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1. INTRODUCTION

Lehrer’s epistemology, as articulated, for example, in Rational Consensus in
Science and Society (Lehrer and Wagner 1981), has always emphasized that ra-
tional decision making must take account of the total available evidence. Yet
dogmatic restrictions on the representation of uncertain judgment, or on the
way in which such judgment may be revised, undermine the goal of faithfully
representing the evidence, In this paper we discuss two such restrictions, dog-
matic Bayesianism and the dogma of precision, and outline some ways in which
probabilism has begun to be liberated from their grip.

Dogmatic Bayesianism, which asserts that the only acceptable method of
revising a probability distribution is by conditionalizing on an event & that one
has come to regard as certain, has already been substantially weakened by the
discovery of principled ways of updating probabilities when conditionalization
is simply inapplicable. Since descriptions of thes¢ alternative revision methods
are accessible and clear, we shall simply mention

1} revising one’s probability distribution by means of a weighted average of
that distribution along with those of other informed individuals (Lehrer
and Wagner 1981);

2) probability kinematics (Jeffrey 1965, 1983, 1988), a generalization of
conditionalization in which new evidence alters the probabilities of a dis-

joint family of events; and

3) reparation (Jeffrey 1991, 1995; Wagner 1997, 1999), a revision method
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that raises the probability of hypothesis H when it is discovered that
H implies previously known evidence E.!

Probabilism, which allows the representation of degrees of belief by subjective
probabilities taking any values in the interval [0, 1], itself offers a profound ex-
. _pansion of the classical dogmatic epistemological categories “accept,” “reject,”
and “suspend judgment.” Yet the expressive resources of probabilism need to be
further enlarged. Recall that on the standard account (Ramsey 1990) subjective
probability is a measure of one’s degree of confidence in the truth of a proposi-
tion or the occurrence of an event, as reflected in one’s willingness to take either
side of certain bets. It is supposed that one is always capable of articulating
the precise odds governing such bets. That this dogma of precision, as Walley -
(1991) has called it, is both unrealistic and unnecessary, is gaining acceptance
among students of the foundations of probability. In what follows we outline
the elementary parts of the theory of upper and lower probabilities, with the aim

of giving these ideas wider currency among epistemologists.

2.  SUBJECTIVE PROBABILITY AND THE DOGMA OF
PRECISION

For the sake of simplicity it is assumed in what follows that your frame of dis-
cernment 2 regarding possible states of the world is finite.? It is also supposed
that there is an infinitely divisible unit of utility. Suppose that you are able to
assign to each event A ¢ (2 a real number p(A) such that

1° You are willing to pay anything less than p(A) units of utility in exchange
for receiving one such unit if A occurs, and nothing if A fails to occur;
and

2° In exchange for recciving anything more than p(A) units of utility, you
are willing to obligate yourself to pay one such unit if A occurs, and
nothing if A fails to occur.

The set function p is your subjective probability on events in §2, with p(A) being
your threshold price for A.3 Standard Dutch book arguments (see, e.g., Earman
1992, pp. 38—40) show that in order to avoid a sure loss, p must be coherent,
i.e., satisfy the usual axioms for a probability measure,

p(A) =0, forall A C 1, 2.1
p() =1, and _ (2.2)
p(AUB) =p(A) + p(B), forall A,B C Qsuchthat AN B=@. (2.3)
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In section 4 we show as a simple corollary of a much more general result that
coherence is also sufficient to avoid a sure loss.

The demands placed on probability assessors by the dogma of precision
are stringent, and unrealistic. How, for example, is one to assess the probability
of getting a white ball in a random selection from an urn containing red and
‘white balls if unknown proportion?*Am additional such-example; the case of -
incompletely specified contingency tables, is described in the next section. As
we shall see, an elegant analysis of this case, due to Strassen (1964), leads
naturally to a simple, intuitively appealing general account of upper and lower
probabilities.

3. STRASSENIAN UPPER AND LOWER PROBABILITIES

Imagine a collection of objects, consisting of spheres, cylinders, cubes, and
cones, each of which is colored red, white, or blue. Suppose that 50 % of the
objects are red, 30 % are white, and 20 % are blue. There are no red cubes or red
cones, no white cylinders or white cubes, and no blue spheres. An object is cho-
sen at random from this collection. What is the probability that it is 1. a sphere,
2. a sphere or cylinder? This problem involves the incomplete contingency table

sphere cy'linder cube cone

red 0 0 5

white 0 0 3

blue 0 1.2
1.

and furnishes another example in which information is insufficient to assess
precise probabilities. On the other hand it is fairly easy to see, e.g., that no more
than 80 % of the objects can be spheres, and that at least 50 % of the objects are
spheres or cylinders.

Strassen (1964) furnished the following elegant analysis of the general
problem of this type: Let Q and © be frames of discernment regarding the state
of the world, let p be a probability on events in §2, and suppose that for each
w € €2 the set T'(w), comprising those outcomes § € © compatible with the
outcome w, is nonempty. For all A C ©, let

Ay ={wefl: T(w)C A}, and (3.1)
A ={we: T(Ww)NA # o}, (3.2)

and let
B(A) :=p(As),  and . (33)

afA):

I

p(A%). 3.4



146 TWO BOGMAS OF PROBABILISM

The set functions 3 and « are, respectively, the Strassenian lower and upper
probabilities’ on events in © induced by p and the compatibility relation T,
The reasens for this terminology will soon be made clear, but let us first note’
some basic properties of these set functions.

_ . Theorem 3.1. The set functions 3 and « defined by (3.3).and (3.4) have the
Jollowing properties:

D O<BA) S a(A) K L forall AC 6,
(i) (@) = a(@) =0 and B(O) = a(O) = 1.

(iii) B and o are monotone, ie., if Ay C Ao, then B{A1) < B(As) and
(A1) < a(As).

(iv) B and o are conjugates, i.e., B(A) + a(A) = 1forall A C ©.

(v) For every positive integer r, 3 is r-monotone and o is r-alternating, i.e.
BA1U-UA) 2D B(A)
i

=Y BAN A+ -+ (—1)TBAIN N A,) (3.5)
i<g
and

a(A1n - NA) <) old)

=3 (AU A+ (1) oA U U4, (36)
i<j
Jrom which it follows that
(vi) B is superadditive and o is subadditive, i.e., if AN Ay = @, then B( AU
Ag) 2 (A1) + B(Az) and a(A1 U Az) < (A1) + o 4s).

Proof. The proofs of (i)-(iii) are straightforward. The proof of (iv) follows from
the fact that A, and (A)* are set-theoretic complements. To prove (3.5) note that
(AfU--UA)e D (A1)s U U(A;), and that forevery I C {1,...,r}

().~

3 i€l
Then apply monotonicity of p and the principle of inclusion and exclusion for p.
The inequality (3.6) follows from (3.5) and (iv). Assertion (vi} follows from the
case r = 2 of (3.5) and (3.6). [
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Theorem 3.2. The following are equivalent:
(i) Ifp(w) > 0, then w is compatible with exactly one outcome 8 € ©,
(ii) B is a probability measure.
 (ili) @ is a probability measure.
(ivi f=a
Progf. Straightforward. (]

The above theorem simply confirms what one would expect, namely, that
when T is in effect a ©-valued random variable, then o and 3 coincide with the
usual probability measure induced on events in © by pand T

We now demonstrate the appropriateness of calling o and 8 upper and
lower probabilities. In what follows, 74 denotes the indicator of the event A,
ie, I4(0) = 1if¢ € Aand I4(f) = 0if @ € A, and we routinely omit the
phrase “units of utility.” The betting commitments described in 1° and 2° of
section 2 above will be tersely characterized, as a willingness to “buy 7,4 for
p(A) — e, forall e > 0,” and “sell 14 for p(A) +¢, foralle > 0

Suppose that p is your subjective probability on events in Q, with T, o,
and 3 as above. Except in the case described in Theorem 3.2, you have inad-
equate information to ground assessment of a subjective probability on events
in ©. There are, however, identifiable constraints on any such probability.

Theorem 3.3. Any coherent probability q that might be a candidate for repre-
senting your threshold prices for events in © must satisfy

A(A) < g(A) < a(A),  forall AC 6, (3.7)

Jor if (3.7) is violated, you will suffer a sure loss.

Proof. Suppose that (A) < B(A) forsome 4 C ©, with S{A)—q(A) = ¢ > 0.
You'll sell I4 for g(A) + /4 and buy I4, for p(A,) — /4 = B(A) — /4.
Suppose that w is the true {2-state and that 8 is the true O-state, If w € A,, then
¢ € A, and so your net gainis (g(A)+e/4—1)+(1-B(A)+e/4) = -§/2 < 0.
Ifw ¢ A,, 8 may or may not be an element of A. If & € A, your net gain is
{g(A)+e/d—-1)+(0-F(A)+e/4) = -1-¢/2 < 0,and if @ ¢ A, your net
gainis (q(A) +e/4 - 0) + (0 - B(A) +¢/4) = —¢/2 < 0.

Suppose that g(A) > a(A). Then g(A) = 1—-g{A) < 1-a(A) = B(A),
by Theorem 3.1 (iv), which leads, as above, to a sure loss. 0
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As noted above, you are perfectly justified in the above situation in refus-
ing to announce threshold prices for events in ©. But there are some additional
bets that you ought to be willing to make:

Theorem 3.4. If 3 and « are defined by (3.3) and (3.4) you ought to be willing,
Joreach A C ©, andforalle >0, fo

1° buy I4 for B(A) — €, and
2° sell 14 for a(A) +e.

Proof The argument here is not that you will otherwise suffer a sure loss (no
one can make a Dutch book against someone unwilling to bet), but, rather, that
1° and 2° are at least as good as bets you are willing to make. In the case of 1°,
you’ll buy I 4, for p(A.) — e = B(A) — €, so you ought to be willing to buy f4
for that price, since if the true - and ©-states are, respectively, w and &, and
w € A,, then § € A, so I4 pays off for you in every case that I 4« does, and
possibly other cases as well.

In the case of 2°, you’ll sell 14+ for p(A*) 4+ & = a(A) + &, so you ought
to be willing to sell 74 for that price. With w and @ as above, if w ¢ A*, then
Tw)NA=2,ie,T(w) C A Since § € T(w), & ¢ A. So in every case in
which you avoid paying off on I 4+ (and perhaps in other cases as well) you will
avoid paying off on 4. O

4. UPPER AND LOWER SUBJECTIVE PROBABILITIES

Theorem 3.4 leads naturally to the following generalization of classical subjec-
tive probability: Suppese that for cach event A C {2 you are able to assign real
numbers A{(A) and v(A) such that, for all € > 0, you are willing to

1° buy 14 for A(4) — ¢, and

2° sell 14 for v{A) + ¢

The set functions A and v are then, respectively, your lower and upper subjective
probabilities on events in §2. Whereas in section 2 above your threshold prices
as bettor and bookie were required to be identical, here they may be distinct,
with obvious gains in realism and expressive possibility. The following theorem
gives necessary and sufficient conditions for avoiding a sure loss in the above
situation: :

Theorem 4.1. Given the betting commitments 1° and 2° above, you will avoid
a sure loss if and only if there exists a coherent probability q on events in ) such

that
AMA) € g(A) g v(4),  forall AC KL (4.1)
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Proof. Sce Walley 1981, p. 15. Ll

It follows immediately from Theorem 4.1 that coherence of subjective
probabilities, as defined in section 2 above, is not only necessary, but also suffi-
cient to avoid a sure loss (cf. Kemeny 1955 and Lehman 1955).

Note that (4.1) is a rather weak condition, which, for example, does not

even imply monotonicity of A and . Buehler (1976) has argued for much more
stringent restrictions. Indeed, he claims inter alia that the lower probability A
must be additive! Buehler’s argument is based on the following theorem.

Theorem 4.2. Suppose that A(A) < q(A) for all A C §}, where q is a coherent
probability, and that ) is self-conjugate, i.e, A\(A) -+ MA) = Lforall A C L
Then A = gq.

Proof. Suppose that A(4) < q(A) for some A. Then, by self-conjugacy of A,
MA) = 1-A(A) > 1-g(A) = ¢g{A), contradicting the fact that X is dominated
by ¢. O

1t follows from Theorems 4.1 and 4.2 that if X avoids a sure loss, and is
self-conjugate, then X is in fact a coherent probability. Buehler’s argument that
) must be self-conjugate goes as follows: Clearly, A(A) + A(A)} < 1; otherwise
you will suffer a sure loss. Suppose that A(4) + A(A) < L. Let a and b be such
that A\(A) < a, A(A) < b, and a + b < 1. Then you'll reject buying I4 for a
and Iz for b, even though by accepting both bets you would be guaranteed of
the net gain 1 — a — b > 0. So you will miss out on a sure gain. Apart from the
fact that missing a sure gain is considerably less serious than suffering a sure
loss, this argument is further weakened by its dependence on your being offered
I4 and ] 5 one at a time, with no knowledge that both will be offered. If you
were offered these bets simultaneously, you would recognize immediately that
you were being offered a certain payoff of 1, and would clearly agree to pay any
price less than 1 in exchange.

Here is a simple way in which lower and upper probabilities satisfy-
ing (4.1) arise: Let P be a nonempty family of coherent probabilities on events
in §2 and let :

Xp(A) = nf {p(4)},  and (4.2)
up(A) = sup{p(4)}. (43)
peEP

Then Ap and v satisfy (4.1) as well as the conjugacy relation Ap(A)+vp (A) =
1. The set functions Ap and v are, respectively, the lower and upper envelopes
of P.
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Examples of naturally occurring families P (called probasitions in Jef-
frey 2001) include such things as 1. the family of all additive representations
of some comparative probability relation (Roberts 1976) and 2. the family of
all probabilities with respect to which a fixed random variabie has a fixed cx-
pected value. The Strassenian lower and upper probabilities 8 and o are also

-envelopes; with-P-=-the- set-of-all-marginalizations to-© -of-all-probabilities-Q)
on 2 x © that are compatible with p and T in the sense that the marginalization
of Q to N is p and Qw,8) = 0if & ¢ T'(w) (Wagner 1992).

5.  CONCLUSION

Dogrmatic restrictions on the representation of uncertain judgment, or on the way
in which such judgment is revised, undermine the goal of faithfully representing
the evidence regarding the state of the world. While Bayesian dogmatism has
begun to yield to other principled methods of probability revision, the dogma of
precision is still dominant.

One source of resistance to working with non-additive upper and lower
probabilities is the fear that such measures must necessarily be mathematically
intractable. This greatly exaggerates the true state of affairs, While space does
not permit a detailed account, we mention that there is a useful theory of upper
and lower expectation (see Dempster 1967 and Walley 1981, 1991), as well as a
generalization of probability kinematics in which new evidence places bounds
on possible revisions of prior in the form of Strassenian upper and lower prob-
abilities (Wagner 1992). Finally, to conclude this paper on the same note on
which it began, we remark that there is a theory of consensus for upper and
lower probabilities (Wagner 1989) which is remarkably similar to that in Lehrer
and Wagner 1981,
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1 Reparation thus provides a solution to the old evidence problem, first posed by Glymour (1980).
2 The term “frame of discernment” is due to Shafer (1976). The elements of § are mutually
exclusive and exhaustive, i.., precisely one element of £, though typically unknown, represents
the true state of the world. Multiple frames of discernment may, however, be brought to bear on
a single problem, as, for example, when we classify the possible outcomes of selecting an object
at random from a set of colored shapes by frames delineating 1) the possible colors and 2) the
possible shapes. Mathematicians typically refer fo © as a “sample space.”

3 It is implicit here that you are unwilling to pay more than p(A} in 1° and unwilling to take less
than p(A) in 2°. In the usual treatment, you must be willing to pay p(A) in 1° and to take p(A)
in 2°. We do not require this. A vittue of our treatment is that one can assign proper subsets of £
(i.¢., contingent events) probability one without being in the position of having no prospect of
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positive gain, and the possibility of a loss (cf. Earman 1992, p. 41). Our treatment also allows for
a natural segue to the account of upper and lower probabilities in section 4.

4 Devotees of the principle of insufficient reason would adopt the uniform distribution here, thus
employing the same distribution in the case of complete ignoratce that they would given reliable
information that exactly half the balls in the urn are white.

S In 1967 Dempster, unaware of Strassen’s 1964 paper, published a similar analysis. Shafer

e e (1976)-0ffered -a-sui-generis. account.of_set-functions having the-monotonicity_properties_of the_ ..

lower probability G, regarding such set functions, which he called belief functions, as directly
assessable measures of degrees of belief,



