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Abstract In ordinary discourse the term ambiguity typically refers to vagueness or
imprecision in a natural language. Among decision theorists, however, this term usu-
ally refers to imprecision in an individual’s probabilistic judgments, in the sense that
the available evidence is consistent with more than one probability distribution over
possible states of the world. Avoiding a prior commitment to either of these interpre-
tations, Fishburn has explored ambiguity as a primitive concept, in terms of what he
calls an ambiguity measure a on the power set 2� of a finite set �, characterized by
five axioms. We prove, in purely set-theoretic terms, that if λ is a so-called necessity
measure on 2� and υ is its associated possibility measure, then a = υ − λ is an
ambiguity measure. When � is construed as a set of possible exemplars of a vague
predicate φ, then λ and υ may be regarded as arising from a fuzzy membership func-
tion f on �, where f (ω) designates the degree to which φ is applicable to ω. In this
case a(A) represents the degree to which the partition {A, Ac} differentiates members
of � with respect to the predicate φ. When � is construed as a set of possible states
of the world, a necessity measure may be regarded as a very special type of lower
probability known as a consonant belief function, and a possibility measure as its
associated upper probability, whence a(A) represents the degree of imprecision in the
pair (λ, υ) with respect to the event A. Fishburn’s axioms are thus consistent with an
interpretation of ambiguity as linguistic vagueness, as well as (a very special sort of)
probabilistic imprecision.
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1 Introduction

In ordinary discourse the term ambiguity typically refers to vagueness or imprecision
in a word or phrase of some natural language. Since its introduction in the now classic
paper by Ellsberg (1961), however, this term has been used by most decision theorists
to refer to imprecision in an individual’s probabilistic judgments, in the sense that
the available evidence is consistent with more than one probability distribution over
the possible states of the world. Abstaining from a prior commitment to either of
these interpretations, Fishburn (1991) has explored ambiguity as a primitive concept,
through an analysis of mappings a : 2� → [0,∞), where � is a finite set of possible
states of the world, and a(A) denotes what he calls the ambiguity measure of A,
characterized by the following axioms :

a(∅) = a(�) = 0. (1.1)

a(A) = a(Ac). (1.2)

a(A ∪ B) ≤ a(A) + a(B) − a(A ∩ B). (1.3)

a(A) = a(B) ⇒ a(A − B) = a(B − A) or a(A ∩ B) = a(A ∪ B). (1.4)

a(A) > a(B) ⇒ a(A − B) > a(B − A) or a(A ∩ B) > a(A ∪ B). (1.5)

These axioms arise from a subtle measurement-theoretic analysis of the binary
relation 	 on 2�, where A 	 B asserts that the event A is at least as ambiguous
as the event B. Fishburn states and justifies six axioms for this relation and proves a
representation theorem to the effect that 	 satisfies these axioms if and only if there
exists a mapping a : 2� → [0,∞) such that (i.) A 	 B ⇔ a(A) ≥ a(B) and (i i.)
axioms (1.1)–(1.5) hold.

In this paper, we investigate the extent to which axioms (1.1)–(1.5) are consistent
with the notion of ambiguity as linguistic vagueness, as contrasted with probabilistic
imprecision. The paper is structured as follows: In Sect. 2 we outline pertinent results
from the theory of lower and upper probabilities, conceived, following Smith (1961)
and Walley (1991), as threshold buying and selling prices for certain bets. We explain
why it is desirable that an individual’s lower probability λ and upper probability υ

should coincide, respectively, with the lower envelope and upper envelope of some
nonempty set P of probability measures1 on 2�, in the sense that

λ(A)= inf{p(A) : p∈P} and υ(A)=sup{p(A) : p∈P}, for all A ⊆ �. (1.6)

1 Such a set of probability measures arises in the context of the Ellsberg (1961) urn problem, in which a
ball is to be picked at random from an urn containing 30 red balls and 60 black or yellow balls in unknown
proportion. Due to the ambiguity as to which probability measure on� = {red, black, yellow} is operative,
subjects choosing between two possible acts in one decision problem, and two possible acts in a second
decision problem, typicallymake choices that violate the so-called sure thing principle postulated by Savage
(1972) as an axiom of rational decision making.
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If λ and υ are an individual’s lower and upper probabilities on 2�, the mapping
a = υ − λ, which Walley calls the degree of imprecision of the pair (λ, υ), and
which is in essence a bid-ask spread, is a natural candidate for an ambiguity measure.
We prove, however, that if λ and υ are lower and upper envelopes, the mapping a,
so defined, may fail to satisfy axiom (1.3), although it always satisfies axioms (1.1)
and (1.2) . We further show that axiom (1.4) may fail to hold even when λ is a highly
structured type of lower envelope known as a belief function and υ is its corresponding
upper envelope, known as a plausibility function (Shafer 1976), and that the same
is true for axiom (1.5). We conclude by describing the special class of consonant
belief functions, which reappear in a different guise in Sect. 3, where we consider
the numerical representation of linguistic vagueness by means of fuzzy membership
functions and their associated necessity and possibility measures (Dubois et al. 2000).
We show that the class of necessity measures is identical to the class of consonant
belief functions, and we argue that if λ and υ are necessity and possibility measures
on 2�, then a = υ − λ is a natural candidate for a measure of linguistic vagueness.
In Sect. 4, we prove that υ − λ satisfies the complete set of axioms (1.1)–(1.5) when
λ is a necessity measure and υ is its corresponding possibility measure. In Sect. 5 we
offer a brief summary and conclusion.

2 Probabilistic imprecision

2.1 Lower and upper subjective probabilities

Suppose, as above, that � is a finite set of possible states of the world, and that λ and
υ are mappings from 2� to [0, 1]. Following Smith (1961) and Walley (1981, 1991),
we say that λ is your2 lower subjective probability and υ is your upper subjective
probability on 2� if, for all A ⊆ �,

(L) You are willing to pay any amount strictly less than λ(A) units of linear utility
(but no more than λ(A) units) in exchange for receiving 1 such unit if the event A
occurs (i.e., if the true state of the world turns out to be a member of A), and nothing
otherwise. (You may or may not be willing to pay exactly λ(A) units.)

(U) In exchange for receiving any amount strictly greater than υ(A) units of linear
utility (but no less than υ(A) units), you are willing to obligate yourself to pay 1 such
unit if A occurs, and nothing otherwise. (You may or may not be willing to so obligate
yourself in exchange for receiving exactly υ(A) units.)

In the tradition of de Finetti’s (1974) well-known account of subjective probability,
there are no a priori structural constraints on lower or upper probabilities. It is only
assumed that you announce your prices λ(A) and υ(A) for all A ⊆ � and that you are
willing to accept multiple bets on the same event. Any structural restrictions on upper
and lower subjective probabilities materialize as rationality constraints, guaranteed to
protect you against certain undesirable consequences of your announced buying and

2 Our use of the second person here echoes de Finetti (1974) and Walley (1991), who explains that it
is employed “ to encourage you (the reader) to consider the theory as a model for your own beliefs and
behaviour.”
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selling prices. For example, it would clearly be undesirable for your betting commit-
ments, as expressed by λ and υ, to place you in a position of sustaining a sure loss,
i.e., a net loss of utility, regardless of which state of the world turns out to be the true
state. Similarly, it would be undesirable for those commitments to be incoherent, in
the sense that you refuse to make a bet with outcomes uniformly better than that of a
bet that you are willing to make. The following theorem is thus of substantial interest.

Theorem 2.1 You are protected against a sure loss and also against incoherence if
and only if your lower and upper probabilities λ and υ coincide, respectively, with the
lower and upper envelopes of some nonempty set of probability measures on 2�.

Proof See Walley (1981, Theorem 2.1). ��
In addition to protecting you against sure loss and incoherence, lower and upper

envelopes have many pleasant structural features.

Theorem 2.2 If λ is the lower envelope and υ is the upper envelope of a nonempty
set of probability measures on 2�, as defined by (1.6), then

λ(∅) = υ(∅) = 0 and λ(�) = υ(�) = 1. (2.1)

λ(A) ≤ υ(A) for all A ⊆ �. (2.2)

A ⊆ B ⇒ λ(A) ≤ λ(B) and υ(A) ≤ υ(B). (2.3)

A ∩ B = ∅ ⇒ λ(A ∪ B) ≥ λ(A) + λ(B). (2.4)

A ∩ B = ∅ ⇒ υ(A ∪ B) ≤ υ(A) + υ(B). (2.5)

Moreover, λ and υ are conjugates, in the sense that

λ(A) + υ(Ac) = 1 for all A ⊆ �. (2.6)

Proof Straightforward. ��
When probabilistic imprecision is represented by the lower and upper envelopes λ

and υ, then a := υ − λ, which Walley (1991) calls the degree of imprecision of the
pair (λ, υ), is a natural candidate for an ambiguity measure. The following result is
thus somewhat disappointing.

Theorem 2.3 If λ and υ are lower and upper envelopes, then a = υ − λ satisfies
axioms (1.1) and (1.2), but may fail to satisfy axiom (1.3).

Proof The proof of axiom (1.1) is straightforward, and axiom (1.2) follows from (2.6).
The following example, constructed by Suppes (1974) for a different purpose, shows
that amay fail to satisfy axiom (1.3): Let� = {1, 2, 3, 4} andP = {p1, p2}, where the
densities of these probability measures are, respectively, (0.25, 0.25, 0.25, 0.25) and
(0.5, 0.5, 0, 0). If A = {1, 3} and B = {1, 4}, then a(A∪B) = υ(A∪B)−λ(A∪B) =
0.75− 0.5 = 0.25, a(A) = υ(A) − λ(A) = 0.5− 0.5 = 0, a(B) = υ(B) − λ(B) =
0.5 − 0.5 = 0, and a(A ∩ B) = υ(A ∩ B) − λ(A ∩ B) = 0.5 − 0.25 = .25, whence
a(A ∪ B) > a(A) + a(B) − a(A ∩ B). ��
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Peter Fishburn’s analysis of ambiguity 157

Axiom (1.3) does hold, however, under slightly stronger conditions on the pair
(λ, υ). Suppose that λ : 2� → [0,1] is any set function satisfying λ(∅) = 0 and
λ(�) = 1. If, in addition, λ(A ∪ B) ≥ λ(A) + λ(B) − λ(A ∩ B), for all A, B ⊆ �,
then λ is said to be 2-monotone (or convex). The following theorem, due to the Nobel
laureate (Economics, 2012) LloydShapley, originated in the study of cooperative game
theory.

Theorem 2.4 If λ : 2� → [0,1] is 2-monotone, and υ(A) := 1 − λ(Ac) for all
A ⊆ �, then there exists a nonempty set P of probability measures on 2� such that λ
is the lower envelope, and υ is the upper envelope of P.

Proof See Shapley (1971). ��

Theorem 2.5 Suppose that λ is 2-monotone, andυ is defined as in Theorem 2.4 above.
If a = υ − λ, then a satisfies Fishburn’s axioms (1.1), (1.2), and (1.3).

Proof Since, by Theorem 2.4, λ and υ are, respectively, lower and upper envelopes,
it follows from Theorem 2.3 that a satisfies axioms 1.1 and 1.2.
From (i) λ(A∪ B) ≥ λ(A) + λ(B) − λ(A∩ B) and the definition of υ, it follows that
(ii) υ(A∪ B) ≤ υ(A)+υ(B)−υ(A∩ B). Subtracting inequality (i) from inequality
(ii) yields the desired result. ��

Axioms 1.4 and 1.5 are, however, considerably more recalcitrant. Indeed, as we
show in the following subsection, even a substantial strengthening of 2-monotonicity
is insufficient to ensure that these axioms hold.

2.2 Belief functions

Suppose that λ : 2� → [0,1], with λ(∅) = 0 and λ(�) = 1, and that t ≥ 2. If, for all
A1, . . . , At ⊆ �,

λ(A1 ∪ · · · ∪ At ) ≥
∑

1≤i≤t

λ(Ai ) −
∑

1≤i< j≤t

λ(Ai ∩ A j )

+
∑

1≤i< j<k≤t

λ(Ai ∩ A j ∩ Ak) − · · · + (−1)t−1λ(A1 ∩ · · · ∩ At ), (2.7)

λ is said to be t-monotone. Clearly, t-monotonicity implies (t − 1)- monotonicity. If
λ is t-monotone, its conjugate υ, defined by υ(A) = 1 − λ(Ac), is t-alternating, in
the sense that, for all A1, . . . , At ⊆ �,

υ(A1 ∩ · · · ∩ At ) ≤
∑

1≤i≤t

υ(Ai ) −
∑

1≤i< j≤t

υ(Ai ∪ A j )

+
∑

1≤i< j<k≤t

υ(Ai ∪ A j ∪ Ak) − · · · + (−1)t−1υ(A1 ∪ · · · ∪ At ). (2.8)
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If λ is t-monotone for all t ≥ 2, λ is said to be infinitely monotone, or a belief function
(Shafer 1976), and its conjugate υ is said to be infinitely alternating, or a plausibility
function. If λ is a belief function, its Möbius transform mλ, defined for all E ⊆ � by

mλ(E) :=
∑

H⊆E

(−1)|E−H |λ(H), (2.9)

is nonnegative (mλ(E) ≥ 0 for all E ⊆ �). Moreover, for all A ⊆ �,

λ(A) =
∑

E⊆A

mλ(E), and (2.10)

υ(A) =
∑

E∩A �=∅
mλ(E). (2.11)

Indeed, if m : 2� → [0, 1] is any mapping such that m(∅) = 0 and
∑
E⊆�

m(E) = 1,3

the mapping λ defined for all A ⊆ � by

λ(A) :=
∑

E⊆A

m(E) (2.12)

is a belief function, with mλ = m. See Shafer (1976) for full details.

Theorem 2.6 There exist belief function/plausibility function pairs (λ, υ) for which
axiom (1.4) fails, as well as such pairs for which axiom (1.5) fails.

Proof In view of the conjugacy (2.6) of λ and υ, our candidate a(A) = υ(A) − λ(A)

for an ambiguity measure may be written purely in terms of λ as

a(A) = 1 − λ(A) − λ(Ac). (2.13)

Let � = {1, 2, 3, 4, 5}. In each case we construct a belief function λ from a mapping
m : 2� → [0, 1] with m(∅) = 0 and

∑
E⊆� m(E) = 1, as in (2.12), denoting m(E)

by mE . Let A = {1, 2} and B = {2, 3, 4}. We first construct an m-function for which

3 Such functions m arise on 2� in a natural way in the following situation: There exists a finite set �, with
states related to those of � by a mapping T : � → 2� − {∅}, where T (θ) denotes the set of all states in �

that are compatible with the state θ ∈ �. A probability measure p on 2� then gives rise to m (and hence
to belief and plausibility functions λ and υ) by means of the definition m(E) := p({θ ∈ � : T (θ) = E}).
Strassen (1964) was the first to make a thorough study of such functions, although Dempster (1967) is
typically credited as their originator in the artificial intelligence community.
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axiom (1.4) fails. By (2.13),

a(A) = a(B) ⇔ λ(A) + λ(Ac) = λ(B) + λ(Bc)

⇔ (m12 + m1 + m2) + (m345 + m34 + m35 + m45 + m3 + m4 + m5)

= (m234 + m23 + m24 + m34 + m2 + m3 + m4) + (m15 + m1 + m5)

⇔ m345 + m35 + m45 + m12 = m234 + m23 + m24 + m15; (2.14)

a(A − B) = a(B − A) ⇔ λ(A ∩ Bc) + λ(Ac ∪ B) = λ(Ac ∩ B) + λ(A ∪ Bc)

⇔ m1 + (m2345 + 14 terms)

= (m34 + m3 + m4) + (m125 + m12 + m15 + m25 + m1 + m2 + m5)

⇔ m2345 + m234 + m235 + m245 + m345 + m23 + m24 + m35 + m45

= m125 + m12 + m15; (2.15)

and
a(A ∩ B) = a(A ∪ B) ⇔ λ(A ∩ B) + λ(Ac ∪ Bc) = λ(A ∪ B) + λ(Ac ∩ Bc)

⇔ m2 + (m1345 + 14 terms) = (m1234 + 14 terms) + m5

⇔ m1345 + m135 + m145 + m345 + m15 + m35 + m45

= m1234 + m123 + m124 + m234 + m12 + m23 + m24. (2.16)

It is clearly possible to find positive real numbers mE for each nonempty subset E
of � such that (i) these 31 numbers sum to 1, and (ii) equation (2.14) is satisfied. If it
happens that neither (2.15) nor (2.16) is satisfied, then we are done. If either (2.15) or
(2.16), or both, are satisfied, choose ε such that

0 < ε < min{mE , 1 − mE : E ⊆ �, E �= ∅}, (2.17)

and replacem2345 withm∗
2345 := m2345+ε,m125 withm∗

125 := m125−ε,m1345 with
m∗

1345 := m1345 + ε, and m1234 with m∗
1234 := m1234 − ε, leaving all other m-values

unchanged. In view of (2.17) the resulting values are all positive, and sum to 1, and
continue to satisfy (2.14). Denote the left-hand side of (2.15) by l and the right-hand
side by r , and denote the left-hand side of (2.16) by L and the right-hand side by R,
with l∗, r∗, L∗, and R∗ denoting their values whenmE is replaced bym∗

E , E = 2345,
125, 1345, and 1234. If l ≥ r and L ≥ R, then l∗ > r∗ and L∗ > R∗. If l = r and
L < R, choose ε subject to (2.17), as well as the additional restriction ε < (R−L)/2.
Then l∗ > r∗, and L∗ < R∗. If l < r and L = R, choose ε subject to (2.17), as well
as the additional restriction ε < (r − l)/2. Then l∗ < r∗ and L∗ > R∗. So axiom
(1.4) fails to hold.

We next construct an m-function for which axiom (1.5) fails to hold. As above we
can choose positive values mE that sum to 1 over all nonempty E ⊆ �. Moreover,
usingm12345 and themi , i = 1, . . . , 5, as slack variables, and linearly scaling the other
mE variables as needed, we can ensure that (2.14), as well as (2.15) and (2.16) are
satisfied. Choose ε subject to (2.17), and replace m12 by m∗

12 := m12 + ε, and m12345
by m∗

12345 := m12345 − ε. Under these modified m-values, the equality in (2.14) is
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replaced by the inequality >, and the equalities in (2.15) and (2.16) are both replaced
by the inequality < . ��

In view of the above results, themapping a = υ−λ does not look very promising as
an ambiguitymeasure, at least insofar as the latter notion is characterized by Fishburn’s
axioms. But let us press on and consider a further restriction on the class of belief /
plausibility function pairs (λ, υ).

2.3 Consonant belief functions

Suppose that λ is a belief function, denoting its Möbius transform simply by m. As
noted above, m(E) ≥ 0 for all E ⊆ �. If m(E) > 0, following Shafer, we call E a
focal event associated with λ. It is easy to see that a belief function λ is a probability
measure if and only if all of its associated focal events are singletons.

Consider the class of belief functions whose focal events constitute a chain ∅ �=
E1 ⊂ E2 ⊂ · · · ⊂ Er ⊆ �, where 1 ≤ r ≤ |�|. Shafer calls such belief functions
consonant belief functions. As an illustration of just how narrow this class is, we
note that among belief functions that are probability measures only the so-called
point masses (probability measures p for which there exists an element ω∗ such that
p(A) = 1 ifω∗ ∈ A and p(A) = 0 otherwise) are consonant. Clearly, the only possible
values taken on by a consonant belief function λ are the partial sums

∑i
j=0 m(E j ),

where 0 ≤ i ≤ r and E0 := ∅, and λ(A) = λ(B) if and only if A and B both contain
Er , or, for some i ∈ {0, . . . , r − 1}, both contain Ei and neither contains Ei+1.

Theorem 2.7 The mapping λ : 2� → [0, 1] is a consonant belief function if and only
if

λ(∅) = 0, λ(�) = 1, and λ(A ∩ B) = min{λ(A), λ(B)}, for all A, B ⊆ �,

(2.18)

or, equivalently, if and only if the conjugate υ of λ satisfies the properties

υ(∅) = 0, υ(�) = 1, and υ(A ∩ B) = max{υ(A), υ(B)}, for all A, B ⊆ �.

(2.19)

Proof See Shafer (1976). ��
A consonant belief function λ is typically called a necessity measure [and defined

by (2.18)] in the artificial intelligence community, and its conjugate υ is called a
possibility measure. Note that (2.18) and (2.19) imply that, for all A ⊆ �,

λ(A) = 0 or λ(Ac) = 0, and υ(A) = 1 or υ(Ac) = 1. (2.20)

In Sect. 4 below, we shall prove that when λ is a necessity measure and υ is its
conjugate possibility measure, then a = υ − λ satisfies all five of Fishburn’s axioms
for an ambiguity measure. Before presenting that proof, however, we describe how
necessity and possibility measures also arise in the course of quantifying linguistic
vagueness.
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3 Linguistic vagueness

Suppose that ϕ is a predicate which applies with varying degrees tomembers of a finite
set �. Represent these degrees by the fuzzy membership function fϕ : � → [0, 1],
where fϕ(ω) designates the degree to which the predicate ϕ is applicable to ω, with 0
= totally inapplicable and 1= totally applicable. The function fϕ might, for example,
reflect the usage of a sample of speakers from a given linguistic community, with
fϕ(ω) recording the fraction of individuals in that sample who report that they would
apply the predicate ϕ to ω.

Assume that there exists at least one ω ∈ � for which fϕ(ω) = 1, and define
υ : 2� → [0, 1] by

υ(∅) = 0 and υ(A) = max{ fϕ(ω) : ω ∈ A} for all nonempty A ⊆ �, (3.1)

and λ : 2� → [0, 1] by

λ(A) = 1 − υ(Ac) = 1 − max{ fϕ(ω) : ω ∈ Ac}
= min{1 − fϕ(ω) : ω ∈ Ac} for all A ⊆ �. (3.2)

Theorem 3.1 If υ is defined by (3.1) and λ by (3.2), then

υ(∅) = 0, υ(�) = 1, and υ(A ∪ B) = max{υ(A), υ(B)} for all A, B ⊆ �,

(3.3)

and

λ(∅) = 0, λ(�) = 1, and λ(A ∩ B) = min{λ(A), λ(B)} for all A, B ⊆ �. (3.4)

Moreover, any set functions υ and λ satisfying (3.3) and (3.4) arise, as in (3.1) and
(3.2), from some function f : � → [0,1] for which there exists an ω ∈ � such that
f (ω) = 1.

Proof It is straightforward to show that (3.1) implies (3.3) and (3.2) implies (3.4). Sup-
pose that υ satisfies (3.3), and hence that υ(A1∪· · ·∪ An) = max{υ(A1), . . . , υ(An)}
for any finite sequence A1, . . . , An of subsets of �. If we define f : � → [0, 1]
by f (ω) = υ({ω}), then, for all nonempty A ⊆ �, υ(A) = υ(∪ω∈A{ω}) =
max{υ({ω}) : ω ∈ A} = max{ f (ω) : ω ∈ A}. In particular, 1 = υ(�) = max{ f (ω) :
ω ∈ �}, and so there exists anω ∈ � such that f (ω) = 1. Suppose thatλ satisfies (3.4).
Ifλ(A) := 1−λ(Ac), thenλ(∅) = 0, λ(�) = 1, andλ(A∪B) = max{λ(A), λ(B)} for
all A, B ⊆ �. So by the preceding argument there exists a function f : � → [0, 1]
such that f (ω) = 1 for some ω ∈ � and λ(A) = max{ f (ω) : ω ∈ A} for all
A ⊆ �. In particular, λ(Ac) = max{ f (ω) : ω ∈ Ac}, and so λ(A) = 1 − λ(Ac) =
min{1 − f (ω) : ω ∈ Ac}. ��

By Theorem 3.1, the set functions λ and υ arising from a fuzzy membership func-
tion, as in (3.1) and (3.2), have precisely the same properties as the necessity and

123



162 M. Shattuck, C. Wagner

possibility measures λ and υ that arose in Sect. 2.3 in an imprecise probabilistic con-
text. In the latter context, the mapping a = υ − λ is an obvious candidate for an
ambiguity measure. Can a similar case be made for a, so defined, when υ and λ arise,
as in (3.1) and (3.2), from a fuzzy membership function? It is helpful here to regard a
set A ⊆ � as a set of potential exemplars of the vague predicate ϕ, with υ(A) record-
ing the degree to which ϕ is applicable to the most salient of those exemplars. In what
sense does a(A) = υ(A) − λ(A) quantify linguistic vagueness? One possibility is
suggested by Fishburn’s (1991, p. 4) observation that when A is a proper, nonempty
subset of�, ambiguity should really be thought of as attaching to the two-part partition
{A, Ac} of �. Then, since λ(A) = 1 − υ(Ac), a(A) may be re-conceptualized in the
form

a(A, Ac) = υ(A) + υ(Ac) − 1 = min{υ(A), v(Ac)}, (3.5)

the second equality above following from the fact that υ(A) = 1 or υ(Ac) = 1.
Note that if fϕ is simply the characteristic function of the set A (respectively, Ac),
then a(A, Ac) = 0, as is reasonable, since all elements of A (respectively, Ac) are
perfect exemplars of the predicate ϕ, and ϕ is totally inapplicable to all elements of
Ac (respectively, A).

Consider now the extreme case inwhichλ(A) = 0 for every A ⊂ �, withλ(�) = 1,
andυ(A) = 1 for everynonempty subset of�,withυ(∅) = 0.The resulta(A, Ac) = 1
here might strike one as counter-intuitive, since υ arises from the constant fuzzy
membership function fϕ(ω) ≡ 1. But a predicate applicable with degree 1 to every
singlemember of the universe is essentially tautological, admittingof nodifferentiation
between any A and Ac, and it is in this sense that assigning each partition {A, Ac}
maximal ambiguity is to be understood. To further elaborate on the preceding point,
suppose thatwe are given just fϕ and�,with fϕ not uniformly equal to 1. Thepartitions
having the least ambiguity with respect to ϕ arise from segregating all elementsω ∈ �

with fϕ(ω) minimal into one block of the partition, and placing all other elements of
� into the other block. In other words, a(A, Ac) is minimized for a given predicate ϕ

when either A or Ac comprises the uniformly worst exemplars of ϕ in �.
In the next section, we prove that if λ is a necessity measure and υ is its conjugate

possibility measure, then a = υ − λ satisfies all five of Fishburn’s axioms for an
ambiguity measure.

4 Sufficient conditions for a Fishburn ambiguity measure

Theorem 4.1 If λ is a necessity measure on 2� and υ is its conjugate possibility
measure, then a = υ − λ satisfies all five of Fishburn’s axioms for an ambiguity
measure.

Proof By Theorem 2.7, λ is a belief function, and hence, 2-monotone. So by Theo-
rem 2.5, a satisfies axioms (1.1), (1.2), and (1.3). It remains only to prove axioms (1.4)
and (1.5). For ease of reference, let us reiterate the basic results on which our proofs
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will be based. Since λ is a necessity measure,

λ(A ∩ B) = min{λ(A), λ(B)}, for all A, B ⊆ �. (4.1)

Since λ(∅) = 0, (4.1) implies that, for all A ⊆ �,

λ(A) = 0 or λ(Ac) = 0. (4.2)

Since υ(A) = 1 − υ(Ac),

a(A) = 1 − λ(A) − λ(Ac), for all A ⊆ �. (4.3)

I. We first prove (1.4). By (4.3) the hypothesis a(A) = a(B) is equivalent to

λ(A) + λ(Ac) = λ(B) + λ(Bc), (4.4)

and the desired conclusion, a(A ∪ B) = a(A ∩ B) or a(A − B) = a(B − A), is
equivalent to

λ(A ∪ B) + λ(Ac ∩ Bc) = λ(Ac ∪ Bc) + λ(A ∩ B) (4.5)

or

λ(Ac ∪ B) + λ(A ∩ Bc) = λ(A ∪ Bc) + λ(Ac ∩ B). (4.6)

In what follows, we denote min{x, y} by x ∧ y and max{x, y} by x ∨ y. Suppose that
λ(A ∪ B) = w, λ(A ∪ Bc) = x, λ(Ac ∪ B) = y, and λ(Ac ∪ Bc) = z. Then by
(4.1), λ(A) = w ∧ x, λ(Ac) = y ∧ z, λ(B) = w ∧ y, λ(Bc) = x ∧ z, λ(A ∩ B) =
w∧x∧ y, λ(A∩Bc) = w∧x∧z, λ(Ac∩B) = w∧ y∧z, and λ(Ac∩Bc) = x∧ y∧z.
With this notation, we must show that

(w ∧ x) + (y ∧ z) = (w ∧ y) + (x ∧ z) (4.7)

implies that

w + (x ∧ y ∧ z) = z + (w ∧ x ∧ y) or (4.8)

y + (w ∧ x ∧ z) = x + (w ∧ y ∧ z). (4.9)

(i.) Ifw∨x∨y∨z = x , then (4.7) and (4.8) both assert thatw+(y∧z) = z+(w∧y).
(ii.) Ifw∨x∨y∨z = y, then (4.7) and (4.8) both assert thatw+(x∧z) = z+(w∧x).
(iii.) Ifw∨x∨y∨z = w, then (4.7) and (4.9) both assert that x+(y∧z) = y+(x∧z).
(iv.) If w ∨ x ∨ y ∨ z = z, then (4.7) and (4.9) both assert that x + (w ∧ y) =
y + (w ∧ x).
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II. We next prove (1.5). The hypothesis a(A) > a(B) is equivalent to

λ(B) + λ(Bc) > λ(A) + λ(Ac), (4.10)

and the desired conclusion, a(A ∩ B) > a(A ∪ B) or a(A − B) > a(B − A), is
equivalent to

λ(A ∪ B) + λ(Ac ∩ Bc) > λ(Ac ∪ Bc) + λ(A ∩ B) or (4.11)

λ(A ∪ Bc) + λ(Ac ∩ B) > λ(Ac ∪ B) + λ(A ∩ Bc). (4.12)

Note that (4.10), as well as the disjunction of (4.11) and (4.12), are undisturbed by the
substitution of Bc for B, and so it suffices to consider the following cases:

λ(B) > λ(A) > 0. (4.13)

λ(B) > λ(Ac) > 0. (4.14)

λ(B) > 0 and λ(A) = λ(Ac) = 0. (4.15)

If (4.13) holds, then λ(A∪ B) ≥ λ(B) > λ(A) = min{λ(A), λ(B)} = λ(A∩ B) > 0,
and so by (4.2), λ(Ac ∩ Bc) = 0 = λ(Ac ∪ Bc), which establishes (4.11). In both
cases (4.14) and (4.15), λ(A) = λ(Bc) = 0, and so λ(A ∩ B) = min{λ(A), λ(B)} =
0 = min{λ(Ac), λ(Bc)} = λ(Ac ∩ Bc). Also, in both cases, λ(B) > λ(Ac). Suppose
that the focal events of λ are E1 ⊂ · · · ⊂ Er ⊆ �, and let E0 := ∅. Then, for
some i ∈ {0, . . . , r − 1}, Ac contains Ei , but not Ei+1, and B contains Ei+1, whence
Bc ∩ Ei+1 = ∅. So Ac ∪ Bc contains Ei , but not Ei+1, which implies that λ(Ac) =
m(E0)+· · ·+m(Ei ) = λ(Ac∪Bc). Thus, λ(A∪B) ≥ λ(B) > λ(Ac) = λ(Ac∪Bc),
and so (4.11) holds here as well. ��

5 Summary and conclusion

The term ambiguity is, ironically, itself ambiguous, referring in some instances to
vagueness in language, and in others (especially in decision theory) to probabilistic
imprecision. Fishburn’s axiomatization ofwhat he termed an ambiguitymeasure aimed
to steer a neutral course between these two interpretations. We have demonstrated
that Fishburn’s axioms are indeed consistent with both of these interpretations. At
the core of our argument is a proof that if λ is a necessity measure and υ is its
conjugate possibility measure on 2�, then a = υ − λ is an ambiguity measure. The
set functions λ and υ are initially construed purely abstractly as mappings from 2�

to [0, 1], characterized by the properties (i) λ(∅) = 0, λ(�) = 1, and λ(A ∩ B) =
min{λ(A), λ(B)}; and (ii) υ(A) = 1 − λ(Ac) (whence, υ(∅) = 0, υ(�) = 1, and
υ(A ∪ B) = max{υ(A), υ(B)}). If � is construed as a set of possible exemplars
of the vague predicate φ, with fφ(ω) denoting the degree to which φ is applicable
to ω, then the mappings λ and υ satisfying (i) and (ii) arise here from the fuzzy
membership function fφ by means of the definitions υ(A) = max{ fφ(ω) : ω ∈ A}
and λ(A) = 1− v(Ac), and, as we show, a(A) = υ(A) − λ(A) = min{υ(A), υ(Ac)}
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measures the degree to which the partition {A, Ac} differentiates members of � with
respect to the predicate φ. If� is construed as a set of possible states of the world, then
the mappings λ satisfying (i) coincide with a limited class of lower probabilities on 2�

known as consonant belief functions, and the mappings υ satisfying (ii) coincide with
the upper probabilities that are conjugate to those belief functions. In this case a(A)

measures the degree of imprecision in the lower/upper probability pair (λ, υ) with
respect to the event A. Thus Fishburn’s axioms are consistent with an interpretation
of ambiguity as linguistic vagueness, as well as (a very special sort of) probabilistic
imprecision.
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