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1. Introduction. In 1944 Dieudonn [3] proved a p-adic analogue of the
Weierstrass Approximation Theorem by an inductive argument involving the
polynomial approximation of certain continuous characteristic functions. In
1958 Mahler [4] proved the sharper result that each continuous p-adic function
defined on the p-adic integers is the uniform limit of the "interpolation series"

where

()) n
a’i(0) (- 1 i(n

ks0

The crucial step in Mahler’s proof involves showing that lim,(R) Z" (0) 0
for the p-adic topology, and he demonstrates this by passing to a certain cyclo-
tomic extension of the rationals. In fact, this follows quickly from Dieudonn’s
theorem for if p(t) is a polynomial of degree r for which ]I(t) p(t)l, < for
tZ,,thenlz"](0) z"p(0)] <: foralln. Hence ifn > r, zp(0) 0
and [A 1(0)[, < .

In he presen pper we use he bove ide o simplify our earlier proof of
Mahler ype heorem for continuous functions on he rin V of formal power
series over a finite field GF(q) [5]. Although he proof by Dieudonn admits
a sraighfforward generalization o ny locally eompe non-rehimeden field,
in his ese we eeomplish he polynomial pproximion of he relevn charac-
teristic functions wihou recourse o induction by using certain powers of he
Crliz polynomials G,_(t)/g,_ [1]. We conclude by givin suffieien
condition for he differenibiliy of a function f defined on V.

2. Preliminaries. Let GF [q, x] be the ring of polynomials over the finite
field GF(q) of characteristic p and let GF(q, x) be the quotient field of GF[q, x].
Denote by V the ring of formal power series over GF(q) and by F the field of
formal power series over GF(q). Set 101 0. If a F {0} is given by

(21) a a,x’
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where a, e GF(q) and all but a finite number of the a/s vanish for i < 0, then
set v(a) k and

(2.2) la b"’,
where 0 < b < 1 and k is the smallest subscript i in (2.1) for which a, O.
Then is a discrete, non-archimedean absolute value on F and F is complete
with respect to this absolute value. Obviously GF[q, x] is dense in V as is
GF(q, x) in F. The valuation ring of F is V, and V is compact and open in F
[5; 392]. Also, addition and multiplication are continuous operations in F so
that polynomials over F define continuous functions.

Following Carlitz we define a sequence of polynomials I,n(t) over GF[q, x] by

(2.s) (0 II (- ),
deg m<n

where the above product extends over all m GF[q, x] of degree less than n
(including 0). Then [2; 140]

(2.4) (t)= ,.o (--1)’-’[rli t",

where

(2.5) i F,L’’_,’ 0 L.

f In]In- 1]"

L, In]In- 1]...

[r] ’- .
Following [1] we define polynomials Gn(t)

g. e GF[q, x] as follows. If

(2.7) n eo - eq - "t- eoq’,

then set

(2.8) a.(0 (0 :’(0

and

(2.9) G(t)

where

(2.10)
F

and G’,,(t) over GF[q, x] and

O_<e, <q,

O<e<q--1

e=q--1
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and

(2.11) , FI’ F:’, go 1.

We mention that G.(t)/g. and G’(t)/g. are integral valued polynomials over
GF(q, x), i.e., for all m e GF[q, x], Gn(m)/g. G’(m)/gn GF[q, x] [1; 503].

If H is any extension field of GF(q, x), since deg G(t) n, it follows that
(G(t)/g,,) is an ordered basis of the H-vector space. H[t]. Indeed for any
h(t) H[t] of degree

_
n we have [1; 491] the unique representation

(2.12) h(t) A, G,(t)
-o g4

where

(2.13) A, (--1)" G’.-,-,(m) h(m), m GF[q, x]
deg m<r gq’--X--4

and i < q’. We emphasize that for i > n Formula (2.13) yields A, O, so we
could have written the sum in (2.12) with upper limit . In the sequel we shall
expand an arbitrary continuous function ]:V -- F in a (genuinely) infinite
series resembling (2.12).

3. Characteristic functions. For all nonnegative integers h define a function
xonVbyx(t) liflt[

_
bandx(t) Oifb < Itl

_
1. As the charac-

teristic function of an open-closed ball about 0, x, is continuous. The following
theorem shows that it may be uniformly approximated by polynomials over
GF(q, x).

THEOREM A. For k > 0 let
k(3.) c,(t) (-1)

Then ]or all e V and ]or all natural numbers s

(3.2) ICe’(t)- x(t)]

_
b",

where p is the characteristic o] F.

Proo]. By [2; 141] G,_,(t) (t)/t. If ]t b*, then x*, where V.
It follows from (2.4), (2.5), (2.6) and (2.11) that C(0) 1, and so we may
assume that 0. Then by these same four formulae

(3.3) C(x.) (_ 1) LV(x), 1 + (- 1)- (x),’-lL
Fx -, FL_

But each of the terms other than 1 in (3.3) is conuent to zero (mod x) for if
1 EiE k, then

-1n / at,((x)’’ ,.,-, > (q’- ) + ( + q + + q’-’) q’(
iq (1 + q + + q-) > 0.
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Hence there exists V such that

C(x) 1 - Bx
and so for all s > 1

C (x ) 1 T (x)’
from which (3.2) follows for t] b.

If b < [t < 1 and since (t)/f 1 for all t V [6; 3], then

Ice(t) x(t) Ic(t) ’ t
Remark. It follows from (3.2) by translation that for all a V

(3.4) lc’(t ) x(t )1 5 b".
Hence the characteristic function of any open-closed ball in V may be uniformly
approximated by polynomials.

4. THEOREM B. Le$ ]: V F be continuous and for all i 0 set

(4.) , (-)"
deg m<r gqr--l--i

where i < q (anysuch r yields the same value for A [1; 492]) and the sum in (4.1)
extends over all m GF[q, x] of degree < r. Then

(.) A, V,(t)
i-O

converges uniformly to ](t) for all V.

Proof. Since IG,(t)/g,I for an t V [6; 3] and is non-archimedean,
the uniform convergence of (4.2) would follow from a proof that lim. A, 0.
Hence, given s 0, we seek N N(s).such that i > N implies that [A
Since V is compact, ] is bounded, and we may assume with no loss of generality
that ]: V V. Also ] is uniformly continuous, and so there exists a k k(s)
such that [t t21 b implies If(z) ](t)l b’ for t, t2 e V.
For m GF[q, x] suppose that ](m) o ax. Set L(m) ao
W a.-x"-. This defines a function L’GF[q, x] GF[q, x] for which

(4.3) IL() ]()1 b’

for all m GF[q, x]. Furthermore, ] is periodic (mod x) for if m m (mod x),
i.e., if m m21 b, then by (4.3) and the uniform continuity of ] it follows
that IL(mx) L(m)l b’. Hence L(mx) ].(m2) since distinct values of
are incongruent (rood x’).

Corresponding to (4.1) we define a sequence (B) in GF[q, x] by

(4.) B, (-1)"
deg m<r gqr--l’i
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where i < q’. Since G,_l_(m)/gq,_s- GF[q, x], it follows from (4.3) that
for all i > 0

(4.5) IA, B,I <- b’.

By (4.4) and the periodicity (mod x) of , it follows that

(4.6) B, (--1)" ].(m)
deg m<k deg m<k gqr-l-i

m’mx (rood x/)

Now for each ml GF[q, x] with deg ml < k

(4.8) (-- 1)" . G’._s_,(m) (_ 1)" G’.__,(m) x(m
(rood k)

where x is as in 3. For each such ms and for all i _> 0 set

(4.9) D,(m,) (--1)" G_.__,(m) C’(m-
deg m<:, gqr--l--

where C(t) is defined by (3.1) and i < qr. Then by (3.4), (4.6), (4.8) and (4.9)

(4.10) [B,- /o(ml)D,(ml)l <._. b’" <_ b.
deg mz <k

But for each ms, deg C (t ms) p(q 1) and so by (4.9) and the remarks
following (2.13), D(m) 0 if i > p’(q 1). It follows that for such
i, ]B,I <_ b" which, along with (4.5), implies that IA,i <_ b’.

It remains to be shown that (4.2) actually converges to the function f. As
the uniform limit of (continuous) polynomial functions (4.2) represents a
continuous function on V. Since GF[q, x] is dense in V, it suffices to show that

G,(m*)(4.11) ](m*) _, A,
i-o

for all m* GF[q, x]. Suppose that deg m* < d. Then by (2.3) and (2.8)
G(m*) 0 for i >_ q, und so the series in (4.11) is ctuully finite. Let
be the unique polynomial over V of degree <q such that ](m) ](m) for
m GF[q, x] of degree <d. Then pplication of (2.12) and (2.13) to L(t) yields
(4.11). The polynomials ],(t) also yield a simple proof of the uniqueness of
the coefficients A, in (4.2) [5; 404].

S. Differentiability. The following propositions will be used to discuss
differentiability criteria for continuous functions on V.

PROPOSITION 1.

(5.1)

For all nonnegative integers and

where g, is defined by (2.11).
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Pro@ Let:/ o+:/lq+ +i.q’andlett to + llq + + kq,
where 0 _< ,
by (2.11). If j A- k > q for some i, let n be the smallest such i. Then j -4- k.
q A- r, where 0 _< r < q and r < j=. Then by a familiar congruence for binomial

ooo  io  s ( +  )is ruon bi.o i  oo on s,

one of whieh is , 0. I-Ienee in this ease (.1) reduees to t,tte identity 0 0.

Po,oso 2. For all n > 1

(5.2) G.(t)

where q(") n and q(")/ X n.

Pro@ Let n no A- n,q -t- A-- n,q’, where 0 _< n < q. If no > 0, then
e(n) O, and so by (2.8), (2.11) and the fact that xI,o(t)

(5.3) G,(t) ,I,,]-’(t),I,;’(t) ,I,:(t) G,..,(t)

If no 0, let e(n) be the first nonzero coefficient in the q-adic expansion
ofn. Thenn- 1 (q- 1) +(q-- 1)qA- +(q- 1)q;-A- (n-- 1)q; +
q+ q (n 1)q A- n+q+ A- A- n.q" so thatn+ -1- -t- noq" and n

(5.4)

.(t) ,r(t) ,k [Trni+

:,_,(t) ._o,(t)

since (t)/t G’,_l(t) [2; 141]. It follows from (5.2) that G.(t)/tg._ is an
integral valued polynomial over GF(q, x) and, since GF[q, x] is dense in V, that

(5.5)

if lal _< 1.

PROPOSITION 3. For all n > 1

(’G(t)I f(0-1) if n q
(5.6) t-/t.o otherwise.

Pro@ This follows from (5.2), the fact that G(0) 0 for i > 0 and the
fact that G’,,_,(O)/g,_ (-1) [6; 51.
Paoeoswo 4. For all n > 1
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(5.7) g._ 1
g. L. (.)

where L, is defined by (2.6) and e(n) is as in (5.2).

Proofi This follows immediately from (2.6) and (2.11).
We maynow give a sufficient condition for the differentiability of a continuous

function 1: V --. V at u V.

THEOIEM C. Let ]:V V continuously and suppose that

(5.8) ](t) A, G,(t)

is the interpolation series yor y constructed/rom the Carlitz polynomials. For all
u V set

(5.9) A,(u) i + A,/.

I1 limi.(R) Ai(u)/L. O, then ] is differentiable at u and

(5.10) ’(u) (- 1)" A.(u)

Prool. By (5.8), [1; 488, (2.3)] and Proposition 1

(5.11)

(;,(t + u)](t +u) A,

for all t, u V. Since (A) is u null sequence, we may reverse the order of sum-
mation in the last series in (5.11). This yields

(5.12) [(t + u) Ai(u) G(t)
i=o gi

where

13) A,(u)

Note that (Ai(u)) is a null sequence and that Ao(u) f(u); so for all nonzero
tV

(5.14) G,(t) ,(--, A(u)l(t + u)t I( A ,=,E A,(u) tg, i==1 Z:’) tgi_

by Proposition 3.
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Now if (Ai(u)/L.ti) is a null sequence, then by (5.5) the rightmost series.
in (5.14) converges for all V (including zero) to a continuous function on V.
Hence ]’(u) exists and by Proposition 3

(5.15) (A(u_) G(t) E (--1)" A,.(u)I’(u) \L-(, ,-o .-o L.
We remark that the function J of (5.8) is a linear operator onthe GF(q)-vector

space V precisely when A, 0 for i not a power of q [5; 406]. Hence if ] is linear,.
then

so that the condition limi A(u)/Le( 0 is equivalent to lim_ A,n/Ln 0..
This latter condition is, in the linear case, both necessary and sufficient for/ to.
be everywhere differentiable on V [6; 5].
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