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     Abstract.  We'll see how multiplying various power series leads to the solution of many interesting 

problems in enumerative combinatorics. In particular, we will derive what is arguably the most beautiful 

formula in mathematics, the so-called "exponential generating function" of the sequence 0( )n nB    of 

Bell numbers, which enumerate the equivalence relations on an n -element set. 

 

Notation and Terminology 

a.  Notation:   N = {0,1,2,…},  P = {1,2,…}, R = the set of real numbers,                         

[0]   ,  and [ ] {1,..., }n n  if nP. We use the set [ ]n  as our generic n element set.                                 

If A  is a finite set, | |A  denotes the cardinality of .A   
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c.  The set  [ ]n  has 2n  subsets 

d.  If 0( )n na   is a sequence in R,  
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exponential generating function of 0( )n na  .   

PART I 

1.   Definition:  A composition  of the positive integer n  is a way of writing n  as an ordered sum 

of one or more positive integers, called the parts of the composition.  Let ( ) :comp n   the number 

of compositions of n ,  and  ( , ) :comp n k   the number of compositions of n  with exactly k  

parts. 



Theorem 1.   For all 0,n   ( )comp n    12n .    If 1 k n  ,  ( , )comp n k    
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2.   Now let , 0n k   and suppose that I  is a nonempty set of nonnegative integers. 

      Let ( , , ) :C n k I   the number of ways to write n  as an ordered sum of k  members of I  

 Conventions:        ( )i   
,0( ,0, ) nC n I  .        ( )ii  

0,(0, , ) kC k I   if  0 .I   

Note that the definition  of  ( , , )C n k I  implies that (0, , )C k I  1 if  0 I .  Also, if 0 I  and 

k n , then ( , , ) 0.C n k I    

Theorem 2.  For all 0k  ,  
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Proof.  Since ,0( ,0, ) ,nC n I   the result holds for 0.k   Since ( ,1, ) 1C n I   if n I  and 

( ,1, ) 0C n I   otherwise, the result holds for 1.k    If 2,k   then 
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Recall  Newton’s generalization of the binomial theorem:  For all R,   

                                      
0

(1 )
n

x
n






 
   

 
  nx    for all x R such that  | |x  < 1. 

Application  2.1:                                
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Application 2.2 (exercise).  Noting that ( , ) ( , ,comp n k C n k P), use Theorem 2 to show that  

(0,0) 1,comp   
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3.  Now suppose that I P,  so that ( , , ) 0C n k I   if k n  and we may define ( , )C n I  by 
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Application  3.1   
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   Multiplying both sides by 21 x x   and 

equating the coefficients of like powers of x yields the following  recursive formula  for 

( ,{1,2}) :C n   

(0,{1,2}) (1,{1,2}) 1C C  , and ( ,{1,2}) ( 1,{1,2}) ( 2,{1,2})C n C n C n     for all 2.n           

So ( ,{1,2})C n  = nF  ,  the thn  Fibonacci number. 

Application  3.2 (exercise) 

( )i  Determine  
0

( ,
n

C n


  2N +1) nx  , where 2N +1 denotes the set of odd positive integers, and 

use the result to find a recursive formula for ( ,C n  2N+1). 

( )ii  Determine  
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  2P) nx , where 2P denotes the set of even positive integers, and use the 

result to find a recursive formula for ( ,C n  2P). 

( )iii    Let nc denote the number of compositions of n  with all parts greater than 1.  Determine 
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( )iv  Let nc  denote the number of compositions of n  with all parts congruent to 2  modulo 3. 
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PART II 

                      

1.  Functions and Ordered Partitions 

If  A  is any set, a sequence 1( ,..., )kA A  of pairwise disjoint subsets of A  such that 

1 kA A A   is called a weak ordered partition of A.  If each iA  , then 1( ,..., )kA A  is 

called an ordered partition of A.  The sets iA  are called blocks.  

Remark.  There is a 1 – to – 1 correspondence between the set of all functions : [ ]f A k   

and the set of  all weak ordered partitions 1( ,..., )kA A  of A ,  given by the mapping                                        

1 1( ({1}),..., ({ }))f f f k    

The restriction of the above map to the set of surjective functions is a 1 – to – 1 correspondence 

between the set of such functions and the set of all ordered partitions  1( ,..., )kA A  of  .A   

 

Theorem 1.   If 1 2 kn n n n   , where each 0,in    then the number of weak ordered 

partitions  1( ,..., )kA A  of the set [ ]n   with | |iA  = in  is equal to the k – nomial coefficient 
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functions :[ ] [ ],f n k  namely, those f  for which  1| ({ }) |f i  = in , 1,..., .i k   

 

 

 



2.  Generating Functions for Ordered Partitions 

Suppose that I   N is nonempty.  Let ( , , ) :P n k I   the number of weak ordered partitions 

1( ,..., )kA A  of  [ ]n  ,  with each | |iA  .I  By the convention that empty unions are equal to the 

empty set, we have ,0( ,0, ) .nP n I   If 0,k   (0, , ) 1P k I   if 0 I  and (0, , ) 0P k I   if 0 .I   

Theorem 2.  For all 0,k   
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Proof.  The case 0k   follows from the fact that ,0( ,0, ) .nP n I   The case 1k   follows from 

the fact that ( ,1) 1P n   if n I  and ( ,1) 0P n   if .n I  If 2,k   then 
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Application 2 .1 (exercise) Show that ( , ,P n k N) = .nk   This result is predictable since the weak 

ordered partitions of [ ]n  with k  blocks are in 1 – to – 1 correspondence with the set of functions 

:[ ] [ ].f n k        

 

Application 2.2   
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The numbers ( , ,P n k P), often denoted by ( , )n k , count the number of ordered partitions of [ ]n  

with k  blocks, and hence the number of surjective functions :[ ] [ ].f n k   
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               Remark 2.2.1        
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      Now suppose that I P, so that ( , , ) 0P n k I   if k n , and we may define ( , )P n I  by 
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( ,P n P), usually denoted simply by ,nP  counts the total number of ordered partitions of [ ].n  The 

numbers nP  are sometimes called  horse- race numbers. nP  also counts the number of weak 

orders of [ ],n  i.e., reflexive, transitive, complete binary relations on [ ].n   

Application 3.1            
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3.  Generating Functions for Partitions. 

If A  is any set, a partition of A is a set of nonempty, pairwise disjoint subsets of A , with union 

equal to A. The sets comprising a partition are called  blocks.  There is a 1 – to – 1 

correspondence between the set of partitions of A and the set of equivalence relations on A, 

where the blocks are called  equivalence classes.  

Let  ( , )S n k : = the number of partitions of [ ]n  with k  blocks (= the number of distributions of 

balls labeled 1,…, n  among k  unlabeled boxes, with no box left empty)   
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Corollary 4.2 (Dobinski’s formula).    For all 0n   ,      
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Remark 4.1  It follows from Dobinski’s formula  that any infinite series of the form 
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Remark 4.2  As in the case of ordered partitions, one can enumerate partitions subject to various 

limitations on their block cardinalities, and also where the blocks of a partition are equipped with 

various binary relations.  


