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Enumeration of generalized weak orders 

By 

CARL G. WAG~ER *) 

1. Introduction. Let R be a binary relation on X and let 

a R  = ((x, y) : (x, y) E R and (y, x) ~ R ) ,  cR  = ((x, y) : (z, y) ~ R} ,  
and 

sR -= ((x, y) : (x, y) e _R and (y, x) e R}. 

We term R negatively transitive when c R is transitive. 

R is called a generalized wea]c order if caR is transitive. Generalized weak orders 
Were introduced by P. C. Fishburn [4], and include as special cases the asymmetric 
Weak orders (asymmetric, negatively transitive relations) and complete weak orders 
(complete, reflexive, transitive relations) familiar to economists as models, respec- 
tively, of strict preference and preference-or-indifference. 

Generalizing the familiar 1-1 correspondence between asymmetric weak orders, 
Complete weak orders, and linearly ordered partitions, one may exhibit a 1-1 cor- 
respondence between generalized weak orders on a set and linearly ordered par- 
titions of that  set, the blocks of which are equipped with arbitrary symmetric 
relations [4, p. 165]. The essential details of this correspondence are as follows: 
A generalized weak order R on a set X p~.rtitions X by the equivalence relation 
ScaR, and X ~ X / s c a R  is linearly ordered by :>, where for all A, B e X, A ;> B 
iff (x, y ) e  a R  for all x e A and y e B. The symmetric relation attached to each 
A e X is simply the restriction of R to A. Conversely, if J/  is a partition of X 
linearly ordered by :>-, and each A e ~ is equipped with a symmetric relation 
RA, then R = R(s) t_) R(a) is a generalized weak order on X, where R(s) ~ QJ RA 

Ae,~" 
and R(a) --~ U A x B. In  the remainder of this paper we exploit the foregoing 

A , B E . f(  
A ) > B  

Correspondence to enumerate various classes of generalized weak orders. 

2. Recurrence relations. Let W (n) denote the number o/generalized weak orders on 
an n-set, equivalently, the number of ordered partitions of an n-set, each block of 

*) Portions of this work were completed while tile author was a Fellow at the Center for 
Advanced Study in the Behavioral Sciences, supported by grants from the National Science 
Foundation (BNS 76-22943 A 02), the Andrew W. Mellon Foundation, and the University of 
Tennessee. 

10" 



148 C .G .  WAGNER ARCH. MATH. 

which is equipped with an arbi t rary symmetric relation. The number  of such par- 
g \ 

titions with initial block of size k i s ( n k ) 2 ( f §  and hence, 
\ - - /  

2(, W(n- -  k); W(0) = 1. (1) W ( n ) =  n ~ 

A generalized weak order need not be transit ive or negatively transitive. Indeed, 
the transitive (rasp., negatively transitive) generalized weak orders are just those 
corresponding to ordered partit ions with transit ive (rasp., negatively transitive) 
symmetric relations at tached to each block [4, Theorems 5 and 6]. 

Since the map R - ~  c R  is a bijection from transit ive to negatively transitive 
generalized weak orders, we restrict at tention to determining T(n), the number o/ 
transitive generalized weak orders on an n-set. Proceeding as in the derivation of (1) 
above, we need to determine the number  of transitive, symmetric  relations on a 
block of size k. Now such a relation R on a block A, when restricted to {x e A: 
(x, x) e R}, is an equivalence. As is familiar, the number  of equivalence relations on 
a j-set is given by  B(~), the ]-th Bell number. Hence the number  of transitive, 
symmetric  relations on a k-set is 

by  a familiar recurrence for the Bell numbers [6]. I t  follows tha t  

Next,  let 31(n) denote the number o/generalized weak orders on an n-set which are 
both transitive and negatively transitive. (Remark. Fishburn [4, Lemma 5] has proved 
tha t  t ransi t ivi ty  of R and cR imply transi t ivi ty of caR.  Hence M(n) is, more 
simply, the number  of transitive, negatively transitive relations on an n-set.) I t  is 
easy to see tha t  a transitive, negatively transitive, symmetric relation on a block 
is either the empty  or universal relation on tha t  block. Hence, arguing as in the 
case of (1) and (2) above, it follows tha t  

'~ / n \  
(3) M(n) = ~ 2 ~ k ) M ( n - -  k); 3 / ( 0 ) = 1 .  

Finally, let P(n)  denote the number o/ asymmetric (equivMently, complete) weak 
orders on an n-set. As noted above, P (n) is simply the number  of linearly ordered 
partitions on an n-set. (In terms of the correspondence which we have exploited 
above, asymmetr ic  weak orders correspond to linearly ordered partitions whose 
blocks are all equipped with the empty  relation, and complete weak orders with 
those whose blocks are all equipped with the universal relation.) By  a now familiar 
argument,  we have 

(r P(n) k P ( n - - k ) ;  P ( O ) =  i ,  

which is derived in [5] by  a more elaborate argument.  
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3. Generating functions. Let  F and G be real valued arithmetic functions on the 
non-negative integers, and let 

F + G(~) = F(n)  + O(n) 

and 

F ,  a(n)  = F(k) G(n --  k). 
k=0 k 

Equipped with these operations, the set of arithmetic functions is an integral domain 
With multiplicative identi ty 1, where I(0) = i and I(n) = 0 if n > O. /7 has a 
naultiplicative inverse iff F(O) # O. As is familiar, this ring of arithmetic functions 
is isomorphic with the ring of formal exponential series 

co X~/, 

n~=o an n ! 

equipped with ordinary addition and multiplication, the isomorphism being given by  
the mapping ~), where 

n = 0  

is the exponential generating function of the arithmetic function -~. We determine 
in this section the exponential generating functions of T, M, and P. 

Define arithmetic functions Z, D, and E by Z (n) ~-- 1 for all n ~ 0, J~ (n) 

B(n -}- 1), the n q- 1 s~ Bell number, and E(n) ----- 2 (2§ Then we may  express 
the recurrence relations (1), (2), (3), and (4) as equations in the ring of arithmetic 
functions as follows: 

(5) 

(6) 

(7) 

(S) 

Solving the 

(9) 

(10) 

(11) 

(12) 

W =  ( E - -  I ) ,  W-t- I ,  
T = ( B - - I ) . T  q - l ,  

M =  ( 2 Z - - 2 I ) . M  + I ,  

P----(Z-- I )a  P-q- I .  

above for W, T, M, and P we have 

w = i / ( 2 1  - E ) ,  

T = I / ( 2 1  - - / ~ ) ,  

= 1 / ( 3 1  - -  2 Z ) ,  

P = I / ( 2  I i Z )  I 

The numbers W(n) grow too rapidly to possess a non-trivially convergent ex- 
ponential generating function. In order to determine ~v(T), we need to determine 

c~ XT/, 

n = O  n ! 
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Now [6], 

~o(B) = B(n)  ~ .  = e "~-~, 
rt~O 

and since ~0(B) = D ~ ( B ) ,  i t  follows t h a t  ~O(B) = e ~ '+~- j .  Since ~ ( I )  = 1, (10) im- 
plies t h a t  

xn 
(13) ~p(T) -- T(n)  ~ . .  ----(2 - -  ee '+z-1)  -1 . 

n=0  

And, since ~p(Z) = e x, (11) and  (12) imp ly  t h a t  

3grt 
~ ( M )  = ~ M ( ~ )  ~ T  = (3 - 2ex) -~  (14) 

and  
c~ Xn 

(15) ~(P)  =- ~ P(n)  n! ~ ---- ( 2 - -  ex) - I ,  
n=0  

the  l a t t e r  result  hav ing  been der ived  b y  a more  e laborate  a rgumen t  in [5]. 

4. Dobinski-tyl)e formulas.  Over  a cen tu ry  ago Dobinski  [3] establ ished the follow- 
ing beaut i fu l  fo rmula  for the  Bell number s :  

1 ~ k n 
B(n + i) = e~t (k-- 1)t 

I n  this section we establish Dobins ld- type  formulas  for P(n),  M(n) ,  and T(n).  
For  2 # 1, define Hn [2] b y  

2 --  i ~ x n 
(16) =  .c2j . 

The numbers  Hn  [2] are called Eulerian numbers. (See [1], [2].) F r o m  (14) and  (15) 
it  follows t h a t  M(n)  ----tln[3/2] and  P ( n )  = Hn[2] .  A Dobinsk i - type  formula  for 
Hn [2] m a y  be der ived as follows: 

(17) 

Hn [2] = (2 - -  1)Dn (2 - -  ex)_~ ] _ 2 - -  1 
I :~=0 2 

2 - - 1  ~' / 1  \k[ 2 - - 1  

I oo 
2 - - 1  "~ 

2 

I n  par t icular ,  

(18) M(n)  = Hn[3/2]  ~ � 8 9  n 
k=0 

( 11-11 D n 1 - - ~ - e x 2  Ix~O 

Dn eZ 
k~O a:=O 
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~nd 

(19) P(n) = H~[2]  = � 8 9  (�89 
k = 0  

the la t te r  result  having  appeared  in [5]. 
As for the  numbers  T(n), we have  b y  (13), 

T(n) ---- �89 -- �89 = �89 n ~. (�89 
k = 0  

(20) = �89 ~ (�89 (e*~'+~-k)l~=0 
k = O  

L r176 
= ~ ~ (�89 

k = 0  

where /n(k) = Dn(e~e~+kx-'e)lx~o. Now, f0(k) : 1, fl(k) = 2k, /2(k) : 4k~ ~- k, 
/a(k) = 8k 3 ~- 6k  2 ~- k, and  in general,  /n(k) is a polynomial  in k of  degree n, as 
seen f rom the  recurrence 

(21) In(k) = ~ kh(k) + 2~/~_~(k), 
i = 0  

which m a y  be der ived b y  wri t ing / n ( k ) ~  Dn-l(e~eZ+kx-~:Ike:~ ~ k))lx=o, and  b y  
applying Leibni tz ' s  formula.  

5. Tables. In i t ia l  values  of  W(n), T(n), M(n) and P(n), calculated f rom (1), (2), 
(3), and  (4), appea r  below. 

n W (n) T (n) M (n) P (n) 

1 2 2 2 1 
2 16 13 10 3 
3 208 123 74 13 
4 3,968 1,546 730 75 
5 109,568 24,283 9,002 541 
6 4,793,344 457,699 133,210 4,683 
7 �9 10,064,848 2,299,754 47,293 
8 . 252,945,467 45,375,130 545,835 

We r e m a r k  in conclusion t h a t  the  numbers  M (n) and  P (n) sat isfy some interest ing 
Congruences. I t  follows f rom (16) t h a t  

(22I H~[~] =k=0-- ( ~ -  1)-~,=--0(--= 1)~-J : : It]. 

Hence, Hn[2] is integral  for  all n iff (2 - -  1)-1 is integral .  I f  (2 - -  1) -1 is integral ,  
it follows f rom (22) and  :Fermat 's  Theorem tha t ,  for T an odd pr ime,  

(23) Hn+~- l [2]  -= Hn[2]  (mod2p()~ - -  1)-2). 
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Since Hn[3/2] ---- M(n) and  Hn[2]  ~ P(n), it follows from (23) t ha t  for p an odd 
prime, 

(24) M(n-}-  p - -  1) ~ M ( n )  (mod 8p)  

and  

(25) P(n + p -- 1) ~ P(n) (mod 2 p ) ,  

the  lat ter  result  appearing in [5]. 
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