that it is desirablie to at-
tain the more precise assessments of uncertainty furnished by a probability measure.
In general, there will be an infinite number of probability measures g on X compati-
ble with b in the sense that g(E)= b(E) for all EC X. Let us denote by P(X; b) the
set of all such compatible probability measures. The set P(X; b) is convex (i.e. clos-
ed under weighted arithmetic averaging of any finite set of its members) and, unless
b is itself a probability measure [in which case P(X;b)= {b}], infinite.* The
members of P(X; b) may be characterized quite concretely: they are simply all of
the probability measures which arise by allocating, in all possible ways, the
associated BPA values m”(E) among the individual elements of E, for each EC X.

Theorem. Let b be a belief function on X, with associated BPA m® defined by
(2.4). A probability measure q on X is compatible with b if and only if, for every
EC X, there exists a function sg: X — [0, 1], with sg(x)=0 if x¢ E ard L, Se(¥)=
mE), such that for all xe X:

qx) = Y sz(). G.1)
EcX

Proof. Dempster (1967) has established this result for belief functions of the types
defined by formula (2.5). But every belief function b on X arises, abstractly, in such
a fashion. For given a belief function b on X, let Y={ECX: mP(E)>0}, let
u(E)=m®(E) for all E€ Y, and let C: Y »2¥X—{@} by C(E)=E. Clearly, m® =
my. ¢, as defined by (2.6), and so b=15,, -, as defined by (2.5). Hence the theorem
holds for all belief functions.

There is an instructive equivalent formulation of (3.1), based on the observation
that one can ignore those E for which m®(E)=0, and on the additivity of g,
namely that for all 4 C X:

gA)= Y Y sg(), (3.2)
Eed& xeA
where
& ={EcX: mOE)> 0}, (3.3)

the family of focal elements of 5.

Choosing from P(X; b) a particular probability measure ¢ to which to upgrade
b amounts, as we have seen, to choosing a family {s;: Fe &} of allocation func-
tions indexed on the focal elements of b. The variety of upgrading problems and
the differing amounts of supplementary information that might be available make
it doubtful that any universal strategy for choosing such a family can be defended.

4 That P(X; b) is infinite when b is not a probability measure follows from the aforementioned fact
that in such a case there exists at least one nonsingleton E such that m®)(£)>0, and from the theorem
below.
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We wish to mention, however, a strategy with what we believe to be fairly broad
applicability. This strategy depends on the availability of an empirically based prob-
ability p on X (not an unrealistic assumption in many diagnostic contexts) and
defines the relevant allocation functions sg by

sg(x) = p({x} | E)ym“XE),’ (3.4)

for each Eeé&. With this proportional-to-p allocation, formula (3.2) takes the
elegant form:

q(A) =EE£ m"(E)p(A | E). (3.5)

To adopt (3.4), and hence (3.5), is to judge that our diagnostic evidence is exhausted
in the assessment of b (equivalently, m®) and that, otherwise, the uncertainty
assessments based on relative frequencies of past diagnoses are reasonably assumed
to remain operative. [See Wagner, 1989, for further discussion of this issue, in-
cluding a specification of conditions entailing (3.4) when b is of the form (2.5).]

We remark that when the members of the set of focal elements & are pairwise dis-
joint, then g(E) =m®(E)=b(E) for all Ec& and so (3.5) vields:

q(A)= Y q(E)p(4|E), (3.6)
Eeé
a well known conditionalization rule first explored by Jeffrey (1965).

Example. The microwave communication system. In a certain microwave com-
municatior. system,® alarm evidence of uncertain quality is to be used to assess the
mutually exclusive, exhaustive possibilities of a station problem (s), a transmitter
problem (z), a receiver problem (), or a false alarm (f). Of relevance to the set
X={st,r,f} of possible diagnoses is the set Y={(a,ay,a5,a,)}: ¢,=0 or 1, and
a,a; =0}, with a given quadruple in Y indicating the presence (z;=1) cr absence
(a¢;=0) of each of four alarm-based conditions i=1, 2, 3, and 4, conditions 2 and
3 being, as a matter of definition, incompatible. The mapping C: Y —2%— {&},
given by Table 1, associates to each quadruple in Y the set of diagnoses not pre-
cluded by the pattern of alarm-based conditions defined by that quadruple.

Completely trustworthy alarm evidence would establish with certainty a single
quadruple y; from the list in Table 1, which would in turn induce on X the simple
support function bey,),; described in Section 2. In practice, however, alarm
evidence is unlikely to be so reliable. In particular, the trustworthiness of an alarm
may decrease as the time elapsed since the initial receipt of the alarm increases. Let
us suppose that such considerations have been taken into account in the form of a

3 It is implicit in (3.4) that p is positive on every focal element.

8 We are grateful to Tom Wiggen for furnishing us with this example. See also Goeltz, MacGregor,
Purucker, Tonn and Wiggen (1989).
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Table 1

yi=(ay, a2, a3,a4) Cly)
1 =(1,10,1) X
Y2 =(110,0) (8L 1)
Y2 =(1,0,1, 1) X
Ya=(1,0,1,0) X
»s=(1,0,0,1) X
Y6 =1(1,0,0,0) {s,/}
y7=(0,1,0,1) {t,rf}
yg=1(0,1,0,0) {t.f}
Y9=1(0,0,1,1) WriFy
le:(O’O: 130) {t,?',f}
Y11 =1(0,0,0,1) A
Y12=(G,0,0,0) {f}

probability mass function # on Y defined by u(y,)=0 for 1<i<6, u(y7)=0.010,
u(yg) =0.002, u(yy)=0.325, u(y,0)=0.080, u(y;;)=0.468, and u(y;)=0.115.

From (2.6), with 4 and C as specified above, it follows that the nonzero values
of the BPA m=m,, . are given by m(E,)=0.002, m(E,)=0.883, and m(E3y) =
0.115, where Ey={,f}, E,={t,r,f} and E;={f}. Corresponding values of the
belief function b=b,. - are easily calculated.

To upgrade b to a compatible probability g on X requires a choice of allocation
functions sg;, i=1, 2, 3, to be incorporated in formula (3.2). Let us consider an ex-
ample of such a choice, the case in which the past relative frequency p of diagnoses
in X is known, say p(s)=0.20, p(¢)=0.20, p{r)=0.35, and p(f)=0.15, and the
_ proportional-to-p allocation represented by formula (3.5) is adopted. Then, for all
ACX, q(A)=(0.002)p(A | Ey)+(0.883)p(A | E;) +(0.115)p(A4 | E;). In particular,
q(s)=0, g{t)=0.332, g(r)=0.387, and q(f)=0.281.

4. Other approaches to upgrading

We have proposed that the proper way to upgrade a belief function b to a prob-
ability measure is to make a considered choice of a family of allocation functions
{sg} and to upgrade b to the probability measure q defined, equivalently, by (3.1)
or (3.2). We also described one possible strategy for choosing the functions S,
given the availability of a relevant empirically based probability p on the possibility
set X.

There is no disputing that the choice of a family of allocation functions may be
a demanding intellectual exercise. Consequently, it may be tempting to opt for a
‘mechanical’’ approach to upgrading b. We have in mind here such strategies as
upgrading D to a probability measure g € P(X; b) with maximum entropy H(g)=
— Y g(x)log(g(x)). A variant on this strategy, given a probability p on X , as describ-

7 We have adopted this term from Diaconis and Zabell (1982), who use it in a narrower context.
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ed in the previous paragraph, would be to upgrade b to a probability measure
g € P(X; b) which minimizes the ‘distance’ from p as measured by the Kullback-
Leibler number I{g, p)= ¥ q(x)log(q(x)/p(x)). Apart from the difficulty of ra-
tionalizing the choice of precisely this measure of the distance from g to p (there
are many other possible measures, several of which are described in Diaconis and
Zabell, 1982) there are major objections to so-called MAXENT strategies, which
have been clearly and (to us) convincingly articulated by Skyrms (1987). Among
these objections is the fact that when the aforementioned probability p happens
itself to be compatible with b, a MAXENT strategy will upgrade to P, in effect ig-
noring current diagnostic evidence as incorporated in b, and opting to rely on
background statistics.

An entirely different (but no less deficient) strategy for upgrading b in the
presense of p would be to upgrade b to g =p=*b, the resuit of combining p and b
by Dempster’s rule of combinration (see Shafer, 1976, Chapter 3). While g, so defin-
ed, is always a probability measure, it may well fail to meet the basic requirement
that it be compatible with (that is, bounded below by) 5.2 Dempster’s rule may, of
course, play an important role in the construction of & itseif, by building up & from
simpler belief functions (like the simple support functions mentioned in Section 2)
based cn distinct bodies of diagnostic evidence. But its attractiveness as a rule of
combination should not mislead one into thinking that it can function generally as
a rule of conditionalization.

8 To take a very simple example, suppose that X = {x;x;}, p(x;) =0.4, p(x;)=0.6 and b is actually a
probability measure on X, say b(x;)=0.2 and b(x;)=0.8. By Dempster’s rule (see Shafer, 1976,
Chapter 3):

Dpxb(x;) = (0.2)(0.4)/1—(0.2)(0.4) — (0.8)(0.6) =~ 0.18.

On the other hand, any upgrading formula of type (3.2), including (3.5), will yield g = b. This is eminent-
ly reasonable. If a patient’s symptoms alone enable a physician to assess a probability measure over the
possible ailments causing these symptoms, the incidence of those ailments in the general population is
no longer relevant.
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