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1. Opinion Aggregation 

 

Opinion aggregation problems arise when a number of individuals express different 

opinions on some set of variables (the ‘agenda’) and we wish to combine them into a 

single consistent ‘collective’ opinion on each variable. General methods for solving 

problems of this kind have been extensively studied in different domains - for instance in 

social choice theory, in statistics and in judgment aggregation theory – typically by 

identifying the class of methods satisfying one or more constraints. And although the 

kinds of opinions (votes, probability estimates, acceptances of propositions, etc.,) that 

that serve as inputs differ in these studies, as do the attendant notions of consistency of 

opinion, very similar constraints on aggregation are invoked in all of them.  

 

Three of the most common of such constraints are especially relevant to our discussion. 

They are: 

1. Universal Domain: The requirement that the method of opinion aggregation be 

applicable to any combination of individual opinion. 

2. Independence: The requirement that the collective opinion on any particular 

variable depend only on the individuals’ opinion on that variable and not on their 

opinions on any other variable.  

3. Unanimity Preservation: The requirement that any opinion unanimously held by 

individuals be retained in the collective opinion. 

Although the precise implication of these constraints on aggregation methods depends on 

the exact form of the opinion aggregation problem, in combination they severely 

constrain the class of admissible aggregation methods. Indeed in some well-known cases 
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they suffice to restrict us to dictatorial methods i.e. to those methods which assign a 

collective value to each variable as a function of opinion of a single individual.  

 

This paper studies the effect of these conditions in the context of a common type of 

opinion aggregation problem, termed an allocation problem, and in particular those in 

which the set of permissible opinions is finite. Allocation problems are opinion 

aggregation problems in which both individuals’ opinions and the collective opinion are 

required to sum to a fixed value. A very simple and familiar kind of allocation problem is 

when individuals must vote for one, and only one, of a set of alternative proposals and 

one, and only one proposal, must be collectively accepted. Another is when a fixed 

amount of money is available to spend on a number of alternative goods or projects and 

individuals hold different opinions on how much should be spent on each. In this case the 

sum of the proposed amounts to be spent on each alternative, as well as the finally agreed 

amounts, must sum to the available budget. Finally, we face an allocation problem when 

individuals make probability judgments on a set of mutually exclusive and exhaustive 

propositions, for then the sum of these probabilities, as well as the sum of the aggregate 

ones, must equal one.  

 

Any general method for forming a collective opinion in allocation problems will be 

termed an allocation aggregation method. In Lehrer and Wagner (1981) it was shown that 

in cases in which the set of possible opinion values is infinite (specifically an interval of 

real numbers) versions of the Universal Domain, Independence and Unanimity 

Preservation conditions suffice to constrain the class of allocation aggregation methods to 

those taking the form of linear averages with non-negative weights. In this note we 

extend their treatment to the case of ‘realistic’ allocation problems, namely ones in which 

the set of possible opinion values is finite. The main result of the paper is the following: 

in realistic allocation aggregation problems the only aggregation methods consistent 

with only the three conditions are the dictatorial ones. 

 

We proceed as follows. In the next section, we review the results of Lehrer and Wagner 

(1981) characterizing linear averaging rules in the case infinite valuation domains before 
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stating our ‘dictatorship’ result for finite domains. In subsequent sections, we consider 

the implications of the theorem and relation to the existing literature. All proofs are 

contained in an appendix. 

 

2. Allocation Aggregation Problems 

 

An nm  matrix A = (aij) is an s-allocation matrix if (1) each entry of A is a nonnegative 

real number and (2) the sums of the entries in each row of A are identically equal to some 

fixed positive real number s. Each such s-allocation matrix may be thought of as 

recording the opinions of n individuals regarding the most appropriate values of  

variables x1,…,xm, constrained to be nonnegative and to sum to s, with aij denoting the 

value assigned by individual i to variable xj. When n = 1, an s-allocation matrix is called 

an s-allocation row vector. In what follows, the j
th

 column of a matrix A is denoted by   

Aj , and the j
th

 entry of the row vector  a  is denoted by  aj. The n 1 column vector with 

all entries equal to c is denoted by c. If  A = (aij)  and  B = (bij) are any matrices with 

identical dimensions,  we write  A   B to indicate that  aij   bij  for all i and j. 

 

Let V denote a subset of the interval [0,s] satisfying the closure conditions: (1) 0V, (2) 

if xV then s – x V, and (3) if x,yV and x + y   s then x + y V. Let A(n,m;s,V)  

denote the set of all  nm  s-allocation matrices with entries limited to elements of V, 

and A(m;s,V) the set of all m-dimensional s-allocation row vectors with entries limited 

to elements of V. An allocation aggregation method (AAM) is any mapping F: 

A(n,m;s,V)A(m;s,V), from profiles of  individual allocations to a collective 

allocation. An AAM  F  is dictatorial if there exists an individual d{1,…,n} such that 

for all A A(n,m;s,V),  F(A) = (ad1, ad2,…,adm).   

 

Each AAM furnishes a method, applicable to every conceivable s-allocation matrix A, of 

reconciling, in the form of the group assignment F(A) = a = (a1,…,am), the (typically) 

different opinions recorded in A. By definition thus an AAM satisfies the Universal 

Domain requirement. We now state a version of the Independence requirement 
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appropriate to allocation aggregation and a weak version of the Unanimity Preservation 

condition. 

 

Independence of Alternatives (IA) For all j{1,…,m} and all A,B   A(n,m;s,V): 

Aj = Bj   F(A)j = F(B)j. 

 

Zero Preservation (ZP)  For  all j {1,…,m} and all AA(n,m;s,V): 

Aj = 0   F(A)j = 0. 

 

Theorem 1. (Lehrer and Wagner 1981)  If m   3 and V = [0,s], then an AAM  F satisfies 

IA and ZP if and only if there exists a single sequence w1,…,wn of weights, nonnegative 

and summing to one, such that for all AA(n,m;s,V) and all j = 1,…,m, F(A)j = w1a1j + 

w2a2j + …+ wnanj. 

 

In Theorem 1, the valuation domain V,  i.e., the set of values that may be assigned to the 

variables, is the infinite closed interval [0,s]. In real world allocation problems however 

valuation domains will necessarily be finite because of resource constraints. And, as we 

now show, if the domain of values is finite and satisfies the mild closure conditions listed 

above, then only dictatorial aggregation satisfies IA and ZP.  

 

Theorem 2.  If  m   3 and V is finite, then an AAM  F: A(n,m;s,V)A(m;s,V)  

satisfies IA and ZP  if and only if  F is dictatorial. 

 

Theorem 2 is the main plank of our claim that realistic allocation aggregation must be 

dictatorial if it satisfies the trio of conditions: Universal Domain, Independence and 

Unanimity Preservation. In the final section, we examine the three conditions with a view 

to assessing the scope of the theorem. But before this we turn to a comparison of 

Theorem 2 with similar results to be found in the literature on opinion aggregation.  

 

3.  Dictatorship in Opinion Aggregation 
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The existing literature on opinion aggregation can be divided into two main groups. The 

first consists of work that assumes that every valuation domain is a continuum: prominent 

examples include the work on probability aggregation found mainly in statistics and the 

work on utility aggregation found in social choice theory. The second consists of work 

that assumes a binary valuation domain: prominent examples here include the work on 

ordinal preference aggregation in social choice theory and that in the new field of 

judgment aggregation.
1
 Theorem 2 fills something of the space in between the two. In 

doing so it reveals an interesting connection between the characterizations of linear 

averaging found in the first group and the dictatorship results of the second. In short, 

conditions that allow arbitrary linear averaging when the valuation domain is a 

continuum force such averaging to take the extreme form of a dictatorship when the 

valuation domain is finite. 

 

To add a bit more substance to this claim, let us consider how Theorem 2 sheds some 

light on the dictatorship results for proposition-wise independent judgment aggregation. 

In a typical judgment aggregation problem a set of individuals face a set of logically 

interconnected propositions, called the agenda, upon which they must reach a collective 

opinion. An agenda is assumed to be closed under negation, and individuals must either 

accept or reject each of its propositions. A judgment aggregation rule is a universal 

mapping from profiles of such consistent and complete individual judgments on the 

agenda to a consistent and complete collective judgment on it. The aggregation rule 

satisfies proposition-wise independence just in case the collective judgment on a 

proposition p depends only the individuals’ judgments on p. 

 

To form an allocation matrix from a judgment aggregation problem, let the column 

variables of the matrix be maximal consistent subsets of the agenda and the opinion 

values for each such set be 1 iff the individual accepts all propositions in the set 

(equivalently, accepts their conjunction), and 0 otherwise. The valuation domain is thus 

just the set {0,1}, which trivially satisfies the closure conditions of Theorem 3, and row 

opinion values must sum to 1. Since an opinion value of 1 on any particular maximal 

                                                 
1
 See List and Puppe (2009) for a survey of the field. 
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subset requires an opinion value of zero on the others, IA amounts to the requirement that 

the aggregate opinion value on each subset of the agenda depends only on which 

individuals accept the propositions in it. By Theorem 2 any judgment aggregation rule 

that preserves unanimous rejection of any maximal subset and satisfies this kind of 

independence is dictatorial.  

 

This result is very close to Theorem 1 of Dietrich (2006) which proves that dictatorial 

rules are the only ones satisfying proposition-wise independence on what he calls ‘states 

of the world’ – essentially conjunctions of the propositions in the maximal subsets of the 

agenda – and a weak responsive condition that implies ZP in this context. But in general, 

although the allocation matrix representation of a judgment aggregation problem 

preserves all the information contained in the standard description of the problem, the 

application of IA to aggregation of the maximal subsets of the agenda has subtly different 

consequences from the requirement of proposition-wise independence of the agenda 

items. Nonetheless, the two conditions are close enough in spirit for Theorem 2 to shed 

some indirect light on the fact that proposition-wise independence implies dictatorial 

aggregation for a wide class of agendas. Specifically the contrast with the possibility of 

linear averaging in allocation problems involving probabilistic opinions suggests that the 

restriction to simply acceptance or rejection of propositions is playing an important role 

in the dictatorship results for proposition-wise independent judgment aggregation. This 

claim is considerably reinforced by Theorem 1 of Dietrich and List (2010), which shows 

that any proposition-wise aggregation rule that satisfies a condition that they call 

implication preservation (which requires the aggregate judgment set to be consistent with 

p implying q whenever all individuals’ sets are), is a linear averaging rule when the 

judgments are probabilistic and a dictatorial rule when they are binary. 

 

4. Assessment 

 

In response to dictatorship results such as Theorem 2, it is natural to re-examine the 

conditions under which these results are derived.  If further reflection suggests that they 

are unnecessarily stringent, then one might wish to seek out weaker conditions which 
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allow for a broader class of aggregation methods while still ensuring a principled 

synthesis of individually differing allocations. Successful identification of such weaker 

conditions would show that the dictatorship results, while perhaps mathematically 

interesting, pose no real dilemma for group decision making.   

 

How then might the conditions under which Theorem 2 was derived be modified?  

Condition ZP, which requires that aggregation respect the group’s unanimity in assigning 

a variable the value zero, strikes us as eminently reasonable.
2
 Finiteness of the valuation 

domain on the other hand is inevitable feature of any real world allocation problem. Only 

in idealized models is a continuum of possible values of the variables acceptable, with the 

upshot that arbitrary weighted linear averaging becomes admissible. To make the move 

to such models seems to us to give up on a realistic account of group decision making, 

the very point of the present paper. On the other hand, it is important to note that not 

every realistic opinion aggregation problem has the form of an allocation problem and 

that non-dictatorial opinion aggregation methods may be consistent with the usual 

conditions when the set of collective opinion values is finite, so long as this set is 

sufficiently larger than the set of permissible individual opinions. For instance if n 

individuals’ opinions are draw from the set {1,2,…,n} but the collective opinion is drawn 

from the set {1,1/2,1/3,…,1/n,2,2/3,…,n} then some form of linear averaging may be 

possible.
3
 Such cases lie outside the scope of this paper, however. 

 

This leaves us with the independence condition IA. Conditions of this kind have come in 

for a fair amount of criticism, both in social choice theory and in the theory of probability 

aggregation.  Yet they continue to feature (sometimes supplemented by normalization in 

order to satisfy an allocation constraint) in many treatments of group decision making.  

                                                 
2
 Foregoing ZP might be reasonable if individuals in the group were only serving as advisors to an external 

decision maker with the ultimate power to choose an allocation.  But, at least when V is a continuum, this 

does not significantly enlarge the set of acceptable AAMs. See Aczél, et al (1984). In the presence of IA, 

the condition ZP is equivalent to  s-Preservation : For all  j{1,…,m}, and all AA(n,m;s),  Aj = s   

F(A)j = s.  So we may substitute s-Preservation for ZP in Theorems 2, 4, and 5.  Indeed this might be 

preferable since, in isolation , s-Preservation is weaker than ZP, and, as Franz Dietrich has pointed out to 

us, s-Preservation corresponds nicely to the condition of  judgment-set-wise unanimity preservation in 

judgment aggregation. See Dietrich (2006).  
3
 We are grateful to the anonymous referee for this point. 
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The reason for this is to be found in the universal domain axioms that typically underlie, 

either explicitly or implicitly, axiomatic analyses of such decision making.
4
 For if a 

method of aggregating differing opinions must be prepared to handle every logically 

possible profile of opinions, it is hard to imagine how to specify such a method without 

proceeding variable-by-variable (resp., proposition-by-proposition, state-by-state, or 

event-by-event). There are cases in which abandoning the Universal Domain condition 

allows for principled ways of resolving disagreement in a holistic manner not hobbled by 

IA.
5
 But in the present one, it is hard to see how restricting the set of allocation matrices 

on which aggregation is intended to operate might open up the canon of acceptable 

AAMs.  

 

In conclusion, we regard Theorem 2 as having genuine, though not devastating, limitative 

import. For allocation aggregation problems can always be resolved in practice by taking 

weighted arithmetic averages of the individual values assigned to each variable and, if 

those averages fail to lie in V, adjusting them by rounding up or down, while ensuring 

that the adjusted values continue to sum to s. While such adjustments may be small in 

magnitude, they will inevitably be ad hoc, with the upshot that the procedure will fall 

short of ideally rational aggregation.
6
 

 

5. Appendix 

In order to prove Theorem 2, we need to establish two preliminary lemmata.  The first 

involves the following property of aggregation, which strengthens IA: 

Strong Label Neutrality (SLN).  For all j,k {1,…,m}, and all A, BA(n,m;s,V),  

Aj = Bk   F(A)j = F(B)k. 

 

                                                 
4
 In our setup, universal domain is implicit in our definition of an AAM as a mapping F with domain 

A(n,m;s,V). 
5
 See, for example, Wagner (2010), where it is shown how one can avoid dictatorship results entailed by 

IA, ZP, and the demand for preservation of unanimous stochastic independence judgements by a natural 

restriction of the set of profiles of probability distributions to which an aggregation method must apply. 
6
 We are indebted to Franz Dietrich, Christian List and an anonymous referee for their helpful comments on 

earlier drafts of the paper. 
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Remark.  Whereas IA is equivalent to the existence of functions fj: V
n
→V such that, for 

all AA(n,m;s,V), F(A)j = fj(Aj), SLN requires that the functions fj be identically equal 

to a single function f. 

 

Lemma 1.  Suppose that m   3 and V is a subset of [0,s] satisfying the closure 

conditions (1), (2), and (3) introduced in Section 2 above. If  an AAM                              

F: A(n,m;s,V)→ A(m;s,V),  satisfies IA and ZP, then it satisfies SLN. 

 

Proof.  See Lehrer and Wagner (1981, Theorem 6.2). Note that while their theorem is 

stated  for the case V = [0,s], its proof only invokes conditions (1), (2), and (3).    

 

Lemma 2. If s > 0, a finite subset V of [0,s]  with cardinality r + 1 satisfies  

 (1)  0V,   

 (2)  xV   s – x V,  and 

 (3)  x,yV  and  x + y   s    x + y V 

if and only if V = {ks/r : k = 0,1,…,r}. 

 

Proof.  Sufficiency: obvious.  Necessity: If  r = 1, the result is obvious. Suppose then that 

r   2, and let  be the smallest positive element of V. We shall show by a proof by 

contradiction that   = s/r. Suppose not. Then either (i)   < s/r or (ii)   > s/r. 

 

(i)  If   < s/r, then by repeated application of (3) it follows that  

k V, k =0,1,…,r, and hence by (2) that s - r V. By assumption, s – r  > 0.  

Moreover, s – r  <  , for otherwise  (r + 1)   s, which would imply that  

(r + 1) V and hence that |V| > (r + 1). But this contradicts the assumption that  is the 

smallest positive element of V. 

 

(ii)  If   > s/r, then r  > s, and so r   V.  Let m be the largest integer for which m  

   s, whence m < r,  m V, and  s – m  V. Suppose that  m < s.  Then  
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 0 < s – m <  , again contradicting the assumption that  is the smallest positive 

element of V. So    = s/m.   Moreover, V = {0, s/m, … , (m – 1)s/m, s}. Otherwise, 

there exists  V such that ks/m<   < (k+1)s/m, where 1  k m – 1. Let   

 *
 :=    + (m – 1 – k)s/m.  Then (m – 1)s/m <  *

 < s,  and so   *
   V  and  

 s –  *
  V.  Furthermore,  0 < s –  *

 < s/m, contradicting the assumption that  s/m  is 

the smallest positive element of  V.  Hence |V| = m + 1 < r + 1, contradicting the 

assumption that |V| = r + 1. 

 

By (i) and (ii), it follows that   = s/r.  Since ks/r V for k = 0,1,…,r 

and |V| = r + 1, it must be the case that  V = {ks/r  : k = 0,1,…,r}.           □ 

 

Theorem 2.  If  m   3 and V is finite,  an  AAM  F: A(n,m;s,V)  A(m;s,V)  satisfies  

IA  and  ZP  if and only if  F is dictatorial.     

 

Proof. Sufficiency: obvious.  Necessity:  By Lemma 2, F satisfies SLN, and so there 

exists a function  f : V
n
   V  such that, for all  A  A(n,m;s,V)  and  all  j{1,…,m}, 

F(A)j = f(Aj).  Moreover,  

 

(4)       f(X + Y) = f(X) + f(Y)     for all  X, YV
n
  such that  X, Y, and X + Y    s. 

 

This follows from considering matrices A and B in A(n,m;s,V)  defined (with vertical 

lines separating columns) by  A = (X |  Y  |   s – X – Y | 0 | … |0)   and    

B = (X + Y  |   s – X – Y |  0  | 0| …|0),  and noting that by Z   f(0) = 0. Summing the 

values of  f  over the columns of A and B then yields f(X) + f(Y) + f(s – X – Y) = s 

 = f(X + Y) + f(s – X – Y), and hence (4).  Summing the values of f over the columns of  

C = (s | 0 | …| 0) shows that  

 

(5)         f(s) = s.  

 

By induction, the functional equation (4) can be extended to any finite number of 

summands X, Y, Z, …, so long as X, Y, Z,…, X + Y + Z + …    s.  With (5), this yields 
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(6)         f(s/r) = s/r      and, more generally,     f(ks/r) = ks/r,   k = 0,…,r. 

  

      Next, associate with the function  f: V
n
   V  functions  f

 ‹i› : VV, i = 1,…,n, 

defined for all xV  by  f
 ‹i›(x) = f(0,…,0,x,0…,0), where x occupies the i

th
 position in 

the preceding vector. Clearly, 

 

(7)          f(x1,…,xn) = f 
‹1›(x1) + f 

‹2›(x2) + …+ f 
‹n›(xn)     for all  (x1,…,xn)  V

n
, 

 

 and by (4),  

 

(8)        f 
‹i›(x + y) = f 

‹i›(x) + f 
‹i›(y) for all x,y V such that  x, y, and x + y    s.  

 

 Recall that V = {ks/r : k = 0,1,…,r}.  By (6) and (7), 

 

(9)                f(s/r) = f 
‹1›(s/r) + f 

‹2›(s/r) + …+ f 
‹n›(s/r) = s/r. 

 

Since the values of f, and hence of the functions f
 ‹i›

, are constrained to lie in V, this 

implies that there exists an individual d{1,…,n} such that 

 

(10)               f 
‹d›(s/r) = s/r       and     f 

‹i›(s/r) = 0  for all  i d, 

 

and repeated application of (8) to (10) then yields 

 

(11)             f 
‹d›(ks/r) = ks/r       and     f 

‹i›(ks/r) = 0  for all  i d,    k = 0,…,r. 

 

i.e., for all xV, 

 

(12)             f 
‹d›(x) = x      and     f 

‹i›(x) = 0  for all i d. 

 

Hence, for all AA(n,m;s,V),  F(A) = (f(A1), f(A2),…, f(An)) = (ad1, ad2,…,adm).  □ 
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