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Mathematical 

Newton's Inequality and a Test for Imaginary 
Roots 
For my aunt, Ethel Groh Brunner, in her thirtieth year as a teacher. 

Carl G. Wagner 

Carl G. Wagner is Associate Professor of Mathematics at the 

t/&j; AUniversity of Tennessee, Knoxville, Tennessee. He completed 
) - ) bthe Ph.D. in Mathematics at Duke University in 1969 under 

C1$ \IfProfessor Carlitz, and has published papers in number theory 
and combinatorics. 

1. Introduction. Given a polynomial 

f(x) = anx + a xn-iX + +alX+a0 (1.1) 

of degree n > 2 with real coefficients, how can one determine whether f(x) has 
imaginary (i.e., non-real) roots? If n = 2 the question is settled merely by checking 
the sign of the discriminant a2- 4a2a . For n > 2, however, it may be necessary to 
calculate (by repeated applications of Sturm's Theorem [ 1, p. 87]) the exact number 
of real roots of f(x), multiplicities counted, and compare this number with n. In 
certain cases, of course, the simpler data derived from Descartes' Rule of Signs [1, 
p. 48] will settle the question. For example, the following sufficient condition for 
the existence of imaginary roots may be derived from the Rule of Signs: 

Theorem 1. Let f(x) be given by (1.1), where ao # 0 and n > 3. If, for some 
k E [2, n- 1], ak- 1 = ak = 0, then f(x) has imaginary roots. 

Proof. Consider the subsequence ano = ao, anl, an2, . . . , anr = an of ao, a1, 
a2, ... ., an consisting of all nonzero elements of the latter sequence. By the Rule of 
Signs, each sign change between an, and an,, allows at most one positive real root 
and each sign change between (- l)ian, and (- )ni+lan, l allows at most one 
negative real root. If ni 4 ni+ 1 (mod 2), there is a sign change between ant, and a,,.+, 
if and only if there is not a sign change between (- l)nian, and (- l)ni+lan ,,. If, 
however, ni, ni+I (mod 2), it is possible to have a sign change between a,,,. and 
an,+1, and also between (- 1)nian, and (- I)ni+lan'+,. In this latter case, there is at least 
one zero coefficient between ani and anj+1 in the original coefficient sequence, i.e., 
ni+- ni >2. Letj = card {i : 0< i < r - 1 and ni ni+I (mod 2)). Then card 
{i : 0 < i < r - 1 and ni E ni+1 (mod 2)) = r -j. Hence, there are, by previous 
remarks, at most 2j + (r -j) = j + r positive or negative roots of f(x), multiplici- 
ties counted. 
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But by hypothesis, there is at least one i & [0, r - 1], such that ni+I - ni > 3. If 
ni4ni+I (mod 2), r < n-j-2, and so j+ r 6 n-2. If ni-ni+I (mod 2), 
nj+ - ni > 4 and r 6 n - (j - 1) -3 = n-j -2, and soj + r < n -2. Since, by 
hypothesis, zero is not a root of f(x), we conclude that the number of real roots of 
f(x), multiplicities counted, is at most n - 2. Hence f(x) has imaginary roots. 

This note introduces a rather general sufficient condition for the existence of 
imaginary roots, based on the above theorem and an inequality due to Newton. 

2. Newton's Inequality. If the polynomialf(x) of (1.1) has no imaginary roots, 
then by Rolle's Theorem [1, p. 45] the same is true of all nonzero derivatives of 
f(x). In addition, the reciprocal polynomial Rf(x) of f(x), defined by 

Rf(x) = Xnf( ) = aox n+ aix n- +** +anlx + an, 

clearly has no imaginary roots. These observations may be used to prove the 
following theorem, known as Newton's Inequality. The proof which we present is 
essentially that of Hardy, Littlewood, and Polya [2, p. 104], but employs the 
aforementioned fact about reciprocal polynomials in order to avoid their use of 
partial differentiation. 

Theorem 2. Let f(x)= anxn + an-1xn-i + + ajx + ao be a polynomial of 
degree n > 2 with real coefficients. If f(x) has no imaginary roots, then for all 
k E [1, n- 1], 

ak2> kk )(n k )ak- lak+ P (2.1) 

Proof. Since f(x) has no imaginary roots, it follows that 

D k- l(X)= n -ax Xn-k-i + 
(k +1)! 2 

Dkilf(x)= ( nk!+ 1)! n 2 ak+l 

+ k!akx + (k - 1)!akI 
has no imaginary roots. Hence 

(k + 1)! n-i 

RDk-f(x) = (k-l)!akixn-k+ + k!akXn-k + 2 ak+Xn-k- 

+ + nk+l)! an 
(n -k n 

has no imaginary roots, and the same is true of 

h(x) =D n-k- RDk- if(x) 

(k- 1)! (n-k + 1)! aklx2 + k!(n-k)!akx 
2 

(k + 1)! (n - k- 1)! 
+ 2 k + 1 
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If ak 1 = 0, (2.1) holds trivially. If not, h(x) is a quadratic with real roots and (2.1) 
follows from the nonnegativity of the discriminant of h(x). 

We may combine Theorem 2 with Theorem 1 to obtain the following variant of 
Theorem 2: 

Theorem 3. Let f(x) = anXn + an X n + + ajx + ao be a polynomial of 
degree n > 2 with real coefficients and suppose that ao 0 0. If f(x) has no imaginary 
roots, then for all k E [1, n - 1] 

ak2 > ak-lak+1. (2.2) 

Proof. If ak-lak+l > 0, (2.2) follows from (2.1) and the fact that (k + 1)/k > 1 
and (n - k + l)/(n - k) > 1. If ak-lak+1 < 0, (2.2) follows immediately since 
ak2 > 0. If either ak-l = 0 or ak+1 = 0, then by Theorem 1 ak # 0 and so 
a2 > 0 = ak-lak+1 

The contrapositive of Theorem 3 furnishes the following simple sufficient 
condition for the existence of imaginary roots: 

Theorem 4. Let f(x) = an xn + anx-l + - * + alx + ao be a polynomial of 
degree n > 2 with real coefficients and suppose that aO # 0. If there exists a 
k E [1, n - 1] such that a 2 < aklak+1, then f(x) has imaginary roots. 

In particular, forf(x) as above, if ak -1 = ak = ak +I for some k e [1, n - 1], then 
f(x) has imaginary roots. 

It should be noted that the sufficient condition stated in Theorem 4 is not 
necessary. Indeed, any quadratic polynomial x2 + bx + c for which b2 - 4c < 0 
and b2 > c (e.g., x2 + 2x + 2) will have imaginary roots, but not satisfy the 
condition of Theorem 4. 
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