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Abstract

Euvidence is often insufficient to support the assess-
ment of precise probabilities. Fortunately, shifting to
vaguer measures of uncertainly, such as upper and
lower probabilities, does not deprive one of the key an-
alytical tools of classical probability. Two approaches
to the calculation of upper and lower ezpected values
are described and contrasted in the case of forecasting
production costs of an electric utility. Conditionaliza-
tion of imprecise probabilities is also discussed.

1 Introduction

Among the techniques used to treat uncertainty in
integrated resource planning probabilistic analysis re-
quires the most extensive quantification. In such an
analysis, “Probabilities are assigned to different val-
ues of key uncertain variables, and outcomes are iden-
tified that are associated with the different values of
the key factors in combination. Results include the ex-
pected value and cumulative probability distribution
for key outcomes, such as electricity price and revenue
requirements.” [3].

A survey of the integrated resource plans of a num-
ber of electric utilities reveals that fully developed
probabilistic analyses of uncertainty are rarely pur-
sued. To make this observation is in no way to dis-
credit the planning staffs of these companies. Their
abstention from probabilistic analyses is a principled
response to the unrealistically precise quantification
of uncertainty demanded in such analyses. On the
other hand, planners typically possess information
that would support the assessment of upper and lower
bounds, or other such constraints, on the probabilities
of values of key variables.

Remarkably, shifting to vaguer assesssments of un-
certainty does not deprive one of important analytical
tools such as expected value and conditionalization.
Useful, rigorously justified versions of both of these
tools may be developed within the theory of imprecise
probabililies, an extended account of which appears in
the research report [13]. The present paper outlines
some key 1deas from that report.

2 Upper and Lower Probability

If Q is a set of possible states of the world, un-
certainty about which state w € @ is the true state

is often modeled by a probabilily measure P defined
on some class of subsets (called events) of Q. The
number P(A) assigned to the event A represents the
probability that the true state of affairs belongs to
the set A. Axiomatic accounts of probability the-
ory always postulate that 0 < P(A) < 1 for all
events A, with P(2) = 1. In addition, additivity
of PIANB = 0 = P(AU B) = P(A) + P(B)) is
always postulated, and countable additivity (P(A; U
Ay U-) = P(A) + P(A3) + -+, for every infinite
sequence Ay, Ay, ... of pairwise disjoint events) is of-
ten postulated (always, among mathematicians). As
a consequence of these postulates, one always has
P(A)—i—PéA) =1 where A = {w € Q: w ¢ A},
and so P(0) = 0.

Suppose that we now relax the demand for a sin-
gle number expressing the probability of an event A,
allowing assessment of uncertainty by an interval of
numbers [P(A), P(A)], with P(A) construed as the

“lower probability” of A and P(A) as the “upper prob-
ability” of A. What properties should any uncertainty
measures deserving of these names possess?

At the very least, we should have

0 < P(A)<P(A) <1, for all events A, with
P®) = P(B)=0and P(Q)=P(Q)=1, (1)

as well as monotonicity of P and P, i.e.,

Al € Ag = E(A]_) < ﬁ(Ag) and
P(A1) < P(4) 2)

And if the bounding functions P and P are to be use-
ful, there ought, of course, to exist at least one prob-
ability measure P satisfying

P(A) < P(A) < P(A) for all events A.  (3)

When Q is finite, checking that (3) holds for some P
amounts to checking that certain linear inequalities
have a solution, which is easily done by linear pro-
gramming if  is not too large.

In what follows, therefore, we shall call functions P
and P a pair of lower and upper probabilily measures
if they satisfy (1), (2), and (3). It should be noted
that some authors are more stringent in their use of



these terms, requiring in addition the properties of
complementarily, 1.e.,

P(A)+PA) =1
superadditivily of P, Le.,
AiNAy =0 = P(A1UAy) > P(41) + P(A2) (5)
and subaddilivity of P, i.e.
AiNA; =0 = P(A; UAR) < P(A1) + P(Aa). (6)

The above three properties, are always possessed by
the “tightest possible” lower and upper bounds defin-
ing the same class of probability measures P as (3). If
Q is not too large, one can upgrade a pair of upper and

for all events A, (4)

lower probability, measures P and P to a pair P# ?5#
satisfying (1)-(6), with P(E) < P#(E) < P (F) <
P( E) for all events E. Using standard linear program-
ming, one simply computes

P*¥(B)=min{P(E): PeP(P,P)}, and (7)

where P(P,P) is the closed, convex polyhedral set
given by

P(P,P) = {P:Pis aprobability measure and
P(A) < P(A) < P(A) for all events A}, (8)
and then defines
P¥(E)=1- P*(B). (9)

In general, one can of course avoid assessing values of
both P and P, assessing only values of P and defining
P(E)=1- P(FE).

3 Choquet Expectation

Suppose that the random variable X : € — R
takes on only a finite set of values, say, z1 < z2 <

. < &n. If P is a probability measure on 2, then the
expected value of X with respect to P, denoted Ep(X),
is given by the familiar formula

= Z:mi P(X =), (10)

where P(X = z;) is an abbreviation for P({w € Q :

X(w) = 2}).
By additivity of P we have forl1 <1< n-1,

that P(X = z;) = P(X > %) — P%{X > Lit1), SO an
equivalent (though shghtly odd looking) formula for
Ep(X) is given by

EP(X) =

n-1

Ep(X)

ST 2 {P(X 2 @) = P(X 2 zit1)} + 22 P(X = 22)

i=1

—ﬂfl—G—Z

:— ;1) P(X > z;). (11)

Now if P and P are a pair of lower and upper prob-
ability measures on €2, then, motivated by (11), we
define Ep(X) and E5(X) by the formulas

P(X) A-’Bl-i-z

i —zi—1)P(X > zi) (12)

and

Ep(X *I1+E

We call £p(X ) and E5(X) the Choquel ezpected val-

ues of X with respect to P and P. The above formulas
are simply special cases of the general formula, valid
for every random variable X,

i — Li— 1P(X>:L') (13)

Eu(X) = /000 a(X > z)de — ] [1-aX > z)de,

— 00

where « = P, P, P [2].
Since the quantities z; —z;_; appearing in (12) and
(13) are positive, it follows immediately that

PeP(B,P) = &(X) < Ep(X) < Ep(X), (14)
where P(P, P) is defined by (8), and so, with

&(X) = min{Ep(X): P eP(L,P)}, and
&(X) = maz{Ep(X):PeP(P,P)}, (15

it follows that

E£p(X) < E(X) < E(X) < &5(X). (16)

So the crucial quantities £(X) and £(X) may be
conservatively approximated, respectively, by the eas-
ily computable quantities £p(X) and E5(X).

Note that the number of constraints defining
P(P, P) is exponential in the cardinality of €2, so for
“large” Q the direct calculation of £(X) and &£(X)
may not be possible.

In certain cases, we are guaranteed to have
Ep(X) = £(X) and S =(X) = £(X). This always hap-
pens, for example, if the pair P, P satisfy(1)-(4) and
P satisfies the following stronger version of superad-
ditivity, called 2-monotonicily:

P(A1UA3) > P(A1) + P(As) = P(A1 N Ag). (17)
(See [1] and [7].) Several common constructions of
imprecise probabilities yield 2-monotone lower proba-
bility measures [4], [6], [8].

In the next section, we review a study in which
the above ideas were applied to forecasting production
costs of an electric utility.



4 Forecasting Production Costs

In a study of Thorp, McClure, and Fine [7], the
1990 production cost, C, of an actual, but unidenti-
fied, electric utility depends on the values of the un-
certain quantities (i.e., random variables) F = energy
demand (GWH?, F = load factor, and R = average
year to year coal price increase from 1981 to 1990 (%g).
Given specific values E = ¢, F' = f, and R = r of these
random variables, a standard production costing al-
gorithm can be used to calculate the corresponding
production cost C = Cl(e, f, 7).

In this study the possible values of F, F', and R
are given, respectively, by the sets Qg = { 50,000
GWH, 60,000 GWH, 70,000 GWH}, Qr = {0.635,
0.675, 0.725} and Qg = {1%, 2%, 4%}. To complete
the construction of the conceptual apparatus of §3, the
97-element set 2 was defined by

Q = QpxQQrxQg (]_8)
= {(e,f,r) e €Qg, f€Qp, andr € Qr}.

The 1990 production cost is then a random variable
C: Q—[0,00).

Next, the values of C were calculated for each of the
27 triples (e, f,r) € Q and arranged in increasing or-
der, ¢y < ez <...<cy7. Then, foreachi=1,...,27,
the triples comprising each of the 27 events

A = T
= {(e,f,9)€Q:C(e,f,9) 2 i} (19)

were identified.

At this point, upper and lower probabilities P(A;)
and P(A;) were assessed for A;,...,As7. Then the
Choquet expected values of C' with respect to P and
P were calculated by formulas (12) and (13), yielding
in this case £p(C) = $1.159 B and & = 1.438 B.

Thorp, McClure, and Fine assessed the required
values of P and P by convening a panel of six ex-
perts from the planning department of the company.
Each of the experts assessed probabilities over the sep-
arate sets Qp = {50,000; 60,000; 70,000}, Qp =
{0.635, 0.675, 0.725}, and Qr = {1,2,4}. As
suming independence, probabilities were multiplied to
yield probability measures Pp,..., P on 2 = Qp X
Qp x Qgr. The lower and upper probability mea-
sures on ) were constructed as the so-called lower and
upper envelopes of the family {Py,..., Ps}, namely
P(4) = min{Pl(Ai%: ..., Pg(A;)}, and P(4;) =
maz Pl(A,'), o Pg(A ) for 1 <4 <27.

In [13] it is argued in detail that the family P(P, P),

with P and P constructed as above, does not repre-
sent the probability measures on {2 compatible with
the experts’ opinions. In particular, this family con-
tains probability measures for which F, F, and R are
not independent, and excludes other reasonable prob-
ability measures on £1.

As an alternative to Choquet expectation in this
particular case, we have explored bounding expected
cost as follows: with Qp = {e;,eq,e3}, {p =
{f1, f2, fa}, and Qr = {r1,72,ra}, the probability

measures m on £ = Qg x Qp x Qg compatible with
the experts’ opinions are given by

wies, i Th) = €05 Pk (20)

where €1 +ea+es =1 +pat+es=p1+p2+pa=1,
and the partial sums of these variables are bounded by
the minimum and maximum values assigned by the ex-
perts to the corresponding events in Qg, Qp, and Qg
(e.g., €1+ €2 is bounded below by the smallest proba-
bility assigned by any expert to the event {e;, e} and
above by the largest such probability).

The upper and lower bounds £*(C) and &,(C) are
then calculated as the maximum and minimum of the
nonlinear function

£:(C) = Z Cles, fi re)eipipr,  (21)

FEisy<h
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yielding £*(C) = $1.542 B and £.(C) = §1.081 B, a
somewhat wider pair of bounds than those calculated
by Choquet expectation.

The concavity of £ (C) and the special nature of
the constraints makes the calculation of £,(C) in this
and considerably larger scale problems relatively sim-
ple. The calculation of £*(C) is easy enough in this
case, but may present difficulties in larger scale prob-
lems. We are currently investigating this issue. Of
course, independence need not be assumed to apply
the above method, for one can easily introduce vari-
ables representing conditional probabilities.

It should be noted that Choquet expectation, while
inappropriate in the above problem, can be a very
useful tool for bounding expected values, in particular
when € is not a Cartesian product and upper and
lower probabilities are directly assessed over events in

Q.

5 Conditionalization

Suppose that P and P are a pair of lower and
upper probability measures on 2. The probability
measures P compatible with P and P are, we recall,
just those P € P(P,P) = {P : P(A) € P(A) <
P(A) for all events A}. Now if some probability mea-
sure P is our model of “how uncertainties lie” in € and
we are apprised of additional information with renders
it certain that “the truth lies in E,” for some subset
E C Q with P(E) > 0, it is customary to revise P

by “conditionalization” to a new probability measure
P(-|E), where P(A|E) = P(ANE)/P(E) for all events
A

.If, instead, we have P delineated only by P and P,
and we discover that F is certain, we have the problem

of conditionalizing P and P (assume P(E) > 0). A
natural way to do this would be by the formulas

P(A|E) = min{P(A|E): P € P(P, P)} (22)
and

P(A|E) = max{P(A|E) : P € P(P,P)}. (23)




That is, P(-|E) and P(-|E) are just the lower and up-
per envelopes of the family of all conditionalized prob-
ability measures P(:|F) as P runs through the set of

all probability measures compatible with P and P.
As one would expect, it is in many cases impossible to
compute P(A|E) and P(A|FE) exactly. The difficulty
is the very one encountered with respect to Q(XP and
£(X) in §3. In fact, the situation here is completely
analogous to that of §3, for here we can find conserva-
tive approximations to P(A|E) and P(A|E) that are
exact when P is two-monotone.

The approximations are easily derived. Let P €
P(P,P). Since P(E) = P(ANE)+ P(ANE) for
every event A, one has

3 P(ANE)
PAIE) = P(ANE)+ P(ANE)
N P(ANE)
=~ P(ANE)+PANE)
> HAnD) (24)

P(ANE)+P(ANE)’
where the first inequality holds because for fixed ¢ > 0,
z/z+cis an increasing function of z for z > 0, and the
second inequality holds because P(A N E) is replaced

by the value P(ANE) > P(ANE). Similarly, one can
show that

P(ANE) .
PAIE) < P(ANE)+ P(ANE) (2%
From (22) - (25), it follows that
P(ANE)
P(ANE)+P(ANE) ~ E(AIE)
< P(AlE) (26)
z P(ANE)

P(ANE)+P(ANE)

Moreover, if P and P satisfy, in addition to the defin-

ing properties (1) - (3), the complementarity property

(4), and if P is two-monotone (17), then the first and

third inequalities in (26) are actually equalities. And

in such a case, _E(A[E% + P(A|E) = 1, and P(:|E)
6

remains two-monotone
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