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•  p = a probability measure on an algebra 

generated by events  E  and  H. 

•  E  is  p-positively relevant to  H  if 

   p(H|E) > p(H)  ( p(H|E) > p(H|Ec) ) 

• Positive relevance is symmetric and 

non-transitive. 

 

•       THE DETERMINANT TEST 

                   H                     Hc 

    E      a = p(EH)        b = p(EHc) 

    Ec     c = p(EcH)       d = p(EcHc) 

 

E  and  H  are p-positively relevant to 

each other if and only if   ad – bc > 0.      
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• One’s naïve intuitions about positive 

relevance (based on regarding positive 

relevance as an attenuated implication 

relation) are almost invariably mistaken, 

and result in a plethora of  paradoxes of 

positive relevance.  The following  

explains in part the ubiquity of such 

paradoxes: 

• E1,…, En = evidentiary events bearing 

on hypothesis H, all subsets of some set 

of possible states of the world Ω. 

• If  I  is a subset of  [n] : = {1,…,n}, 

      EI : = ∩i ε I  Ei ,  with  EØ = Ω  

      EI
# : =  EI ∩ (∩i ε [n] – I  Ei

c) 

     e.g.,    EØ
# = E1

c ∩…∩ En
c   and 

            E[n]
# = E[n] = E1 ∩…∩ En   
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•  E1,…, En  and  H  are qualitatively 

independent (Rényi) if,  for every subset  

I  of  [n],  the atomic events   H ∩ EI
#  

and  Hc ∩ EI
#  are nonempty. 

 

THE MOTHER OF ALL (well, at least 

many) PARADOXES OF POSITIVE 

RELEVANCE. 

 

Theorem 1.   If  E1,…, En and  H  are 

qualitatively independent and {cI} is any 

family of real numbers in the open 

interval (0,1) indexed on subsets I of [n], 

then there exists a probability measure p 

on the algebra A generated by E1,…, En 

and H such that  p(H|EI) = cI  for every I. 
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EXAMPLE:  Corroboration Paradoxes 

• Suppose that each of the evidentiary 

events Ei (i =1,…,n) is p-positively 

relevant to H. These events are mutually 

corroborating with respect to  H  if,  for 

all  subsets  J  and  I  of  [n], where  J    

properly contains  I,  p(H|EJ) > p(H|EI). 

 

• A corroboration paradox occurs 

whenever events Ei, each positively 

relevant to some H, fail to be mutually 

corroborating with respect to H. 

 

•How troubling is the possibility of  

encountering such paradoxes?  
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A paradox is not a contradiction. Still, 

there is something unsettling about the 

possibility that, say, p(H|Ei) > p(H), 

i=1,2,  but  p(H|E1E2) ≤ p(H|E1) or  

p(H|E1E2) ≤ p(H|E2), or even worse, 

p(H|E1E2) < p(H). 

 

JOHN POLLOCK’S RESPONSE:  

 

Not to worry! It is defeasibly reasonable 

to assume that two items of evidence, 

each positively relevant to some 

hypothesis, are mutually corroborating.  

 

Why? 
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Because if  p(H) = a,  p(H|E1) = r, and 

p(H|E2) = s, where  0 < r, s, a < 1 and     

r, a, s  ε  Q,  it is defeasibly reasonable to 

assume that  

 

p(H|E1E2) =  rs(1 – a) / {a(1 – r – s) + rs} 

                                      ↑   

                                 Y(r,s|a) 

 

and it is easy to verify the following 

 

Theorem 2.  If  r > a, then Y(r,s|a) > s,        

and if s > a, then Y(r,s|a) > r.       

(result is also true if  >  is replaced by < )  
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• Where does the Y-function come from?  

1. Ω = a finite set of possible states of the 

world, equipped with the uniform 

probability measure p: p(E) = |E| / |Ω| . 

2. Suppose the family F(Ω, a, r, s) : =   

{(H, E1, E2): p(H) = a,  p(H|E1) = r,  and 

p(H|E2) = s} is nonempty. 

3.  P = the uniform probability on      

F(Ω, a, r, s). 

 

Pollock’s Theorems: 

Theorem 4. For all δ > 0 and all ε > 0 

there exists an infinite sequence of finite 

sets Ω of increasing cardinality such that 

 P{|p(H|E1E2) – Y(r,s,a)| ≤ δ} ≥ 1 – ε . 
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Theorem 5.  The P-probability of the 

subset of F(Ω, a, r, s) consisting of those 

triples (H, E1, E2) for which E1 and E2 are 

mutually p-corroborating with respect to 

H can be made as close to 1 as we wish 

on an infinite sequence of finite sets Ω of 

increasing cardinality.  

 

Note that Pollock invokes the principle 

of insufficient reason in his analysis. We 

will see that a differently structured 

application of this principle issues a very 

different verdict on the frequency with 

which one may expect to encounter 

corroboration paradoxes. 
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JONATHAN COHEN’S APPROACH 

Given 

  (1)    p(H|E1) > p(H)     and 

  (2)    p(H|E2) > p(H), 

find supplementary conditions which, 

along with (1) and (2),  imply that 

  (3)    p(H|E1E2) > p(H|E1)   and 

  (4)    p(H|E1E2) > p(H|E2) . 

Cohen’s conditions: 

  (5)    p(E1|E2H) ≥ p(E1|H)      

           (    p(E2|E1H) ≥ p(E2|H) )   and 

  (6)    p(E1|E2H
c) ≤ p(E1|H

c)    

           (    p(E2|E1H
c) ≤ p(E2|H

c) )   

Theorem 6. (1)&(2)&(5)&(6) => (3)&(4) 
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Remark.  (5) and (6) are generalizations 

of the conditional independence of E1 

and E2, given H, and given Hc. Given (1) 

and (2), conditions (5) and (6) are 

sufficient, but not necessary, to ensure 

mutual corroboration. 

 

Nevertheless, Cohen claims that mutual 

corroboration ―will not normally‖ occur 

unless (5) and (6) hold.  

 

Like Pollock’s theorems, this is a second-

order probability assertion, though not as 

explicitly articulated. 
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A FRAMEWORK FOR ASSESSING 

PROBABILITY PARADOXES 

•  A = an algebra of propositions 

•  ∏A = the set of all probability 

measures  p  on  A. 

•  C, D, and S  denote subsets of  ∏A  , 

or, alternatively, predicates on ∏A .   

Write C(p)  when  p ε C, etc. 

The general form of probability 

paradoxes:  Naïve intuition mistakenly 

suggests that condition C(p) implies 

some ―desirable‖ condition D(p). 

Natural response to discovering that this 

is not the case:   Find a ―supplementary‖ 

condition S(p) such that                      

C(p) & S(p) => D(p) 
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  ―PROBABLE PROBABILITIES‖ 

• ∑ = a sigma algebra of subsets of ∏A , 

with P = a probability measure on ∑. 

• C, D, and S ε ∑ ; P(C), P(D), P(S) > 0. 

 

• P(Dc| C) = the prevalence of the 

paradox, relative to P. 

• P(S| C) = the incidence of S in C, 

relative to P. 

• P(S|D∩C) = the S- provenance of  D 

in C, relative to P. 

• Since  C∩S  is a subset of D, 

   P(S| C) = P(D| C) × P(S|D∩C)  

―incidence = (1-prevalence)×provenance 
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Application to corroboration paradox: 

•   C(p)  p(H|Ei) > p(H), i = 1,2 

•  D(p)  p(H|E1E2) > p(H|Ei), i = 1,2 

• S(p)  p(E1|E2H) ≥ p(E1|H)   

                  & p(E1|E2H
c) ≤ p(E1|H

c)   

•  A = the algebra of propositions 

generated by E1, E2, and H. 

• Identify ∏A  with                                

T: = {(x1,…,x7): xi  ≥ 0 & x1+…+x7 ≤ 1} 

 • ∑ = the set of Lebesgue measurable 

subsets of T, and P = the uniform (i.e., 

normalized Lebesgue) measure on ∑. 

• By Monte Carlo simulation, 

P(Dc|C) ≈ 0.37,  P(S|DC) ≈ 0.39, and 

P(S|C) ≈ 0.25  
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CONCLUSIONS 

1.  The result  P(Dc|C) ≈ 0.37 shows that 

a differently structured application of the 

principle of insufficient reason yields an 

estimate of the prevalence of the 

corroboration paradox quite different 

from Pollock’s. No surprise—results of 

applying this principle are notoriously 

unstable. 

2. The result  P(S|DC) ≈ 0.39 is at odds 

with Cohen’s assertion that E1 and E2 

will ―not normally‖ be mutually 

corroborating unless condition S holds. 

N.B.  I am not claiming that P is the 

―right‖ second order probability for 

assessing the corroboration paradox.        
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Rather, P (and the experiment 

constituting the Monte Carlo simulation 

of P) serves a cautionary role, 

highlighting the fact that the claims of 

Pollock and Cohen are overly broad and 

insufficiently supported. 

 

 The prospects for rescuing… 

 

(i)  Pollock:  dim 

 

(ii)  Cohen: much more encouraging—

examine concrete examples in various 

fields of inquiry—law, medicine, etc. 
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Supplementary conditions S(p) play 

several important roles: 

(1) In many experimental situations, we 

can ―design in‖ condition S(p), 

guaranteeing that D(p) holds whenever 

C(p) is observed.  Example: testing a 

drug vs. placebo at multiple locations. 

(2) If C(p) holds, but not D(p), we know 

that S(p) fails, which can explain in part 

why D(p) fails. Example: the Berkeley 

admissions case. 

(3) Assessing qualitative probability 

relations when C(p), D(p), and S(p) 

involve inequalities. 
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