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                                 Universality and its Discontents   

                                            Carl G. Wagner 

 

Abstract.  In framing the concept of rational consensus, decision theorists have tended to defer to 

an older, established literature on social welfare theory for guidance on how to proceed. But the 

uncritical adoption of standards meant to regulate the reconciliation of differing interests has 

unduly burdened the development of rational methods for the synthesis of differing judgments. In 

particular, the universality conditions typically postulated in social welfare theory, which derive 

from fundamentally ethical considerations, preclude a sensitive treatment of special cases when 

carried over to the realm of judgment aggregation, especially in the case of probabilistic 

judgment. 
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1. Introduction.  The thirtieth anniversary of the publication of Rational Consensus in Science 

and Society (Lehrer and Wagner 1981) offers an opportunity to survey and assess certain 

developments in consensus studies during the past three decades, and I am grateful to the editors 

of the Balkan Journal of Philosophy for their invitation to contribute to this special volume on 

communication and rational consensus. Since my own work in this area has dealt chiefly with the 

consensus problem for probabilistic judgments, the theorems and examples that I cite in what 

follows will be drawn from that area of expert judgment synthesis. But I hope to make clear that 

the lessons drawn from this survey admit of more general application.   

In framing the concept of rational consensus, decision theorists have tended to defer to an older, 

established literature on social welfare theory for guidance on how to proceed. But the uncritical 

adoption of standards meant to regulate the reconciliation of differing interests has unduly 

burdened the development of rational methods for the synthesis of differing judgments. In 

particular, the universality conditions typically postulated in social welfare theory, which derive 

from fundamentally ethical considerations, preclude a sensitive treatment of special cases when 

carried over to the realm of judgment aggregation, especially in the case of probabilistic 

judgment. For requiring of a method that it produce a rational consensual probability distribution 

for every logically possible “profile” of individual distributions more or less forces the 

consensual distribution to be constructed state-by-state (or event-by-event).  And, as I show, 

state-by-state approaches  leave no room for the sort of holistic strategies required to achieve 

clearly desirable outcomes such as the preservation of epistemically significant cases of 

independence common to all individuals’ probability distributions. More strikingly, suppose that 

the set of possible probabilities is finite (as it is in all practical cases) and the consensual 

probability distribution is constructed state-by-state. Then, as I have recently proved, only a 

dictatorship can accommodate the simple demand that if everyone assigns a state zero 
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probability, so does the consensual distribution. Such results show that a seemingly innocuous 

desire for generality of application can render the whole notion of rational consensus otiose. 

2. Consensus through respect. Suppose that, after extensive discussion and the sharing of 

evidence, n experts have attained a state of what Lehrer has termed dialectical equilibrium 

regarding the appropriate probability distribution over some countable set Ω  of possible states of 

the world. In this state no one sees any point to further discussion, yet the distributions 

1 2, ,...,
n

p p p  endorsed by these individuals fail to exhibit consensus. The special case of this 

scenario in which individuals regard each other as equals on “intelligence, perspicacity, honesty, 

thoroughness, and other epistemic virtues” (Gutting 1982) has, under the rubric of the epistemic 

peer problem, recently attracted the attention of a number of epistemologists and decision 

theorists. (Kelly 2005) has argued that individuals in this situation have no reason to further 

modify their probability assessments, while (Elga 2007), (Christensen 2007), and (Feldman 

2007) have all advocated that individuals further revise their assessments to a single distribution  

that in some sense gives equal weight to each of those assessments. Naturally, this equal weight 

view requires elaboration, and may well admit of more than one reasonable interpretation.
1
  As 

early as fifty years ago, however, (Stone 1961)  suggested the weighted arithmetic mean        

p =
2

1 1 2 2 n n
w p w p w p+ + ⋅⋅⋅+ , where the weights 

i
w  are nonnegative real numbers summing to 1, 

as a reasonable consensual distribution. In the case of epistemic peers one would presumably set 

each  1/ .
i

w n=  More generally, weights would be chosen to reflect the relative expertise of the 

individuals.   

(DeGroot 1974) and, independently, (Lehrer 1976) proposed a novel method for selecting such 

weights:  Let each individual assign a nonnegative weight to each individual in the group, 

including himself, with weights assigned by an individual summing to 1.  Enter these weights in 

an n×n matrix  ,( ),
i j

W w=  where ,i j
w  is the weight assigned by individual i  to individual ,j

3
 

and reflects, in some sense, i ’s evaluation of the expertise of j relative to other members of the 

group. In contributing the weights  ,1 ,2 ,, ,...,
i i i n

w w w  to the th
i row of W , individual i  commits to 

revising his initial distribution  
i

p  to   (1)

,1 1 ,2 2 , .i i i i n np w p w p w p= + + ⋅⋅⋅+   The revised profile 

(1)P =
(1) (1) (1)

1 2( , ,..., )t

n
p p p  is thus just the matrix product WP , where P  denotes the 1n×  column 

vector  ( 1,..., )t

n
p p . If the revised distributions in (1)P fail to be identical,  DeGroot and Lehrer 

envision the further revision of (1)P to (2) (1) 2
P WP W P= =  and, if necessary, of (2)P  to 

(3) (2) 3
P WP W P= = , etc.  

Theorems about the convergence of powers of such matrices to matrices with identical rows 

were invoked by DeGroot and Lehrer 
 
to identify a single sequence of consensual weights to 

employ in averaging the probability distributions 1 2, ,..., .
n

p p p  Sufficient conditions for such 

convergence can be cast in terms of patterns of respect communicated among the individuals. 
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Following Lehrer, let us say that individual i  respects individual j  if  ,i j
w > 0.  There is a chain 

of respect from i  to j  if there exist individuals  1 2, ,...,
k

i i i i j= =  such that  
t
i  respects 1t

i
+

 for  

1,..., 1.t k= −  

Theorem 2.1.  Let W be a weight matrix and let E denote the set of all individuals k  for which 

there exists a chain of respect from every other individual to k (hence, from k to k). If E is 

nonempty and at least one member of E respects himself, then powers of W converge to a weight 

matrix L with identical rows. The entries 1 2, ,...,
n

λ λ λ  comprising each row of L are the unique 

solution to the simultaneous equations 

 (2.1)                                1 2 1 2( , ,..., ) ( , ,... )
n n

x x x W x x x=  

 (2.2)                                  1 2 1,
n

x x x+ + ⋅⋅⋅ + =  

and individual i  receives positive consensual weight (
i

λ > 0 ) if and only if i  belongs to .E  

Moreover,  1 2 1/
n

nλ λ λ= = ⋅⋅⋅ = =  if and only if the entries in each column of W sum to 1. 

Proof. (Doob 1953). �  

A more thorough discussion of the above theorem may be found in (Lehrer and Wagner       

1981, Chapter 7). In particular, readers will find there an argument for adopting the unique 

solution to (2.1) and (2.2), whenever it exists, as the consensual weights for averaging 

individuals’ probability distributions, even if powers of W fail to converge. 

3.  Weighted arithmetic means characterized.  While weighted arithmetic means have the 

virtue of familiarity and simplicity, they constitute only one class of an extensive family of 

possible averaging functions. Before ruling out other possibilities, it is incumbent upon us as 

decision makers to know precisely what we are opting for when we opt for weighted arithmetic 

means, and that means identifying a set of properties that characterize such means. The first such 

characterization was given in (Aczél and Wagner 1980), with the following elaboration  

appearing in (Lehrer and Wagner 1981):  Let Ω denote a countable set of possible states of the 

world, assumed to be mutually exclusive and exhaustive. A function : [0,1]p Ω →  is a 

probability distribution (or probability mass function) on Ω  if and only if  ( ) 1.p
ω

ω
∈Ω

=∑  Each 

probability distribution p gives rise to a probability measure (which, abusing notation, we also 

denote by p ), defined for each E ⊆ Ω  by ( ) ( ).
E

p E p
ω

ω
∈

=∑      

If n  is a positive integer, we call a sequence 1( ,..., )
n

p p  of probability distributions on Ω  a 

profile.  A pooling operator T  supplies a method of reconciling the possibly differing 

distributions 1,..., n
p p  in the form of a single, “consensual” distribution 1( ,..., ).

n
p T p p=  Of 

course, many pooling operators are prima facie unacceptable as a method of producing a rational 
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consensus, among them the dictatorial operators (for some fixed ,d  and all profiles  1( ,..., ),
n

p p  

1( ,..., )
n d

T p p p= ) and the constant operators (which impose a fixed distribution q  as the 

consensual distribution for every profile). There is an extensive literature on probability pooling. 

See (Genest and Zidek 1986) for a summary and appraisal of work done through the mid-1980s), 

which has tended to mimic the older literature on social welfare theory as developed, for 

example, by (Black 1948) and (Arrow 1951). Like social welfare theory, pooling theories lay 

down certain axiomatic constraints, and then try to identify the pooling operators that satisfy 

those constraints.  Typical constraints have included: 

Universal Domain (UD).  The domain of the pooling operator T consists of all logically possible 

profiles 1( ,..., )
n

p p . That is, if ∆  denotes the set of all probability distributions on Ω  and  n
∆  its 

n -fold Cartesian product, then  : n
T ∆ → ∆ . 

State-wise Aggregation
 4

 (SA).  For each ω ∈Ω , there exists a function :[0,1] [0,1]n
fω →  such 

that for all 1( ,..., ) ,n

n
p p ∈ ∆  1 1( ,..., )( ) ( ( ),..., ( )

n n
T p p f p pωω ω ω= . 

Zero Preservation (ZP).  For each ω ∈Ω  and for all 1( ,..., ) n

n
p p ∈ ∆ , if  1( ) ( ) 0

n
p pω ω= ⋅⋅⋅ = = , 

then 1( ,..., )( ) 0
n

T p p ω = . 

Theorem 3.1.  If | |Ω  3,≥  a pooling operator satisfies UD, SA, and ZP if and only if there exists 

a sequence 1( ,..., )
n

w w  of nonnegative real numbers summing to 1 such that for all ω ∈Ω  and all 

1( ,..., ) ,n

n
p p ∈ ∆  1 1 1( ,..., )( ) ( ) ( ).

n n n
T p p w p w pω ω ω= + ⋅⋅⋅ +  

Proof. ( Lehrer and Wagner 1981) or (Wagner 1982).  �  

Remark 3.1.  When | |Ω  2,=  any pooling operator satisfying UD necessarily satisfies SA, and  

there is an extensive class of pooling operators satisfying UD, SA, and ZP ( Lehrer and Wagner 

1981, p. 110).   

Remark 3.2. Note that while condition SA allows for the use of different functions fω  to 

aggregate the individual probability assessments 1( ),..., ( ),
n

p pω ω  this apparent flexibility turns 

out to be illusory when combined with UD and ZP. Indeed, all of the functions fω  turn out to be 

identically equal to a single weighted arithmetic mean. 

Remark 3.3.  (McConway 1981) has proved a result similar in spirit to that of Theorem 3.1 

involving a potentially infinite family of pooling procedures for probability measures on various 

sigma algebras on an arbitrary set Ω  of possible states of the world. In McConway’s approach, 

condition SA amounts to stipulating that pooling commute with marginalization (i.e., with the 

restriction of probability measures on a given sigma algebra to some sub-sigma algebra). 
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It is perhaps surprising that axioms UD, SA, and ZP so severely circumscribe the set of 

acceptable pooling operators.  Even more striking is the fact that when the allowable values of 

the various probability assessments ( )
i

p ω  and the consensual assessments ( )p ω  are restricted to 

a fixed finite subset of the real number interval [0,1],  then only dictatorial pooling satisfies these 

three axioms. 

Theorem 3.2.  Let V be a finite subset of the real number interval [0,1]  satisfying the conditions  

(i)  0 ,V∈  (ii)  1 ,x V x V∈ ⇒ − ∈  and (iii)  ,x y V∈  and  1x y+ ≤   ⇒  .x y V+ ∈   Suppose that 

Ω  is countable, and | |Ω  ≥  3.  Let 
V

∆ denote the set of all probability distributions p  on Ω  

such that ( )p Vω ∈  for all .ω ∈Ω  A pooling operator : n

V V
T ∆ → ∆  satisfies  UD, SA, and ZP if 

and only if it is dictatorial.    

Proof.  See http://philsci-archive.pitt.edu/5196     �  

4. Independence preservation.  As usual, events E  and F ⊆ Ω  are independent with respect to 

the probability measure p  if  ( ) ( ) ( ).p E F p E p F∩ =  Several individuals (Laddaga 1977), 

(Laddaga and Loewer 1985), (Schmitt 1985) have advocated the following additional axiomatic 

restriction on probability pooling: 

Universal Independence Preservation (UIP).  For all 1( ,..., ) n

n
p p ∈ ∆  and for all subsets E  and 

F of ,Ω  if ( ) ( ) ( )
i i i

p E F p E p F∩ =  for 1,..., ,i n=  then 

1 1 1( ,..., )( ) ( ,..., )( ) ( ,..., )( ).
n n n

T p p E F T p p E T p p F∩ =
    

It is clear that pooling by weighted arithmetic means will often violate UIP. Indeed, only the 

most extreme forms of weighted arithmetic averaging satisfy UIP. 

Theorem 4.1.  If  | |Ω ≥ 3, then a pooling operator satisfies UD, SA, ZP, and UIP if and only if it 

is dictatorial. 

Proof.  ( Lehrer and Wagner 1983).  �  

Remark 4.1.  If  ZP is deleted from the hypotheses of the above theorem, the set of acceptable 

pooling operators is not enlarged in any meaningful way, consisting merely of imposed, as well 

as dictatorial, operators (Wagner 1984).  

SA is of course a very strong condition, for it requires that the consensual probability assigned to 

each state ω  depends only, via the function fω , on the probabilities assigned by individuals to 

that state.  It is not surprising then, that it is difficult to satisfy both SA and UIP, since SA rules 

out the kind of holistic approach that would seem to be necessary to preserve independence of 

events, which commonly comprise more than one state.  In addition, SA requires that 

1( ( ),..., ( ) 1,
n

f p pωω
ω ω =∑  without any recourse to normalization. Indeed, it is this feature of 
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SA that is the driving force behind Theorem 3.1.  It is thus natural to wonder if weakening SA to 

allow for subsequent normalization might accommodate UIP in some interesting ways.  For this 

would open up the possibility of employing any of an extensive variety of weighted averaging 

functions to play the role of the functions fω .
5
  In fact, this gambit does work when | |Ω  4≤ , as 

shown in (Sundberg and Wagner 1987).
6
  But when | |Ω  5≥ , only dictatorial pooling 

accommodates UD, normalized SA, and UIP (Genest and Wagner  1987).  

One response to Theorem 4.1 would be to take issue with the reasonableness of UIP, which 

demands of a pooling operator that it preserve every single instance of independence common to 

the distributions of the n  experts.  As pointed out in (Lehrer and Wagner 1983) and (Genest and 

Wagner 1987) there are many instances of such independence having no epistemic significance 

whatsoever.  Suppose, for example, that you regard a certain die as fair, but I think that the die is 

weighted so that the probabilities of 1,5, and 6  are each 1/ 6,   the probabilities of 2  and 4  are 

each  1 /12,  and the probability of 3  is 1/ 3.  On each of our probability assessments, the events 

‘die comes up even,’ and ‘die comes up a multiple of 3 ’ are independent. But this independence 

is an incidental feature of our distributions to which neither of us is likely to have any theoretical 

commitment.  Why, then, should we take care to preserve this independence in any consensual 

distribution that emerges from aggregating our individual distributions?  On the other hand, 

agreed-upon cases of physical independence of certain random variables or of the independence 

of certain families of partitions of Ω  exhibit the sort of epistemic significance that demands 

preservation under probability pooling.  It should be noted that there are principled methods of 

preserving this sort of independence, both for a fixed, finite family of partitions of Ω , and for a 

fixed, finite set of discrete random variables (Wagner 2011).  But these methods yield pooling 

operators that apply to profiles of probability distributions belonging to the restricted subset of  

∆  consisting of just those distributions with respect to which the family of partitions 

(respectively, set of random variables) is independent.  And there is no apparent way to extend 

the domain of the aforementioned methods in such a way that UD is satisfied.  As I argue below, 

however, this is no cause for concern. 

5.  Conclusion: Hard Cases Need Not Make Bad Law.   Hard cases make bad law.  This 

maxim, familiar to all students of the law, asserts that exceptional legal cases are not suitable as 

the source for generalized laws.  In such cases, jurors are often left with the unpalatable 

alternatives of failing to do justice or creating undesirable precedents by carving out an exception 

to a general rule in order to accommodate morally compelling claims.  The dictatorship theorems 

described above might seem to indicate that a similar principle operates in the realm of rational 

consensus theory. But any such analogy is superficial, for the law must of necessity be prepared 

to issue judgments in all cases, and in a way that aims for maximal consistency. But why should 

we subject ourselves to the straightjacket of universality conditions when devising methods of 

creating a rational consensus from the possibly differing opinions of a set of experts?  As noted 

in the above section, one can do justice, so to speak, to the “hard” cases of epistemically 
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significant, agreed-upon independence.  Yet only dictatorial (or imposed) pooling accommodates 

the demand for universal independence preservation. Similarly, demanding of a pooling method 

that it produce a consensual distribution for every logically possible profile of probability 

distributions (condition UD) leads almost inevitably to the adoption of pooling operators 

constructed in accord with state-wise aggregation (SA), or a normalized version thereof.  For 

how can one specify a consensual distribution for every such profile, by means of a necessarily 

finite set of instructions, without defining that distribution state-by-state ?  And we have seen 

how severely SA, and even normalized SA, circumscribe the set of methods available for 

achieving a synthesis of expert judgments, precluding the sort of holistic approach one would 

like to bring to bear on certain special classes of consensus problems. In the realm of rational 

consensus, it is not hard cases, but the demand to treat too many cases, that yields bad (decision-

theoretic) law. That so many consensus theorists (including the present author, from whom this 

essay is a mea culpa) failed to take account of this simple observation for so long illustrates the 

power of faulty analogy in particularly striking form.  

 

Footnotes 

1.  An analysis of an intriguing geometric interpretation of the equal weight view suggested to 

the author by David Jehle appears in (Shattuck and Wagner 2010). 

2.  That is, for each possible state of the world ,ω ∈Ω  1 1 2 2( ) ( ) ( ) ( ).
n n

p w p w p w pω ω ω ω= + + ⋅⋅⋅+  

It is easy to check that for each ω ,  min { ( )} ( ) max { ( )}
i i i i

p p pω ω ω≤ ≤ , and that ( ) 1p
ω

ω
∈Ω

=∑ . 

Stone called this way of aggregating the distributions in question the opinion pool. 

3.  Such square matrices, with nonnegative entries summing to 1 in each row, are known as 

stochastic matrices, and have been extensively studied by mathematicians, since they define a 

stochastic process known as a finite Markov chain.  

4.  State-wise aggregation is often termed irrelevance of alternatives or (confusingly) 

independence. 

5. Among the possibilities are all of the so-called weighted quasi-arithmetic means, constructed 

by choosing a strictly monotone function τ , along with nonnegative weights 1,..., n
w w  that sum 

to 1, and setting 1

1 1 1( ( ),..., ( )) ( ( ( )) ( ( )))
n n n

f p p w p w p wω ω ω τ τ ω τ−
= + ⋅⋅⋅ + . For example, when 

2( )x xτ = ,  then  fω  is a weighted root-mean-square; when 1( )x xτ −
= , then fω is a weighted 

harmonic mean; and when ( ) lnx xτ = , then fω  is a weighted geometric mean. 

6.  In particular, normalized weighted geometric means (see note 5 supra) satisfy UD, 

normalized SA, and UIP when | |Ω  = 4. 
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