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Moments of the Interclass Mahalanobis Distance
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Abstract—1t is shown that the moments of the interclass Mahalanobis
distance between elements of two d-variate Gaussian populations can be
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expressed in a simple polynomial form. The nth moment is expressible as a
polynomial of order n whose variable depends on the mean vectors and
eigenvalues of the covariance mafrices. A closed-form solution is given for
computing the coefficients of the polynomial expressions.

1. INTRODUCTION

Pattern recognition and image processing techniques based on
the Mahalanobis distance have found wide applicability, ranging
from nuclear reactor surveillance and automated analysis of
image texture data to discrimination problems in biomedical
observations [1], [2], [3]). '

The importance of the Mahalanobis distance classifier lies in
the fact that, under a Gaussian assumption, it is an optimal
discriminant in the Bayes sense [4], The estimation of the proba-
bility density function (pdf) of the interclass Mahalanobis dis-
tance has been a topic of active interest for a number of years
because of its direct relation to the probability of error of Bayes’
classifier [5]. For Gaussian data with equal covariance matrices,
the solution of this problem is straightforward [6]. When the
covariance matrices are not equal, however, the problem becomes
considerably more complicated, requiring the use of numerical
integration techniques for computing the pdf [7].

In many applications {(g.g., cluster seeking, texture analysis,
and measuring spatial stationarity of multivariate data) it is often
of interest to compute the moments of the interclass Mahalanobis
distance without having to estimate its underlying pdf as an
intermediate step. It is shown in this paper that these moments
can be expressed directly in terms of a polynomial whose coeffi-
cients are given by a straightforward closed-form expression. The
relative simplicity of these results has important implications in
terms of implementation in a digital computer.

II. BACKGROUND

Consider two d-dimensional Cavssian vector populations { x}
and { y} with mean vectors and covariance matrices m,, m,, C,,
and C,, respectively. The intraclass Mahalanobis distance' be-
tween any member of {x} and m, is given by the familiar
equation [1]

R(xsm:r)=(x_mx)TC;l(x_mx)’ (1)
and, similarly, ‘
R(y.m,)=(y—m,) C ' (p —m,), )

where “T” indicates the transpose.

As indicated in the previous section, (1} and (2) have been
applied extensively in pattern recognition. In this paper, we are
interested in characterizing the interclass Mahalanobis distance
between members of x and the mean m » which is given by

R(x,m,)=(x- my)TCy"l(x—my) (3)
and similarly,
R(p,m)=(y-m) ¢ (y—m,). (4)

For any nonsingular, real transformation matrix A it is easily
shown that if

r=Ax (5)
and
s=Ay, (6)
then r and s are Gaussian random variables with mean vectors
m, = Am, )
m, = Am, (3)

IThis is in reality a squared distance. However, it has become customary to
refer to this measure simply as the Mahatanobis distunce.
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and covariance matrices

C = ACA" (9)
C, =ACA". (10)
1t is also easily shown that
R(r,mg)=R{x,m,) (11)
and
R(s,m,) =R(y,m,). (12)

Furthermore, as described in [6] and [16], the transformation
matrix A can be chosen so that

C=ACAT=1

(13)

and

C,=ACA" =D, (14)
where I is the identity matrix and I is a diagonal matrix with
elements y(i), i = 1,2,- - -,d, along the main diagonal. The ele-
ments y(i) are the eigenvalues of C; 'C,. From (13), it is noted
that the elements of r are uncorrelateci) which, in view of our
Gaussian assumption, implies statistical independence. The same
holds true for the elements of s.
Using (3), (11), and (14), it follows that

R(x,m,)=R(r,m,)

= (P - ms)TD—l(r - ms)

d
2 .
= 2 (- mg) (), (15)
i=1
where #; and m;, i = 1,2,- -, d, are the components of veclors r
and m,, respectively. Since r is a Gaussian random vector and
C, = I, we have that the variable z, = (r, — m ;) is Gaussian with

mean (m, — ) and unit variance. It then follows [9] that
2
w=2}=(rn—my) (16)
is a noncentral chi-square variable with density
) A (1 +26)/25=wi/2
p(wf')=e_;\f Z 1 +2k (17)
k=0 k!2(1+2k)/21'l(_2__)
and moment generating function
L —(1+2k)./2
pu ) = e Y (1 -20) : (18)
k=0""
where
1
A= ‘i'(mn' - msi)z' (19)

Since #,i=1,2,--,d, are statistically independent, it [ollows
that the w; defined in (16) are also statistically independent.
A similar development can be carried out for R( y, m,):

R(y,m.)=R(s,m,)
=(s-m) ' (s—m,)
d
=2 (s mn‘)z-
i=1"

The variable z, = (s, — m,;)//y(i) is Gaussian with mean
(my — m,)/ /y¥(i) and unit variance. As above, the variable
2o L (21)

2
w=1 (5, — m,;)

O y(d)

(20)
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has the density and moment generating function given in (17)
and (18), but A; is now given by

1
A= m(msi - mrr‘)z' (22}

III. MOMENTS OF THE INTERCLASS MAHALANOBIS
DISTANCE.

It is shown in this section that the moments about zero of w,
can be expressed in terms of A,. Once these moments have been
obtained, they wiil be used to obtain the moments of the inter-
class Mahalanobis distance.

A. Moments about Zero of w;

We begin the development of noting that the nth moment
about zero of w, is given by

ap(w) = E{w"} = ¢};)(0) (23)

where ¢["1(0) is the nth derivative of (18) with respect to 1,
cvaluated at ¢ = 0[10]. Evaluating (23) with the moment generat-
ing function given in (18) leads to the following theorem.

Theorem I: Let e, (w;) denote the nth moment about zero of
w;. Then

n

an(wi)= ZC(R,I’)X} (24)
r=0
where
n—-1
e(n,ry =2 (3 [T (25 +1) (25)
J=r
forallnzland 0 < rgn—1,and
c(n,n)y=2" (26)
foralln z 0.
Proof: From (18) and (23),
e, (w;)=4,1(0)
oy A g —( 4 26)/2
=€ Z k' at" (1 -2t ) 't 0 (27)
e ): k'sl;ll(2k+2.5“—l) (28)
] AJ o0 Ak n
E E il 1_[ 2k +25s-1) (29)

j=0
-5y (s, )r:]1(2m+zp1),

r==0 m=0
(30)

where (30} follows from (29) by the standard rule for multiplying
Taytor series.
[lsI]iy a well-known formula from the calculus of finite differences

b(n,r) = ﬁ (—1)'“"’(;,)51i111(2m +25—1)

m=0

= A’lﬁ] (2x+ 25— 1) (31)

x=0
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where &°%f(x) = f(x), 8f(x) = 8f(x) = f(x + 1) ~ f(x), and
K7(x) = 8(8f(x)) (32)

- 4 -1 r—kf ¥ k , 33
PG VI FCERO NI

forr = 2.
Since I12.,(2x + 25 — 1) is a polynomial in x of degree #, it
follows that &(n, ) = 0 if r > n, and hence from (30) that

(m) = L e(m X, (34)

where
c(n,ry=b{n,r)/rt. (35)

Now

ul " 1 3 2n -1

s=]_!1(2x+2.s'—1)=2((x+§)(x+5)---(x+ 3 ))
(36}
=2"(u—-1)-- - (u—n+1) (37)

where
u=x+{(2n-1)/2. (38)

It follows casily by induction from (33) that
&2u(u—-1)---(u—n+1)y=2"(n—1}--
(n=r+Du(u—-1)---(u—n+r+1} (39)
when r < n, and that
AN2u(u—1) - (u—n+1)=2"n!
Hence, (31), (37), (38), and (39) yield

(n—r+ 1)ﬁ(2j+ 1) (41)
j=r

(40)

b(n,r)=2n{n—1) -

< r < n,.and (31), (37), (38), and (40) yicld
b(n,n)=2"n! (42)

Dividing (41) by r! and (42) by n! yiclds (25) and (26), as desired.
In particular, with ¢(0,0) = 1,

ifnzland0 <

c(n,0) = H (2j+1)=2n-1c(n~1,00 (43)
j=0 :
forn > 1, and
2An—r-+1)
=0 2 -1 44
c{n,r) 2 =D e(n,r—1) ( )
for #> 1 and 1 < r < n. The recurrence relations (43) and (44)

enab]e one to generate the triangular array of numbers ¢(n, r)
with ease. Hence one may easily calculate the polynomials e, {w;),
which are listed below for 0 € n < 5

ag(w;) =1

a(w)=1+ 24,

o (w,) = 3+ 12X, + 4N,

ay(w;) =15 + 90X, + 60X + 8N}

ag(,) = 105 + 840X, + B40A2 + 224N’ + 16M

as(w;) = 945 + 9450, + 12600A2 + 50403 + T20X% + 3225,
: (45)
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B. Moments about Zero of R
From (15} and (16),

d
R(x,m,) = Y wy™'(i).

i=1

(46)

The nth moment about zero of R is then

d n
a"[R(x,mJ,)] = E{R"(x,m,)} = E{[Z Wi/?’(f)] }

i=1
(47)

The coefficients of a sum raised to the rnth power are given by the
multinomial theorem {13]; that is,

n! 4 .\ 1¢
a"[R(x‘m-")] = E{Z 61!6‘2! ed! Q[Wj/Y(’)] l}’
(48)

where the summation is taken over all nonncgative values of
€1, €9, ,€gsuch that e; +e; + -+ + g, =n,
In view of the independence of the w;’s, it follows that

e R m)] = £ (s ) T e (/000
(#)

where the &, (w;), i = 1,2,- -, d, are given by (24), using values

of A, given by (19)
Smce

d
R(y)mx) = Z (Si - mn‘)z

i=1
d

= Z W[-'Y(f),
i=1

where w; is given by (21), it follows using a similar development
that '

n! 4
0 {R(3,m)] = z(w)nl (2 (o)),

(51)
-,d, are given by (24) using values of

(50)

where the a, (w;), 7 =
A, as given i (22).
1V. SPECIAL CASES

In this section we consider special cases involving various
arrangements of mean vectors and covariance matrices of two
pattern populations.

Equal Covariance Matrices

When C, = C, = C, it follows from (13) and (14) that C, = C,
= I Consequently. y(i)y=1,i=1,2,---,d, and both forms of Af
((19) and (2.22)) become the same, Th1s leads to equal moments
via (49) and (51).
Equal Mean Vectors

When m, = m,, it follows from (7) and (8) that m, = m, and,
consequently, A; = 01in (19) and (22). Then from (24) and (25)

an(wl) = C(H,O)
~T1@s-1)

s=1

(52)

for both populations. Substitution of (52) into (49) and (51}
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yields

an[R(x, m_‘)] =

d
Z( n!
ele! el Jid

i) L LeCe00/(r)°]
(53)

and

d
alR(rm)] = X ) 1T [CeCen0v()"]

(54)

eley! - -

Equal Mean Vectors and Covariance Matrices (Intraclass
Mahalanobis Distance)

When m,=m,=m and C, = C, = C, we have only one .
population and the problem reduces to computing the moments
of the intraclass Mahalanobis distance. It follows from (52) and
(53) and the fact that each y(i) = 1 (see the remarks above on
equal covariance matrices) that

ay[ R(x,m,)] =X

' 32 t ',ed!

Iljl[(Zi—l) l_d[l(Zi—l)

n—1
= T (a+2)), (55)
Jj=0

where the summation in (54) is over all ¢; > 0 such that e, + ¢,
+ -+ +ey=n, and (55) follows from (54) by the following
argument. By the extended binomial theorem

(1 -207= % ("12)(-20)"

el
- (De-n)% o
ol
Raising (56) to the dth power yields
(1-2x)"*
00 A ed
=E(Z(H(Zi—l)---n(Zi—l))/el -ed!)x".
n=0 i=1 i=1
(57)
On the other hand, the extended binomial theorem yields
(1-20) = ¥ () (-20y"
n=0
Z {(d)(d+2)- - (d+2n-2) . (58)
n=0 '

Comparison of the coefficients of x” in (57) and (58) yields the
desired result.

One observes from (55) that the moment in question depends
only on the order of the moment and the dimension of the
pattern vectors,

Y. CONCLUSION

The expressions given in (24), (25), (26), (49), and (51) lead to a
straightforward algorithm for computing the moments about zero
of the interclass Mahatanobis distance. If desired, the central
moments can be obtained from these results by means of a
well-known transformation [10].
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The importance of these results is that they allow direct com-
putation of the moments without having to resort to the inter-
mediate step of obtaining the pdf which, as indicated in Section I,
is not a trivial problem in the case of unequal covariance matrices.

The expressions for the moments were considerably simplified
in the special cases discussed in Section IV. In particular, the
intraclass Mahalanobis distance was shown to lead to expressions
which depend only on the order of the moments and the dimen-
sion of the vector populations.
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